Math 534 Problem Set 2

due Thursday, September 13, 2018

1. Let *H* and *K* be subgroups of a finite group *G*. Let $HK = \{hk \mid h \in H, k \in K\}$, which need not be a subgroup of *G*. Show that

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$$

Here |S| denotes the cardinality of a set S.

2. Let G be a group (with group operation written multiplicatively, as usual). Define a new operation * on G by setting

$$x * y = yx.$$

- (a) Show that G is a group under the new operation. We write G^{op} for the set G with the new operation *.
- (b) Show that G^{op} is isomorphic to G.
- (c) Suppose that G acts on a set X by a left action, and let $\alpha: G \times X \to X$ be the map which defines the action; in other words, if gx denotes the action of $g \in G$ on $x \in X$, then $\alpha(g, x) = gx$. Show that α defines a *right* action of G^{op} on X.
- 3. Let G and H be groups, and let Φ be the set of all functions $\phi: G \to H$ with the property that $\phi(1) = 1$.
 - (a) Let $\alpha: G \times \Phi \to \Phi$ be defined as follows: $\alpha(g, \phi)$ is the function that takes $x \in G$ to $\phi(g)^{-1}\phi(gx) \in H$. Prove that this defines an action of G on Φ . Is it a right action or a left action?
 - (b) Describe the set Φ_0 of fixed points for this action.
- 4. Let p be a prime, and let G be a p-group, meaning a finite group whose order is a power of p. Suppose that G acts on a finite set X. Let $X_0 \subseteq X$ be the set of fixed points of G. Show that

$$|X_0| \equiv |X| \mod p.$$

5. Let G be a finite group of order n, let p be a prime dividing n, and let Z_p be the cyclic group of order p. Let Φ be the set of all functions $\phi: Z_p \to G$ with the property that $\phi(1) = 1$.

- (a) Show that $|\Phi| = n^{p-1}$, where n = |G|.
- (b) The group Z_p acts on the set Φ , as in Problem 3. Let Φ_0 be the set of fixed points in Φ for the action of Z_p . Show that the cardinality of Φ_0 is divisible by p.
- (c) Show that Φ_0 is nonempty, and hence contains at least p elements. Use this to prove *Cauchy's theorem*: If p is a prime that divides the order of a finite group G, then G contains a subgroup isomorphic to the cyclic group Z_p .
- 6. Let G be a group, H a subgroup, and let X be the set of left cosets of H. G acts on X by the rule $(g, aH) \mapsto gaH$, a left action.
 - (a) Show that G acts transitively on X.
 - (b) What is the stabilizer of the cos t $aH \in X$ in G?
 - (c) Show that the homomorphism $G \to S_X$ corresponding to this action has kernel

$$\bigcap_{g\in G}gHg^{-1}.$$

- (d) Suppose that G is a finite group, and that H is a proper subgroup. Suppose that (G: H)! is not divisible by |G|. Show that G is not simple.
- (e) Suppose that G is finite, and that (G: H) is the smallest prime dividing the order of G. Show that H is normal in G.
- 7. Let $G = \operatorname{GL}_2(\mathbb{C})$.
 - (a) Give a complete set of representatives for the conjugacy classes of G, meaning a list of elements of G such that each element of G is conjugate to exactly one element of your list.
 - (b) Given $A \in G$, how do you determine which element of your list A is conjugate to?