Math 534 Problem Set 8

due Thursday, November 8, 2018

- 1. Let $\varphi \colon R \to S$ be a homomorphism of commutative rings with 1. Show that if P is a prime ideal in S, then $\varphi^{-1}(P)$ is a prime ideal in R.
- 2. Let G be a finite subgroup of the multiplicative group F^{\times} of a field F.
 - (a) Let d be a divisor of |G|. Show that G contains at most d elements whose order divides d.
 - (b) Let $|G| = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$ be the prime factorization of |G|. Show that for each $i = 1, 2, \ldots, r$, there is an element of order $p_i^{e_i}$ in G. (Hint: First think about the case r = 1.)
 - (c) Show that G contains an element of order |G|, and conclude that G is a cyclic group.
- 3. In this exercise, we denote by \mathbb{F}_p the field with p elements.
 - (a) Let $g(x) \in \mathbb{F}_p[x]$ be an irreducible monic polynomial of degree $n \geq 1$. Show that $F = \mathbb{F}_p[x]/(g(x))$ is a field with $q = p^n$ elements.
 - (b) Show that g(x), when considered as a polynomial in F[x], has a root in F.
 - (c) Show that every element of F is a root of the polynomial $x^q x$. (Hint: Use Lagrange's theorem.)
 - (d) Show that, in the polynomial ring $\mathbb{F}_p[x]$, the gcd of the two polynomials g(x) and $x^q x$ is not equal to 1.
 - (e) Conclude that g(x) divides $x^q x$ in the ring $\mathbb{F}_p[x]$.
- 4. Let F be a field. Prove that the additive group (F, +) is not isomorphic to the multiplicative group (F^{\times}, \cdot) .
- 5. Show that the polynomial $(x-1)(x-2)\cdots(x-n)+1$ is irreducible in the ring $\mathbb{Z}[x]$ for all $n \ge 1$, except when n = 4.
- 6. Let F be a field. Let R be the set of polynomials in F[x] whose coefficient of x is equal to 0. Show that R is a subring of F[x], and that R is not a UFD.

- 7. Show that the ideal $(x, y)^n = (x^n, x^{n-1}y, \dots, y^n)$ in the ring $\mathbb{Q}[x, y]$ cannot be generated by fewer than n + 1 elements.
- 8. Let R be a UFD, and F its field of fractions. Call a polynomial $f(x) \in R[x]$ primitive if the gcd of its coefficients is equal to 1.
 - (a) Show that if $p \in R$ is irreducible, then the constant polynomial p is irreducible in R[x].
 - (b) Show that if $f(x) \in R[x]$ is primitive, and irreducible in F[x], then f(x) is irreducible in R[x].
 - (c) Suppose that we have two factorizations

$$p_1 \cdots p_k \cdot f_1(x) \cdots f_m(x) = q_1 \cdots q_\ell \cdot g_1(x) \cdots g_n(x)$$

in the ring R[x], with $p_i, q_i \in R$ irreducible, and $f_i(x), g_i(x) \in R[x]$ primitive and irreducible in F[x]. Prove that $k = \ell, m = n$, and that the factors on both sides are equal up to reordering and multiplication by units (in R).