1. Let

\[f(x) = \begin{cases}
0 & \text{if } x < 0 \\
\frac{x}{1} & \text{if } 0 \leq x \leq 1 \\
2 - x & \text{if } 1 < x \geq 2 \\
0 & \text{if } x > 2
\end{cases} \]

and define a new function \(g(x) = \int_0^x f(t) \, dt \).

(a) Find an expression for \(g(x) \) similar to the one for \(f(x) \).

(b) Sketch the graphs of \(f \) and \(g \).

2. In the problem below, the identities \(\cos\left(\frac{\pi}{2} - x\right) = \sin(x) \) and \(\sin^2(x) + \cos^2(x) = 1 \) will be useful.

(a) Use substitution to show that \(\int_0^{\pi/2} f(\sin x) \, dx = \int_0^{\pi/2} f(\cos x) \, dx \) for any continuous function \(f \).

(b) Using part (a) and the second identity above, calculate \(\int_0^{\pi/2} \sin^2(x) \, dx \) and \(\int_0^{\pi/2} \cos^2(x) \, dx \).