Math 534 Problem Set 11

due Thursday, December 20, 2018

- 1. Let R be a unique factorization domain, and $d \in R$ a nonzero element. Show that there are only finitely many distinct principal ideals containing d.
- 2. Let $A \in \operatorname{GL}_n(F)$ be an invertible $n \times n$ -matrix with entries in a field F. Prove that there is a polynomial $P(x) \in F[x]$, of degree $\leq n$, such that $A^{-1} = P(A)$.
- 3. Describe the field of fractions of the ring $\mathbb{C}[x, y]/(y^2 x^3)$.
- 4. Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear map such that the minimal polynomial of T is $x^4 + 1$. Determine the number of linear subspaces $W \subseteq \mathbb{R}^4$ such that $T(W) \subseteq W$.
- 5. Show that a group of order 72 cannot be simple.
- 6. Find, up to isomorphism, all finite groups that have precisely three conjugacy classes.
- 7. Let K be a field of characteristic p, and $f(x) = x^p x a$, where $a \in K$. Show that f is either irreducible in K[x], or decomposes into a product of linear factors.
- 8. Consider the set \mathbb{Q} of rational numbers as a group under addition. Prove that there is no proper subgroup $G \subset \mathbb{Q}$ of finite index.
- 9. Let p be a prime number. The symmetric group S_p acts in a natural way on the set $X = \{1, 2, ..., p\}$. Prove that the induced action of a subgroup $G \subseteq S_p$ is transitive if and only if G contains a p-cycle.
- 10. Classify, up to isomorphism, all groups of order 45.
- 11. Let $R = \mathbb{F}_2[x]$. List, up to isomorphism, all *R*-modules with exactly 8 elements.