MATH 132 Final Exam
Monday December 19, 2011

Name: ___________________ ID: _________________ Rec: ___

There are 22 problems in this exam, printed on 10 pages (not including this cover sheet). Make sure that you have them all.

The exam is in two parts: Part 1 consists of questions which should be quite easy. Getting part 1 at least 80% correct ensures a C or better on this exam. Complete Part 1 FIRST.

Part I:

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Score</td>
<td></td>
</tr>
</tbody>
</table>

Part II:

<table>
<thead>
<tr>
<th>Question</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>15</td>
<td>20</td>
<td>185</td>
</tr>
<tr>
<td>Score</td>
<td></td>
</tr>
</tbody>
</table>

Do all of your work in this exam booklet, and cross out any work that the grader should ignore. You may use the backs of pages, but indicate clearly what is where if you expect someone to look at it. If you actually read these instructions, write “I can has reading” on the bottom of this page, and you will get two points of extra credit. Books, calculators, electronic devices, extra papers, and discussions with friends are not permitted. Leave all answers in exact form (that is, do not approximate π, square roots, and so on.)

You must give a correct justification of all answers to receive credit unless otherwise stated.

You have 2 hours and 30 minutes to complete this exam.
Part 1: Do These First!
Name: ___________________ Id: ____________

10 pts 1. Calculate the indefinite integral: \(\int \frac{\cos x}{\sin^2 x} \, dx \).

10 pts 2. Calculate the definite integral \(\int_{0}^{1} xe^{-2x} \, dx \). If it does not converge, write “Diverges”.

10 pts 3. Calculate the definite integral \(\int_{0}^{1} \frac{3}{x^5} \, dx \). If it does not converge, write “Diverges”.

10 pts 4. Calculate the indefinite integral: \(\int \frac{dx}{(x+1)(x-1)} \).
Part 1: Do These First!

5. Find the sum: \(\sum_{n=1}^{\infty} \frac{3}{5^n} \)

6. Write a power series for \(xe^{-2x} \).

7. Find a function \(y(x) \) that solves the differential equation \(\frac{dy}{dx} = \frac{x}{\cos y} \) with \(y(0) = \frac{\pi}{4} \).

8. The series \(\sum_{n=1}^{\infty} \frac{1}{3^n \sqrt{n}} \) Converges / Diverges by what test?

 Justify:

 8. ________

9. The series \(\sum_{n=2}^{\infty} \frac{1}{n(ln n)^2} \) Converges / Diverges by what test?

 Justify:

 9. ________

10. Write polar coordinates for the point with rectangular coordinates \((1, -1)\) in two different ways, one with \(r > 0 \) and the other with \(r < 0 \).

 \[(r > 0) \ r = \ldots \ \theta = \ldots \]
 \[(r < 0) \ r = \ldots \ \theta = \ldots \]
11. Write the first four nonzero terms of the Taylor series for $f(x) = \ln(x/2)$ centered at $a = 2$.

12. Calculate the sum $\frac{\pi}{2} - \frac{\pi^3}{2^3 \cdot 3!} + \frac{\pi^5}{2^5 \cdot 5!} - \frac{\pi^7}{2^7 \cdot 7!} + \ldots$.

13. Jill is being held prisoner by the evil monkey-king. As a signal to her brother Jack, she drops an enchanted orb out of the window of the tower where she is being held, 100 feet above the ground. Each time the orb strikes the ground, it sends out a beacon of golden light, then bounces and returns to a height two-thirds of its previous maximum height. What is the total distance traveled by the orb if it bounces infinitely many times?
Part 2: Do these after part 1.

14. Find the area of the region that lies inside the circle of radius one given by $r = 2 \cos \theta$, but outside the circle $r = 1$.

15 pts
15. Consider the differential equation $y'' + 4y' + 20y = 0$.

(a) Write the most general form of the solution $y(x)$ which is real-valued for x real.

(b) Write a formula for the solution $y(x)$ with $y(0) = 1$ and $y'(0) = 14$.
16. Find the volume of the wedding-band shape obtained by rotating the region between the two curves

\[y = x^2 + 2 \quad \text{and} \quad y = 4 - x^2 \]

about the horizontal line \(y = -3 \).

(a) Write an integral which represents the volume.

(b) Evaluate the integral in (a).
17. Two populations, the Pacifists and the Warriors, live near one another. The Pacifists are simple rutabaga farmers: if left to themselves, their population would be well modelled by a logistic growth model. However, the nearby Warriors survive by making regular raids on the Pacifists. The two populations are modelled by the predator-prey system below, where \(t \) is in years, \(W(t) \) is the population of the Warriors after \(t \) years, and \(P(t) \) is the population of the Pacifists. The phase portrait for this system is shown at right.

\[
\frac{dP}{dt} = 2P \left(1 - \frac{P}{1000} \right) - \frac{PW}{200} \\
\frac{dW}{dt} = -\frac{W}{4} + \frac{PW}{2000}
\]

(a) Are there any equilibrium solutions? If so, find all of them. If not, write “none”, and justify your answer.

(b) If the populations start out with 600 Pacifists and 600 Warriors, circle the graph below which best represents the population of Warriors.
18. Fireman Fred has an underground tank partially full of Fluorotelomer Fire-Fighting Foam. The tank is conical, with the vertex at the top of the tank. The height of the tank is 12 feet, with a diameter of 8 feet, and is filled to a height of 9 feet. Fred wants to pump the foam out of the tank and into his truck, which fills at a height 5 feet above ground level. The foam has a density of 1 pound per cubic foot and has a delightful minty scent. **Write an integral which represents the amount of work required** for Fred to pump all of the foam out of the tank and into his truck. (You do not need to calculate the integral).

19. Simplify the complex number $(\sqrt{3} - i)^{47}$, writing it in the form $a + bi$ with a and b real.
20. Let \(f(x) = \sqrt{x} \). Find a value \(c \) between 4 and 9 so that \(f(c) \) is equal to the average of \(f(x) \) in \([4, 9]\). You should leave your answer in rough form; it is not necessary to simplify fully.

21. State all values of \(x \) for which the series \(\sum_{n=0}^{\infty} \frac{(2x - 3)^n}{n \ln n} \) converges. Don’t forget to check the endpoints.
22. Compute the following integrals.

(a) \(\int \arctan(1/x) \, dx \)

(b) \(\int \sqrt{16 - 5x^2} \, dx \)