
CONVERGENCE AND DIVERGENCE OF INFINITE SERIES

1. Suppose we are given an infinite series
∞∑
n=1

an = a1 + a2 + a3 + a4 + · · ·

Of course, we cannot literally add infinitely many numbers; instead, we have to add the numbers
one by one and see what happens. In other words, we look at the partial sums

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, s4 = a1 + a2 + a3 + a4, etc.

and see whether they approach a limit or not. Because the formula for the value of the n-th partial
sum is sn = a1 + a2 + · · ·+ an, the precise meaning of the infinite series is

∞∑
n=1

an = lim
n→∞

sn = lim
n→∞

(
a1 + a2 + · · ·+ an

)
.

If the limit exists, we say that the series converges; if it does not exist, we say that the series diverges.

2. In fact, we saw in class that there are three possibilities for what could happen:
(1) The series diverges.
(2) The series converges conditionally; this means that

∑
an converges, but the series

∑
|an|with

positive terms diverges.
(3) The series converges absolutely; this means that

∑
|an| converges. If that is the case, the

original series
∑
an itself also converges.

Deciding whether the series converges or diverges is usually the best we can do, since it is rarely
possible to find the exact value of the series.

3. Earlier in the semester, we learned several convergence tests; here is a strategy for applying
them to a given series.

(1) The first step is to have a careful look at the series. Is it a familiar one, such as a p-series or
a geometric series? Do the terms an go to zero when n→∞, and if yes, quickly or slowly?
If they go to zero very quickly (such as 2−n), the series is most likely convergent; if they go
to zero rather slowly (such as 1/n), the series might be divergent. Are there pieces of an
that are small compared to others? For instance, 1 is small compared to n2, or n3 is small
compared to 2n. Is the series alternating, as indicated by (−1)n or (−1)n−1? It is useful to
have a rough idea about all this before proceeding.

(2) Based on our analysis of the terms, we decide what to do. If the terms an do not seem
to go to zero as n → ∞, we can apply the Divergence Test. The conclusion is simple: If
lim an 6= 0, the series diverges. For example,

∞∑
n=1

n

3n− 1
.

(3) If the series is alternating, we can use the Alternating Series Test. We have to verify that
lim an = 0, and that |a1| ≥ |a2| ≥ |a3| ≥ · · · is decreasing; if both conditions hold, the series
converges. For example,

∞∑
n=1

(−1)n

n2 + 1
.
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(4) If the terms an = f(n) are given by a function f(x), and if
∫
f(x) dx can easily be computed,

we can use the Integral Test. To apply the test, the function should be positive and decreas-
ing; then we simply look at the improper integral

∫∞
1 f(x) dx, and if it converges/diverges,

the series converges/diverges. For example,
∞∑
n=1

2n

(n2 + 1) ln(n2 + 1)
.

(5) If some parts of an are small compared to others, we can simplify the series by leaving
them out; to justify this process, we apply the Limit Comparison Test. Leaving out the
negligible parts, we get a new series

∑
bn. If we manage to show that lim an/bn = 1, the

two series have the same behavior. For example,
∞∑
n=1

n2

2n + n
.

(6) Finally, we have another test for deciding absolute convergence. The Ratio Test can be
used if the ratios an+1/an can be simplified, for instance when an contains n! or small
powers of n. To apply the test, we compute the quantity ρ = lim|an+1/an|. If ρ < 1, the
series converges absolutely; if ρ > 1, it diverges. When ρ = 1, we get no conclusion and
have to try something else. For example,

∞∑
n=1

2n

n!
.


