MAT132, Paper Homework 6

due in recitation on 11/14, 11/15, or 11/16

- 1. Suppose that the radius of convergence of the power series $\sum c_n x^n$ is R. What is the radius of convergence of the power series $\sum c_n x^{2n}$?
- 2. In this problem, we are going to express π as an infinite series.
 - (a) By completing the square, show that

$$\int_0^{1/2} \frac{dx}{x^2 - x + 1} = \frac{\pi}{3\sqrt{3}}$$

- (b) Express the functions $1/(x^3 + 1)$ and $(x + 1)/(x^3 + 1)$ as power series.
- (c) With the help of the factorization $x^3 + 1 = (x + 1)(x^2 x + 1)$, rewrite the integral in part (a). Then use the power series from part (b) to prove the following formula:

$$\pi = \frac{3\sqrt{3}}{4} \sum_{n=0}^{\infty} \frac{(-1)^n}{8^n} \left(\frac{2}{3n+1} + \frac{1}{3n+2}\right).$$

Note: This series converges fast enough to be useful for computations. If you are interested, see how many digits of π you can get by adding the first few terms of the series!