Math 534 Problem Set 9

due Tuesday, November 20, 2018

In problems #1–5, R is always a commutative ring with 1, while M, N, etc. are R-modules. To abbreviate, "module" will always mean R-module, "morphism" will mean morphism of R-modules, and so on.

- 1. A module M is said to be *simple* if M is not the zero module and the only submodules of M are M and 0. Show that M is a simple module if and only if $M \cong R/I$, where I is a maximal ideal of R. (Here \cong means isomorphic as R-modules.)
- 2. Suppose that M and N are submodules of a module P. Show that $(M+N)/M \cap N \cong (M/M \cap N) \oplus (N/M \cap N).$
- 3. Suppose that R is an integral domain. An element $m \in M$ is said to be a *torsion element* if rm = 0 for some $r \neq 0$ in R. (In that case, one also says that r annihilates the element m.)
 - (a) Let M_{tor} be the set of torsion elements in M. Show that M_{tor} is a submodule of M.
 - (b) M is said to be *torsion-free* if $M_{tor} = 0$. Show that M/M_{tor} is always torsion-free.
 - (c) Suppose that $R = \mathbb{Z}$ and $M = \mathbb{R}/\mathbb{Z}$. What is M_{tor} in this case?
- 4. Let M be a module and let $m \in M$. The annihilator of m in R, usually denoted Ann(m), is the set $\{r \in R \mid rm = 0\}$.
 - (a) Show that Ann(m) is an ideal of R.
 - (b) A module M is said to be *cyclic* if it is generated by a single element $m_0 \in M$, in the sense that every element $m \in M$ can be written as $m = rm_0$ for some $r \in R$. Show that

M is cyclic
$$\Leftrightarrow$$
 $M \cong R/I$ for some ideal I of R

- 5. Suppose that R is an integral domain, and let I be a nonzero ideal of R. Show that $I \cong R$ if and only if I is a principal ideal of R.
- 6. Let F be a field, let F[x] be the ring of polynomials over F, and let V be an F[x]-module that is finite-dimensional as a vector space over F.

- (a) Show that V is a torsion module. (Hint: For a given $v \in V$, consider the sequence of elements v, xv, x^2v, \ldots)
- (b) Let $T: V \to V$ be the map defined by T(v) = xv for $v \in V$. Show that T is a linear transformation of the F-vector space V.
- 7. Let F be a field, G a finite group, and F[G] the group ring. Let V be a finitely-generated F[G]-module.
 - (a) Show that V is a finite-dimensional vector space over F.
 - (b) Let $g \in G$, and let $T_g: V \to V$ be the map $T_g(v) = gv$. Show that T_g is a linear transformation of the *F*-vector space *V*.
 - (c) Let v_1, \ldots, v_n be a basis for V over F, and for each $g \in G$, let M_g be the matrix of T_g with respect to the basis v_1, \ldots, v_n . Show that $M_g \in \operatorname{GL}_n(F)$, and that the map

$$\rho \colon G \to \operatorname{GL}_n(F), \quad g \mapsto M_q$$

is a group homomorphism.

- 8. Let R be a noetherian ring.
 - (a) Let M be a submodule of \mathbb{R}^n for some $n \ge 1$. Let $\pi_1 \colon \mathbb{R}^n \to \mathbb{R}$ be the projection to the first coordinate, so $\pi_1(r_1, \ldots, r_n) = r_1$. Show that $\pi_1(M)$ is an ideal in \mathbb{R} .
 - (b) Let $M_0 = \{ m \in M \mid \pi_1(m) = 0 \}$. Show that there is a finitelygenerated submodule $M' \subseteq M$ such that $M = M' + M_0$.
 - (c) Use induction on $n \ge 1$ to prove that every submodule of \mathbb{R}^n is finitely-generated.
 - (d) Deduce that every submodule of a finitely-generated R-module is again finitely-generated.