Einstein Metrics, Minimizing Sequences, and the Differential Topology of Four-Manifolds

Claude LeBrun
SUNY Stony Brook
Definition. A Riemannian metric is said to be Einstein if it has constant Ricci curvature.
Definition. A Riemannian metric is said to be **Einstein** if it has constant **Ricci curvature** — i.e.

\[r = \lambda g \]

for some constant \(\lambda \in \mathbb{R} \).
Definition. A Riemannian metric is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric is said to be Einstein if it has constant Ricci curvature — i.e.

\[\text{r} = \lambda g \]

for some constant \(\lambda \in \mathbb{R} \).

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow

“Die Mathematiker sind eine Art Franzosen:

— J.W. von Goethe
Definition. A Riemannian metric is said to be Einstein if it has constant Ricci curvature — i.e.
\[r = \lambda g \]
for some constant \(\lambda \in \mathbb{R} \).

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow

“Die Mathematiker sind eine Art Franzosen: redet man zu ihnen,

— J.W. von Goethe
Definition. A Riemannian metric is said to be Einstein if it has constant Ricci curvature — i.e.

\[r = \lambda g \]

for some constant \(\lambda \in \mathbb{R} \).

“...the greatest blunder of my life!”
— A. Einstein, to G. Gamow

“Die Mathematiker sind eine Art Franzosen: redet man zu ihnen, so übersetzen sie es in ihre Sprache,

— J.W. von Goethe
Definition. A Riemannian metric is said to be Einstein if it has constant Ricci curvature — i.e.

\[r = \lambda g \]

for some constant \(\lambda \in \mathbb{R} \).

“... the greatest blunder of my life!”

— A. Einstein, to G. Gamow

“Die Mathematiker sind eine Art Franzosen: redet man zu ihnen, so übersetzen sie es in ihre Sprache, und dann ist es alsobald ganz etwas anderes.”

— J.W. von Goethe
Ricci curvature measures volume distortion by exponential map:
Ricci curvature measures volume distortion by exponential map:

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \(r \) is the Ricci tensor \(r_{jk} = \mathcal{R}^i_{\ jik} \).
Question (Yamabe). *Does every smooth compact 1-connected n-manifold admit an Einstein metric?*
Question (Yamabe). Does every smooth compact 1-connected n-manifold admit an Einstein metric?

What we know:
Question (Yamabe). *Does every smooth compact 1-connected n-manifold admit an Einstein metric?*

What we know:

- **When $n = 2$: Yes!** (Riemann)
Question (Yamabe). Does every smooth compact 1-connected \(n \)-manifold admit an Einstein metric?

What we know:

- When \(n = 2 \): Yes! (Riemann)
- When \(n = 3 \): \(\Longleftrightarrow \) Poincaré conjecture.
Question (Yamabe). *Does every smooth compact 1-connected n-manifold admit an Einstein metric?*

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture. Hamilton, Perelman, . . . Yes!
Question (Yamabe). *Does every smooth compact 1-connected n-manifold admit an Einstein metric?*

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When $n = 4$: No! (Hitchin)
Question (Yamabe). *Does every smooth compact 1-connected n-manifold admit an Einstein metric?*

What we know:

- When \(n = 2 \): Yes! (Riemann)
- When \(n = 3 \): \(\iff \) Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When \(n = 4 \): No! (Hitchin)
- When \(n = 5 \): Yes?? (Boyer-Galicki-Kollár)
Question (Yamabe). Does every smooth compact 1-connected n-manifold admit an Einstein metric?

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture. Hamilton, Perelman, . . . Yes!
- When $n = 4$: No! (Hitchin)
- When $n = 5$: Yes?? (Boyer-Galicki-Kollár)
- When $n \geq 6$, wide open. Maybe???
Four Dimensions is Exceptional
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.
Four Dimensions is Exceptional

When \(n = 4 \), existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.
Four Dimensions is Exceptional

When \(n = 4 \), existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But seems related to geometrizations of 4-manifolds by decomposition into Einstein and collapsed pieces.
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But seems related to geometrizations of 4-manifolds by decomposition into Einstein and collapsed pieces.

By contrast, high-dimensional Einstein metrics too common, so have little to do with geometrization.
Variational Problems

If M smooth compact n-manifold, $n \geq 3$,

$$G_M = \{ \text{smooth metrics } g \text{ on } M \}$$
Variational Problems

If M smooth compact n-manifold, $n \geq 3$,

$$G_M = \{ \text{smooth metrics } g \text{ on } M \}$$

then Einstein metrics = critical points of normalized $total scalar curvature$ functional
Variational Problems

If M smooth compact n-manifold, $n \geq 3$,

$$\mathcal{G}_M = \{ \text{smooth metrics } g \text{ on } M \}$$

then Einstein metrics = critical points of normalized \textit{total scalar curvature} functional

$$\mathcal{G}_M \longrightarrow \mathbb{R}$$

$$g \longmapsto V^{(2-n)/n} \int_M s_g d\mu_g$$

where $V = \text{Vol}(M, g)$ inserted to make scale-invariant.
If \(\not \exists g \in \mathcal{G}_M \) with \(s > 0 \),
\[\Rightarrow \] any metric minimizing
\[\mathcal{G}_M \longrightarrow \mathbb{R} \]
\[g \overset{\longleftrightarrow}{\mapsto} \int_M |s_g|^{n/2}d\mu_g \]
must be Einstein.
If \(\not\exists g \in \mathcal{G}_M \) with \(s > 0 \), any metric minimizing

\[
\mathcal{G}_M \longrightarrow \mathbb{R}
\]

\[
g \longmapsto \int_M |s_g|^{n/2} d\mu_g
\]

must be Einstein.

If such Einstein minimizer exists, also minimizes

\[
g \longmapsto \int_M |r|_g^{n/2} d\mu_g
\]
If $\exists g \in \mathcal{G}_M$ with $s > 0$, any metric minimizing
\[\mathcal{G}_M \rightarrow \mathbb{R} \]

\[g \mapsto \int_M |s_g|^{n/2}d\mu_g \]
must be Einstein.

If such Einstein minimizer exists, also minimizes
\[g \mapsto \int_M |r|_g^{n/2}d\mu_g \]
since
\[|r|_g^2 = \frac{s^2}{n} + |\dot{r}|_g^2 \geq \frac{s^2}{n} \]
with $\equiv \iff$ Einstein.
Two soft Invariants:

\[\mathcal{I}_s(M) = \inf_G \int_M |s_g|^{n/2} d\mu_g \]
Two soft Invariants:

\[\mathcal{I}_s(M) = \inf_{g} \int_M |s_g|^{n/2} d\mu_g \]

\[\mathcal{I}_r(M) = \inf_{g} \int_M |r_g|^{n/2} d\mu_g \]
Two soft Invariants:

\[\mathcal{I}_s(M) = \inf_g \int_M |s_g|^{n/2} d\mu_g \]

\[\mathcal{I}_r(M) = \inf_g \int_M |r_g|^{n/2} d\mu_g \]

which satisfy

\[\mathcal{I}_r(M) \geq n^{-n/4} \mathcal{I}_s(M) \]
Two soft Invariants:

\[\mathcal{I}_s(M) = \inf_g \int_M |s_g|^{n/2} \, d\mu_g \]

\[\mathcal{I}_r(M) = \inf_g \int_M |r|^n \, d\mu_g \]

which satisfy

\[\mathcal{I}_r(M) \geq n^{-n/4} \mathcal{I}_s(M) \]

with \(= \iff \exists \) Einstein minimizer.
Two soft Invariants:

\[\mathcal{I}_s(M) = \inf_g \int_M |s_g|^{n/2} d\mu_g \]
\[\mathcal{I}_r(M) = \inf_g \int_M |r_g|^{n/2} d\mu_g \]

which satisfy

\[\mathcal{I}_r(M) \geq n^{-n/4} \mathcal{I}_s(M) \]

with \(= \iff \exists \) Einstein minimizer.

Some other goals of this talk:
Two soft Invariants:

\[\mathcal{I}_s(M) = \inf_g \int_M |s_g|^{n/2} d\mu_g \]

\[\mathcal{I}_r(M) = \inf_g \int_M |r_g|^{n/2} d\mu_g \]

which satisfy

\[\mathcal{I}_r(M) \geq n^{-n/4} \mathcal{I}_s(M) \]

with \(= \Leftrightarrow \exists \) Einstein minimizer.

Some other goals of this talk:

- compute these invariants for many 4-manifolds;
Two soft Invariants:

\[I_s(M) = \inf_g \int_M |s_g|^{n/2} d\mu_g \]

\[I_r(M) = \inf_g \int_M |r_g|^{n/2} d\mu_g \]

which satisfy

\[I_r(M) \geq n^{-n/4} I_s(M) \]

with \(= \iff \exists \) Einstein minimizer.

Some other goals of this talk:

- compute these invariants for many 4-manifolds;
- describe minimizing sequences for functionals;
Two soft Invariants:

\[\mathcal{I}_s(M) = \inf_g \int_M |s_g|^{n/2} d\mu_g \]

\[\mathcal{I}_r(M) = \inf_g \int_M |r|^{n/2} d\mu_g \]

which satisfy

\[\mathcal{I}_r(M) \geq n^{-n/4} \mathcal{I}_s(M) \]

with \(= \iff \exists \) Einstein minimizer.

Some other goals of this talk:

- compute these invariants for many 4-manifolds;
- describe minimizing sequences for functionals;
- show that above inequality often strict;
Two soft Invariants:

\[\mathcal{I}_s(M) = \inf_{g} \int_M |s_g|^{n/2} d\mu_g \]
\[\mathcal{I}_r(M) = \inf_{g} \int_M |r_g|^{n/2} d\mu_g \]

which satisfy

\[\mathcal{I}_r(M) \geq n^{-n/4} \mathcal{I}_s(M) \]

with \(= \iff \exists \) Einstein minimizer.

Some other goals of this talk:

• compute these invariants for many 4-manifolds;
• describe minimizing sequences for functionals;
• show that above inequality often strict;
• provide context for Anderson’s talk.
What’s so special about dimension 4?

The Lie group $SO(4)$ is *not simple*:

$$so(4) \cong so(3) \oplus so(3).$$
What’s so special about dimension 4?

The Lie group $SO(4)$ is \textit{not simple}:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g), \implies

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^\pm are (± 1)-eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$
What’s so special about dimension 4?

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g), \iff

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^\pm are (± 1)-eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

Λ^+ self-dual 2-forms.

Λ^- anti-self-dual 2-forms.
Riemann curvature of g

$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$
Riemann curvature of g

\[\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2 \]

splits into 4 irreducible pieces:
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:

$$\begin{array}{cc}
\Lambda^+ & \Lambda^{+-} \\
W_+ + \frac{s}{12} & \hat{r} \\
\Lambda^- & W_- + \frac{s}{12} \\
\hat{r} & \\
\end{array}$$

where

$s =$ scalar curvature

$\hat{r} =$ trace-free Ricci curvature

W_+ = self-dual Weyl curvature

W_- = anti-self-dual Weyl curvature
(\(M, g\)) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

\[
\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{\bar{r}^2}{2} \right) d\mu
\]
\((M, g)\) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

\[
\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{R}|^2}{2} \right) d\mu
\]

for Euler-characteristic \(\chi(M) = \sum_j (-1)^j b_j(M)\).
4-dimensional Hirzebruch signature formula

\[\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu \]
4-dimensional Hirzebruch signature formula

\[\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu \]

for signature \(\tau(M) = b_+(M) - b_-(M) \).
4-dimensional Hirzebruch signature formula

\[\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu \]

for signature \(\tau(M) = b_+(M) - b_-(M) \).

Here \(b_{\pm}(M) = \max \text{ dim subspaces } \subset H^2(M, \mathbb{R}) \) on which intersection pairing

\[H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \longrightarrow \mathbb{R} \]

\(([\varphi], [\psi]) \mapsto \int_M \varphi \wedge \psi \)

is positive (resp. negative) definite.
Associated ‘square-norm’

\[H^2(M, \mathbb{R}) \longrightarrow \mathbb{R} \]

\[[\varphi] \longmapsto [\varphi]^2 := \int_M \varphi \wedge \varphi \]
Associated ‘square-norm’

\[H^2(M, \mathbb{R}) \rightarrow \mathbb{R} \]

\[[\varphi] \mapsto [\varphi]^2 := \int_M \varphi \wedge \varphi \]
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the **same Euler characteristic** χ;
- they have the **same signature** τ; and
- both are spin, or both are non-spin.
Theorem (Freedman/Donaldson). *Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if*

- *they have the same Euler characteristic* χ;
- *they have the same signature* τ; and
- *both are spin, or both are non-spin.*
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.
Theorem (Freedman/Donaldson). *Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if*

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.

Warning: “Exotic differentiable structures!”

No diffeomorphism classification currently known!

Typically, one homeotype $\leftrightarrow \infty$ many diffeotypes.
Hitchin-Thorpe Inequality:

\[(2\chi \pm 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W \pm|^2 - \frac{|r|^2}{2} \right) d\mu_g \]
Hitchin-Thorpe Inequality:

\[(2\chi \pm 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W\pm|^2 - \frac{\|r\|^2}{2} \right) \, d\mu_g\]

Einstein \implies \quad = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W\pm|^2 \right) \, d\mu_g
Hitchin-Thorpe Inequality:

\[
(2\chi \pm 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W\pm| - \frac{|\hat{r}|^2}{2} \right) d\mu_g
\]

Einstein \(\Rightarrow\) \[
= \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W\pm|^2 \right) d\mu_g
\]

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented \(M^4\) admits Einstein \(g\), then

\[
(2\chi + 3\tau)(M) \geq 0
\]

and

\[
(2\chi - 3\tau)(M) \geq 0.
\]
Example.

Let $\overline{\text{CP}_2} = \text{reverse-oriented CP}_2$.

$$ j\overline{\text{CP}_2} \# k\overline{\text{CP}_2} = \underbrace{\text{CP}_2 \# \cdots \# \text{CP}_2}_{j} \# \underbrace{\overline{\text{CP}_2} \# \cdots \# \overline{\text{CP}_2}}_{k}, $$
Connected sum:
Example.

Let $\overline{\mathbb{CP}}_2 = \text{reverse-oriented } \mathbb{CP}_2$. Then

$$j\overline{\mathbb{CP}}_2 \# k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2}_j \# \underbrace{\overline{\mathbb{CP}}_2 \# \cdots \# \overline{\mathbb{CP}}_2}_k,$$

has

$$2\chi + 3\tau = 4 + 5j - k$$

so $\not\exists$ Einstein metric if $k \geq 4 + 5j$.

Hitchin-Thorpe Inequality:

\[(2\chi \pm 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W\pm|^2 - \frac{|\dot{r}|^2}{2} \right) d\mu_g \]

Einstein \(\Rightarrow\) \(\quad= \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W\pm|^2 \right) d\mu_g \)

Theorem (Hitchin-Thorpe Inequality). *If smooth compact oriented* \(M^4\) *admits Einstein* \(g\), *then*

\[(2\chi + 3\tau)(M) \geq 0\]

and

\[(2\chi - 3\tau)(M) \geq 0.\]
Hitchin-Thorpe Inequality:

\[(2\chi \pm 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W\pm|^2 - \frac{|\hat{r}|^2}{2} \right) d\mu_g\]

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented \(M^4\) admits Einstein \(g\), then

\[(2\chi + 3\tau)(M) \geq 0\]

and

\[(2\chi - 3\tau)(M) \geq 0.\]

Both inequalities strict unless finitely covered by flat \(T^4\), Calabi-Yau \(K3\), or Calabi-Yau \(\overline{K3}\).
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$
$K3 = \text{Kummer-Kähler-Kodaira manifold}$.

Simply connected complex surface with $c_1 = 0$.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.

In particular, only one diffeotype.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.

In particular, only one diffeotype.

Spin manifold, $b_+ = 3$, $b_- = 19$.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.

In particular, only one diffeotype.

Spin manifold, $b_+ = 3$, $b_- = 19$.

Theorem (Yau). $K3$ admits Ricci-flat metrics.
Kummer construction of $K3$:
Kummer construction of \(\text{K3} \):

Begin with \(T^4/\mathbb{Z}_2 \):

\[
\begin{array}{c}
\includegraphics[width=0.5\textwidth]{kummer_construction.png}
\end{array}
\]
Kummer construction of $K3$:

Begin with T^4/\mathbb{Z}_2:

Replace $\mathbb{R}^4/\mathbb{Z}_2$ neighborhood of each singular point with copy of T^*S^2.
Approximate Calabi-Yau metric:

Replace flat metric on $\mathbb{R}^4/\mathbb{Z}_2$

with Eguchi-Hanson metric on T^*S^2:

$$g_{EH,\epsilon} = \frac{d\varrho^2}{1 - \epsilon \varrho^{-4}} + \varrho^2 \left(\theta_1^2 + \theta_2^2 + \left[1 - \epsilon \varrho^{-4} \right] \theta_3^2 \right)$$

(Page, Kobayashi-Todorov, LeBrun-Singer)
Examples of Einstein 4-Manifolds
Examples of Einstein 4-Manifolds

Richest source: Kähler geometry.
Examples of Einstein 4-Manifolds

Richest source: Kähler geometry.

Theorem (Aubin/Yau). Compact complex manifold \((M^{2m}, J)\) admits compatible Kähler-Einstein metric with \(s < 0\)
Examples of Einstein 4-Manifolds

Richest source: Kähler geometry.

Theorem (Aubin/Yau). *Compact complex manifold* \((M^{2m}, J)\) *admits compatible Kähler-Einstein metric with* \(s < 0\) \iff \(\exists\) holomorphic embedding.*
Examples of Einstein 4-Manifolds

Richest source: Kähler geometry.

Theorem (Aubin/Yau). Compact complex manifold \((M^{2m}, J)\) admits compatible Kähler-Einstein metric with \(s < 0 \iff \exists\) holomorphic embedding

\[j : M \hookrightarrow \mathbb{CP}_k \]
Examples of Einstein 4-Manifolds

Richest source: Kähler geometry.

Theorem (Aubin/Yau). Compact complex manifold \((M^{2m}, J)\) admits compatible Kähler-Einstein metric with \(s < 0 \iff \exists \text{ holomorphic embedding } j : M \hookrightarrow \mathbb{C}P_k\) such that \(c_1(M)\) is negative multiple of \(j^*c_1(\mathbb{C}P_k)\).
Corollary. For any $\ell \geq 5$, the degree ℓ surface

$$t^\ell + u^\ell + v^\ell + w^\ell = 0$$

in \mathbb{CP}_3 admits $s < 0$ Kähler-Einstein metric.
Examples of Einstein 4-Manifolds

Richest source: Kähler geometry.

Theorem (Aubin/Yau). Compact complex manifold \((M^{2m}, J)\) admits compatible Kähler-Einstein metric with \(s < 0 \iff \exists\) holomorphic embedding
\[
j : M \hookrightarrow \mathbb{CP}_k
\]
such that \(c_1(M)\) is negative multiple of \(j^*c_1(\mathbb{CP}_k)\).

Remark. This happens \(\iff -c_1(M)\) is a Kähler class. Short-hand: \(c_1(M) < 0\).
Examples of Einstein 4-Manifolds

Richest source: Kähler geometry.

Theorem (Aubin/Yau). *Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding $j : M \hookrightarrow \mathbb{CP}_k$

such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$.

Remark. This happens $\iff -c_1(M)$ is a Kähler class. Short-hand: $c_1(M) < 0$.

Remark. When $m = 2$, such M are necessarily minimal complex surfaces of general type.
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}_2}$$

in which new \mathbb{CP}_1 has self-intersection -1.
Blowing up:

If N is a complex surface, may replace $p \in N$ with $\mathbb{C}P_1$ to obtain blow-up

$$M \approx N \# \mathbb{C}P_2$$

in which new $\mathbb{C}P_1$ has self-intersection -1.

A complex surface X is called **minimal** if it is not the blow-up of another complex surface.
Blowing up:

If N is a complex surface, may replace $p \in N$ with $\mathbb{C}P_1$ to obtain blow-up

$$M \approx N \# \mathbb{C}P_2$$

in which new $\mathbb{C}P_1$ has self-intersection -1.

A complex surface X is called minimal if it is not the blow-up of another complex surface.

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$M \approx X \# k\mathbb{C}P_2$$

One says that X is minimal model of M.
Compact complex surface \((M^4, J)\) general type if
\[\dim \Gamma(M, \mathcal{O}(K^\otimes \ell)) \sim a\ell^2, \quad \ell \gg 0,\]
where \(K = \Lambda^{2,0}\) is canonical line bundle.
Compact complex surface (M^4, J) general type if \[
\dim \Gamma(M, \mathcal{O}(K^\otimes \ell)) \sim a\ell^2, \quad \ell \gg 0,
\] where $K = \Lambda^{2,0}$ is canonical line bundle.

If $\ell \geq 5$, then $\Gamma(M, \mathcal{O}(K^\otimes \ell))$ gives holomorphic map

$$f_\ell : M \to \mathbb{CP}_N$$

which just collapses each \mathbb{CP}_1 with self-intersection -1 or -2 to a point. Image $X = f_\ell(M)$ called pluricanonical model of M.
Compact complex surface \((M^4, J)\) general type if

\[\dim \Gamma(M, \mathcal{O}(K^\otimes \ell)) \sim a\ell^2, \quad \ell \gg 0, \]

where \(K = \Lambda^{2,0}\) is canonical line bundle.

If \(\ell \geq 5\), then \(\Gamma(M, \mathcal{O}(K^\otimes \ell))\) gives holomorphic map

\[f_\ell : M \to \mathbb{CP}_N \]

which just collapses each \(\mathbb{CP}_1\) with self-intersection \(-1\) or \(-2\) to a point. Image \(X = f_\ell(M)\) called pluricanonical model of \(M\).

Pluricanonical model \(X\) is a complex orbifold with \(c_1 < 0\) and singularities \(\mathbb{C}^2/G, \ G \subset SU(2)\).
Aubin-Yau proof \implies

Corollary (R. Kobayashi). The *pluricanonical model* X of any compact complex surface M of general type admits and *orbifold* Kähler-Einstein metric with $s < 0$.
Aubin-Yau proof \implies

Corollary (R. Kobayashi). The *pluricanonical model* X of any compact complex surface M of general type admits and *orbifold* Kähler-Einstein metric with $s < 0$.

Thus, any surface M of general type obtained from Kähler-Einstein orbifold X in two steps:
Aubin-Yau proof \(\Longrightarrow\)

Corollary (R. Kobayashi). The *pluricanonical model* \(X\) of any compact complex surface \(M\) of general type admits and *orbifold* Kähler-Einstein metric with \(s < 0\).

Thus, any surface \(M\) of general type obtained from Kähler-Einstein orbifold \(X\) in two steps:

1. Replace each orbifold point with \((-2)\)-curves intersecting according to Dynkin diagram determined by \(G \subset SU(2)\).
Aubin-Yau proof \[\implies\]

Corollary (R. Kobayashi). *The pluricanonical model X of any compact complex surface M of general type admits and orbifold Kähler-Einstein metric with $s < 0$.***

Thus, any surface M of general type obtained from Kähler-Einstein orbifold X in two steps:

1. Replace each orbifold point with (-2)-curves intersecting according to Dynkin diagram determined by $G \subset SU(2)$.

 ![Dynkin diagram]

 Related geometry: gravitational instantons.
Aubin-Yau proof \[\implies\]

Corollary (R. Kobayashi). The pluricanonical model X of any compact complex surface M of general type admits and orbifold Kähler-Einstein metric with $s < 0$.

Thus, any surface M of general type obtained from Kähler-Einstein orbifold X in two steps:

1. Replace each orbifold point with (-2)-curves intersecting according to Dynkin diagram determined by $G \subset SU(2)$.

 ![Dynkin diagram](image)

 Related geometry: gravitational instantons.

2. Replace some non-singular points with (-1)-curves.
Aubin-Yau proof \[\implies\]

Corollary (R. Kobayashi). *The pluricanonical model \(X\) of any compact complex surface \(M\) of general type admits and orbifold Kähler-Einstein metric with \(s < 0\).*

Thus, any surface \(M\) of general type obtained from Kähler-Einstein orbifold \(X\) in two steps:

1. Replace each orbifold point with \((-2)\)-curves intersecting according to Dynkin diagram determined by \(G \subset SU(2)\).

 ![Dynkin diagram]

 Related geometry: gravitational instantons.

2. Replace some non-singular points with \((-1)\)-curves. Related geometry: scalar-flat Kähler metrics.
Seiberg-Witten theory:

generalized Kähler geometry of non-Kähler 4-manifolds.
Seiberg-Witten theory:

generalized Kähler geometry of non-Kähler 4-manifolds.

Can’t hope to generalize $\bar{\partial}$ operator to this setting.
Seiberg-Witten theory:
generalized Kähler geometry of non-Kähler 4-manifolds.

Can’t hope to generalize $\bar{\partial}$ operator to this setting.

But $\bar{\partial} + \bar{\partial}^*$ does generalize:
Seiberg-Witten theory:

generalized Kähler geometry of non-Kähler 4-manifolds.

Can’t hope to generalize $\bar{\partial}$ operator to this setting.

But $\bar{\partial} + \bar{\partial}^*$ does generalize:

spinc Dirac operator, preferred connection on L.
Spinc structures:
Spinc structures:

\[w_2(TM) \in H^2(M, \mathbb{Z}_2) \]

in image of

\[H^2(M, \mathbb{Z}) \to H^2(M, \mathbb{Z}_2) \]
Spin\(c\) structures:

\[w_2(TM) \in H^2(M, \mathbb{Z}_2) \]

in image of

\[H^2(M, \mathbb{Z}) \to H^2(M, \mathbb{Z}_2) \]

\[\implies \exists \text{ Hermitian line bundles} \]

\[L \to M \]

with

\[c_1(L) \equiv w_2(TM) \mod 2. \]
Spin\(^c\) structures:

\[w_2(TM) \in H^2(M, \mathbb{Z}_2) \]

in image of

\[H^2(M, \mathbb{Z}) \rightarrow H^2(M, \mathbb{Z}_2) \]

\[\implies \exists \text{ Hermitian line bundles} \quad L \rightarrow M \]

with

\[c_1(L) \equiv w_2(TM) \mod 2. \]

Given \(g \) on \(M \), \[\implies \exists \text{ rank-2 Hermitian vector bundles} \quad \nabla_{\pm} \rightarrow M \]
Spin\(^c\) structures:

\[w_2(TM) \in H^2(M, \mathbb{Z}_2) \]

in image of

\[H^2(M, \mathbb{Z}) \to H^2(M, \mathbb{Z}_2) \]

\(\implies\) \exists Hermitian line bundles

\[L \to M \]

with

\[c_1(L) \equiv w_2(TM) \mod 2. \]

Given \(g\) on \(M\), \(\implies\) \exists rank-2 Hermitian vector bundles \(V_\pm \to M\) which formally satisfy

\[V_\pm = S_\pm \otimes L^{1/2}, \]
Spinc structures:

\[w_2(TM) \in H^2(M, \mathbb{Z}_2) \]

in image of

\[H^2(M, \mathbb{Z}) \rightarrow H^2(M, \mathbb{Z}_2) \]

\[\implies \exists \text{ Hermitian line bundles} \]

\[L \rightarrow M \]

with

\[c_1(L) \equiv w_2(TM) \mod 2. \]

Given \(g \) on \(M \), \(\implies \exists \) rank-2 Hermitian vector bundles \(V_\pm \rightarrow M \) which formally satisfy

\[V_\pm = S_\pm \otimes L^{1/2}, \]

where \(S_\pm \) are the (locally defined) left- and right-handed spinor bundles of \((M, g)\).
Every unitary connection A on L
Every unitary connection A on L induces spinc Dirac operator

$$D_A : \Gamma(\mathcal{V}_+) \rightarrow \Gamma(\mathcal{V}_-)$$
Every unitary connection A on L induces spinc Dirac operator

$$D_A : \Gamma(\mathbb{V}_+) \rightarrow \Gamma(\mathbb{V}_-)$$

Weitzenböck formula: $\forall \Phi \in \Gamma(\mathbb{V}_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2$$
Every unitary connection A on L induces spinc Dirac operator

$$D_A : \Gamma(\mathcal{V}_+) \to \Gamma(\mathcal{V}_-)$$

Weitzenböck formula: $\forall \Phi \in \Gamma(\mathcal{V}_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2 + 2\langle -i F_A^+, \sigma(\Phi) \rangle$$
Every unitary connection A on L induces spinc Dirac operator

$$D_A : \Gamma(\mathcal{V}_+) \to \Gamma(\mathcal{V}_-)$$

Weitzenböck formula: $\forall \Phi \in \Gamma(\mathcal{V}_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2$$

$$+ 2 \langle -i F_A^+, \sigma(\Phi) \rangle$$

where $F_A^+ = \text{self-dual part curvature of } A$,

Every unitary connection A on L induces spinc Dirac operator

$$D_A : \Gamma(\mathcal{V}_+) \rightarrow \Gamma(\mathcal{V}_-)$$

Weitzenböck formula: $\forall \Phi \in \Gamma(\mathcal{V}_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla A \Phi|^2 + \frac{s}{4} |\Phi|^2$$

$$+ 2\langle -i F_A^+, \sigma(\Phi) \rangle$$

where F_A^+ = self-dual part curvature of A, and $\sigma : \mathcal{V}_+ \rightarrow \Lambda^+$ is a natural real-quadratic map,

$$|\sigma(\Phi)| = \frac{1}{2\sqrt{2}} |\Phi|^2.$$
Witten:

consider both Φ and A as unknowns,
Witten:

consider both Φ and A as unknowns, subject to *Seiberg-Witten equations*

\[
D_A \Phi = 0 \\
F^+_A = i\sigma(\Phi).
\]
Witten:

consider both Φ and A as unknowns, subject to *Seiberg-Witten equations*

$$D_A \Phi = 0$$
$$F^+_A = i\sigma(\Phi).$$

Non-linear, but elliptic
Witten:

consider both \(\Phi \) and \(A \) as unknowns, subject to **Seiberg-Witten equations**

\[
D_A \Phi = 0 \\
F^+_A = i \sigma(\Phi).
\]

Non-linear, but elliptic once ‘gauge-fixing’

\[
d^*(A - A_0) = 0
\]

imposed to eliminate automorphisms of \(L \to M \).
Weitzenböck formula becomes

\[0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s |\Phi|^2 + |\Phi|^4 \]
Weitzenböck formula becomes

\[0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4 \]

\[\implies \text{moduli space compact, finite-dimensional} \ldots \]
Weitzenböck formula becomes

\[0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4 \]

\[\implies \text{moduli space compact, finite-dimensional...} \]

Seiberg-Witten map of Banach spaces
\[\sim \text{proper map finite-dimensional spaces.} \]
Weitzenböck formula becomes

\[
0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4
\]

\[\implies \text{moduli space compact, finite-dimensional} \ldots\]

Seiberg-Witten map of Banach spaces
\sim \text{proper map finite-dimensional spaces.}

Degree: ‘classical’ Seiberg-Witten invariant.
Weitzenböck formula becomes

\[0 = 2\Delta|\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4 \]

\[\implies \text{moduli space compact, finite-dimensional.} \ldots \]

Seiberg-Witten map of Banach spaces
\sim proper map finite-dimensional spaces.

Degree: ‘classical’ Seiberg-Witten invariant.

Stable homotopy class: Bauer-Furuta invariant.
Weitzenböck formula becomes

\[0 = 2\Delta|\Phi|^2 + 4|\nabla_A\Phi|^2 + s|\Phi|^2 + |\Phi|^4 \]

\[\implies \] moduli space compact, finite-dimensional...

Seiberg-Witten map of Banach spaces
\[\sim \] proper map finite-dimensional spaces.

Degree: ‘classical’ Seiberg-Witten invariant.

Stable homotopy class: Bauer-Furuta invariant.

When invariant is non-zero, solutions guaranteed.
Definition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$.
Definition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. Then

$$a \in H^2(M, \mathbb{R})$$
Definition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. Then

$$a \in H^2(M, \mathbb{R})$$

is called a monopole class of M.
Definition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. Then

$$a \in H^2(M, \mathbb{R})$$

is called a **monopole class** of M iff there exists a spinc structure on M with first Chern class

$$c_1(L) = a$$
Definition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. Then
\[a \in H^2(M, \mathbb{R}) \]
is called a **monopole class** of M iff there exists a spinc structure on M with first Chern class
\[c_1(L) = a \]
such that the **Seiberg-Witten equations**
Definition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. Then

$$a \in H^2(M, \mathbb{R})$$

is called a **monopole class** of M iff there exists a spinc structure on M with first Chern class

$$c_1(L) = a$$

such that the **Seiberg-Witten equations**

$$D_A \Phi = 0$$
$$F_A^+ = i\sigma(\Phi).$$
Definition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. Then

$$a \in H^2(M, \mathbb{R})$$

is called a monopole class of M iff there exists a spinc structure on M with first Chern class

$$c_1(L) = a$$

such that the Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F^+_A = i\sigma(\Phi).$$

have a solution (Φ, A).
Definition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. Then

$$a \in H^2(M, \mathbb{R})$$

is called a monopole class of M iff there exists a spinc structure on M with first Chern class

$$c_1(L) = a$$

such that the Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i\sigma(\Phi).$$

have a solution (Φ, A) for every metric g on M.
Proposition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$.
Proposition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. The collection $\mathfrak{c} \subset H^2(M, \mathbb{R})$
Proposition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. The collection $\mathfrak{c} \subset H^2(M, \mathbb{R})$ of all monopole classes
Proposition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. The collection $\mathfrak{c} \subset H^2(M, \mathbb{R})$ of all monopole classes is finite,
Proposition. Let M be a smooth compact oriented 4-manifold with $b_+ \geq 2$. The collection $\mathfrak{c} \subset H^2(M, \mathbb{R})$ of all monopole classes is finite, and is an oriented diffeomorphism invariant of M.
Definition. Let

\[\mathfrak{c} = \{ \text{monopole classes} \} \subset H^2(M). \]
Definition. Let

\[\mathcal{C} = \{\text{monopole classes}\} \subset H^2(M). \]

If \(\mathcal{C} \neq \emptyset \), let

\[\text{Hull}(\mathcal{C}) = \text{convex hull of } \mathcal{C}. \]
Definition. Let

\[\mathcal{C} = \{\text{monopole classes}\} \subset H^2(M). \]

If \(\mathcal{C} \neq \emptyset \), let

\[\text{Hull}(\mathcal{C}) = \text{convex hull of } \mathcal{C} \]

and set

\[\beta^2(M) = \max \{ v \cdot v \mid v \in \text{Hull}(\mathcal{C}) \} \]
Definition. Let

\[\mathcal{C} = \{ \text{monopole classes} \} \subset H^2(M). \]

If \(\mathcal{C} \neq \emptyset \), let

\[\text{Hull}(\mathcal{C}) = \text{convex hull of } \mathcal{C} \]

and set

\[\beta^2(M) = \max \{ v \cdot v \mid v \in \text{Hull}(\mathcal{C}) \} \]

If \(\mathcal{C} = \emptyset \), set \(\beta^2(M) = 0 \).
Example If X is a minimal complex surface with $b_+ > 1$, and if

$$M = X \# \ell \overline{\mathbb{CP}}_2$$

then ‘classical’ Seiberg-Witten invariant allows one to show that

$$\beta^2(M) = c_1^2(X).$$
Example If X is a minimal complex surface with $b_+ > 1$, and if

$$M = X \# \ell \overline{\mathbb{CP}}_2$$

then ‘classical’ Seiberg-Witten invariant allows one to show that

$$\beta^2(M) = c_1^2(X).$$

Example If X, Y, Z are minimal complex surfaces with $b_1 = 0$ and $b_+ \equiv 3 \mod 4$, and if

$$M = X \# Y \# Z \# \ell \overline{\mathbb{CP}}_2$$

Bauer-Furuta invariant allows one to show that

$$\beta^2(M) = c_1^2(X) + c_1^2(Y) + c_1^2(Z)$$

Similarly for 2 or 4...
Theorem (Curvature Estimates). For any C^2 Riemannian metric g
Theorem (Curvature Estimates). For any C^2 Riemannian metric g on any smooth compact oriented 4-manifold M with $b_+ \geq 2$,
Theorem (Curvature Estimates). For any C^2 Riemannian metric g on any smooth compact oriented 4-manifold M with $b_+ \geq 2$, the following curvature bounds are satisfied:
Theorem (Curvature Estimates). For any C^2 Riemannian metric g on any smooth compact oriented 4-manifold M with $b_+ \geq 2$, the following curvature bounds are satisfied:

$$\int_M s^2 d\mu_g \geq 32\pi^2 \beta^2(M)$$
Theorem (Curvature Estimates). For any C^2 Riemannian metric g on any smooth compact oriented 4-manifold M with $b_+ \geq 2$, the following curvature bounds are satisfied:

$$\int_M s^2 d\mu_g \geq 32\pi^2 \beta^2(M)$$

$$\int_M \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g \geq 72\pi^2 \beta^2(M)$$
Theorem (Curvature Estimates). For any C^2 Riemannian metric g on any smooth compact oriented 4-manifold M with $b_+ \geq 2$, the following curvature bounds are satisfied:

$$\int_M s^2 d\mu_g \geq 32\pi^2 \beta^2(M)$$
$$\int_M \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g \geq 72\pi^2 \beta^2(M)$$

Moreover, if $\beta^2(M) \neq 0$, equality holds in either case iff (M, g) is a Kähler-Einstein manifold with $s < 0$.
\[\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W - |^2 \right) d\mu_g \geq \frac{1}{4\pi^2} \int_M \frac{s^2}{24} d\mu_g \]
First curvature estimate implies

\[
\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W - |^2 \right) d\mu_g \geq \frac{1}{4\pi^2} \int_M \frac{s^2}{24} d\mu_g \\
\geq \frac{1}{3} \beta^2(M)
\]
First curvature estimate implies

\[
\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W - |^2 \right) d\mu_g \geq \frac{1}{4\pi^2} \int_M \frac{s^2}{24} d\mu_g \\
\geq \frac{1}{3} \beta^2(M)
\]

Hence:

Theorem A. Let \(M \) be a smooth compact oriented 4-manifold with \(b_+(M) \geq 2 \).
First curvature estimate implies

\[
\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \geq \frac{1}{4\pi^2} \int_M \frac{s^2}{24} d\mu_g \\
\geq \frac{1}{3} \beta_2^2(M)
\]

Hence:

Theorem A. Let \(M \) be a smooth compact oriented 4-manifold with \(b_+(M) \geq 2 \). If \(M \) admits an Einstein metric \(g \),
First curvature estimate implies

\[
\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W - |^2 \right) d\mu_g \geq \frac{1}{4\pi^2} \int_M \frac{s^2}{24} d\mu_g \\
\geq \frac{1}{3} \beta^2(M)
\]

Hence:

Theorem A. Let \(M \) be a smooth compact oriented 4-manifold with \(b_+ (M) \geq 2 \). If \(M \) admits an Einstein metric \(g \), then

\[
(2\chi - 3\tau)(M) \geq \frac{1}{3} \beta^2(M)
\]
First curvature estimate implies

\[\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_1|^2 \right) d\mu_g \geq \frac{1}{4\pi^2} \int_M \frac{s^2}{24} d\mu_g \geq \frac{1}{3} \beta^2(M) \]

Hence:

Theorem A. Let \(M \) be a smooth compact oriented 4-manifold with \(b_+(M) \geq 2 \). If \(M \) admits an Einstein metric \(g \), then

\[(2\chi - 3\tau)(M) \geq \frac{1}{3} \beta^2(M) \]

with equality only if \((M, g)\) is flat \(T^4 \) or complex hyperbolic \(\mathbb{C}H_2/\Gamma \).
First curvature estimate implies

\[
\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_\perp|^2 \right) d\mu_g \geq \frac{1}{4\pi^2} \int_M \frac{s^2}{24} d\mu_g
\]

\[
\geq \frac{1}{3} \beta^2(M)
\]

Hence:

Theorem A. Let M be a smooth compact oriented 4-manifold with $b_+(M) \geq 2$. If M admits an Einstein metric g, then

\[
(2\chi - 3\tau)(M) \geq \frac{1}{3} \beta^2(M)
\]

with equality only if (M, g) is flat T^4 or complex hyperbolic $\mathbb{C}H_2/\Gamma$.

\implies Einstein metric on $\mathbb{C}H_2/\Gamma$ unique, . . .
\[\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W + |^2 \right) d\mu_g \]
Second curvature estimate implies

\[
\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W|^2 \right) d\mu_g \geq \frac{2}{3} \beta^2(M)
\]
Second curvature estimate implies

\[
\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \geq \frac{2}{3} \beta^2(M)
\]

Hence:

Theorem B. Let M be a smooth compact oriented 4-manifold with $b_+(M) \geq 2$.

Second curvature estimate implies

\[\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \geq \frac{2}{3} \beta^2(M) \]

Hence:

Theorem B. Let \(M \) be a smooth compact oriented 4-manifold with \(b_+(M) \geq 2 \). If \(M \) admits an Einstein metric \(g \),
Second curvature estimate implies

\[\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \geq \frac{2}{3} \beta^2(M) \]

Hence:

Theorem B. Let \(M \) be a smooth compact oriented 4-manifold with \(b_+(M) \geq 2 \). If \(M \) admits an Einstein metric \(g \), then

\[(2\chi + 3\tau)(M) \geq \frac{2}{3} \beta^2(M) \]
Second curvature estimate implies

\[\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W +|^2 \right) d\mu_g \geq \frac{2}{3} \beta^2(M) \]

Hence:

Theorem B. Let \(M \) be a smooth compact oriented 4-manifold with \(b_+(M) \geq 2 \). If \(M \) admits an Einstein metric \(g \), then

\[(2\chi + 3\tau)(M) \geq \frac{2}{3} \beta^2(M) \]

with equality only if both sides vanish,
Second curvature estimate implies

\[
\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \geq \frac{2}{3} \beta^2(M)
\]

Hence:

Theorem B. Let \(M \) be a smooth compact oriented 4-manifold with \(b_+(M) \geq 2 \). If \(M \) admits an Einstein metric \(g \), then

\[
(2\chi + 3\tau)(M) \geq \frac{2}{3} \beta^2(M)
\]

with equality only if both sides vanish, in which case \(g \) must be hyper-Kähler, and \(M \) must be diffeomorphic to either \(K3 \) or \(T^4 \).
Example Let N be double branched cover \mathbb{CP}^2, ramified at a smooth octic:

\[\begin{array}{c}
\begin{array}{c}
N \\
\downarrow \\
B'
\end{array} \\
\rightarrow \\
\begin{array}{c}
\mathbb{CP}^2 \\
B'
\end{array}
\end{array} \]

Aubin/Yau $\implies N$ carries Einstein metric.
Now let X be a triple cyclic cover \mathbb{CP}_2, ramified at a smooth sextic.
Now let X be a triple cyclic cover \mathbb{CP}^2, ramified at a smooth sextic

\[M = X \# \overline{\mathbb{CP}^2}. \]
Now let X be a triple cyclic cover \mathbb{CP}_2, ramified at a smooth sextic

and set

$$M = X \# \overline{\mathbb{CP}_2}.$$

Then

$$\beta^2(M) = c_1^2(X) = 3$$
Now let X be a triple cyclic cover \mathbb{CP}_2, ramified at a smooth sextic

\[\text{and set} \]

\[M = X \# \overline{\mathbb{CP}_2}. \]

Then

\[\beta^2(M) = c_1^2(X) = 3 \]

\[(2\chi + 3\tau)(M) = c_1^2(X) - 1 = 2 \]
Theorem B. Let M be a smooth compact oriented 4-manifold with $b_+(M) \geq 2$. If M admits an Einstein metric g, then

$$\begin{align*}
(2\chi + 3\tau)(M) &\geq \frac{2}{3}\beta^2(M) \\
\text{& equality only if } M \text{ diffeomorphic to } K3 \text{ or } T^4.
\end{align*}$$
Theorem B. Let M be a smooth compact oriented 4-manifold with $b_+(M) \geq 2$. If M admits an Einstein metric g, then

$$\left(2\chi + 3\tau\right)(M) \geq \frac{2}{3}\beta^2(M)$$

& equality only if M diffeomorphic to $K3$ or T^4.

In example:

$$\beta^2(M) = 3$$
$$\left(2\chi + 3\tau\right)(M) = 2$$
\(X \) is triple cover \(\mathbb{CP}_2 \) ramified at sextic

\[
M = X \# \overline{\mathbb{CP}_2}.
\]

Theorem B \(\implies \) no Einstein metric on \(M \).
But M and N are both simply connected & non-spin,
But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$,
But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$
$$\tau = -30$$
But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$
$$\tau = -30$$

Hence Freedman $\implies M$ homeomorphic to N!
But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$
$$\tau = -30$$

Hence Freedman $\Rightarrow M$ homeomorphic to N! ♦

Moral: *Existence depends on diffeotype!*

Same ideas lead to infinitely many other examples.

Typically get **non-existence** for infinitely many smooth structures on fixed topological manifold.

Until now, discussed arbitrary Einstein metrics.

Instead, focus on Einstein metrics which minimize

\[g \mapsto \int_M s_g^2 d\mu_g \]

Related to soft invariants

\[\mathcal{I}_s(M) = \inf_g \int_M s_g^2 d\mu_g \]

\[\mathcal{I}_r(M) = \inf_g \int_M |r|^2_g d\mu_g \]

which satisfy

\[\mathcal{I}_r(M) \geq \frac{1}{4} \mathcal{I}_s(M) \]

with \(\iff \exists \) Einstein minimizer.
Theorem (Curvature Estimates). For any C^2 Riemannian metric g on any smooth compact oriented 4-manifold M with $b_+ \geq 2$, the following curvature bounds are satisfied:

\[
\int_M s^2 d\mu_g \geq 32\pi^2 \beta^2(M)
\]

\[
\int_M |r|_g^2 d\mu_g \geq 8\pi^2 \left[2\beta^2 - (2\chi + 3\tau) \right](M)
\]
Theorem (Curvature Estimates). For any C^2 Riemannian metric g on any smooth compact oriented 4-manifold M with $b_+ \geq 2$, the following curvature bounds are satisfied:

\[\int_M s^2 d\mu_g \geq 32\pi^2 \beta^2(M) \]
\[\int_M |r|^2_g d\mu_g \geq 8\pi^2 \left[2\beta^2 - (2\chi + 3\tau) \right](M) \]
\[\int_M |r|^2_g d\mu_g = -8\pi^2(2\chi + 3\tau)(M) \]
\[+ 8 \int_M \left(\frac{s^2}{24} + \frac{1}{2}|W + |^2 \right) d\mu_g \]
Theorem. Suppose M^4 diffeo to non-minimal compact complex surface with $b_+ > 1$. Then M does not admit a metric which minimizes either

\[g \mapsto \int_M s_g^2 d\mu_g \quad \text{or} \quad \int_M |r|^2_g d\mu_g \]
Theorem. Suppose M^4 diffeo to non-minimal compact complex surface with $b_+ > 1$. Then M does not admit a metric which minimizes either

$$ g \mapsto \int_M s_g^2 d\mu_g \quad \text{or} \quad \int_M |r|^2_d d\mu_g $$

By hypothesis

$$ M = X \# k\overline{\mathbb{C}P}_2 $$

where X minimal and $k > 0$.

One shows

$$ \mathcal{I}_s(M) = 32\pi^2 c_1^2(X) $$

$$ \mathcal{I}_r(M) = 8\pi^2 [c_1^2(X) + k] $$

so that

$$ \mathcal{I}_r(M) > \frac{1}{4} \mathcal{I}_s(M) $$
Theorem. Let X, Y and Z be simply connected minimal complex surfaces with $b_+ \equiv 3 \mod 4$. Then

$$M = X \# Y \# Z \# k\overline{\mathbb{CP}_2}$$

does not admit a metric which minimizes either

$$g \longmapsto \int_M s_g^2 d\mu_g \quad \text{or} \quad \int_M |r_g|^2 d\mu_g$$
Theorem. Let X, Y and Z be simply connected minimal complex surfaces with $b_+ \equiv 3 \mod 4$. Then

$$M = X \# Y \# Z \# k\overline{\mathbb{CP}^2}$$

does not admit a metric which minimizes either

$$g \mapsto \int_M s^2 d\mu_g \quad \text{or} \quad \int_M |r|^2 g d\mu_g$$

In fact,

$$\mathcal{I}_s(M) = 32\pi^2 [c_1^2(X) + c_1^2(Y) + c_1^2(Z)]$$
$$\mathcal{I}_r(M) = 8\pi^2 [c_1^2(X) + c_1^2(Y) + c_1^2(Z) + 8 + k]$$
Theorem. Let X, Y and Z be simply connected minimal complex surfaces with $b_+ \equiv 3 \mod 4$. Then

$$M = X \# Y \# Z \# k\overline{\mathbb{CP}^2}$$

does not admit a metric which minimizes either

$$g \mapsto \int_M s_g^2 d\mu_g \quad \text{or} \quad \int_M |r|^2_g d\mu_g$$

In fact,

$$\mathcal{I}_s(M) = 32\pi^2 [c_1^2(X) + c_1^2(Y) + c_1^2(Z)]$$
$$\mathcal{I}_r(M) = 8\pi^2 [c_1^2(X) + c_1^2(Y) + c_1^2(Z) + 8 + k]$$

Similarly for $\#$ of 2 or 4 complex surfaces.
Theorem. Let X, Y and Z be simply connected minimal complex surfaces with $b_+ \equiv 3 \text{ mod } 4$. Then

$$M = X \# Y \# Z \# k\mathbb{CP}^2$$

does not admit a metric which minimizes either

$$g \longmapsto \int_M s_g^2 d\mu_g \quad \text{or} \quad \int_M |r|^2_g d\mu_g$$

In fact,

$$\mathcal{I}_s(M) = 32\pi^2 [c_1^2(X) + c_1^2(Y) + c_1^2(Z)]$$
$$\mathcal{I}_r(M) = 8\pi^2 [c_1^2(X) + c_1^2(Y) + c_1^2(Z) + 8 + k]$$

Similarly for $\#$ of 2 or 4 complex surfaces.

Mystery: More summands? $b_+ \equiv 1 \text{ mod } 4$?
When X, Y and Z general type, however,

\exists minimizing $\{g_j\}$ with Gromov-Hausdorff limit

3 Kähler-Einstein orbifolds touching at points.
\exists \text{ points where curvature has accumulated.}
Predictable amount of \hat{r} accumulates on necks.
Rescaled limit of neck carries AE metric with

$$s = 0$$

$$W_+ = 0$$

Example:

$$g = \left(1 + \frac{1}{\varrho^2}\right) g_{\text{Euclidean}}$$
Orbifold singularities:
rescaled metric tends to gravitational instanton:
Asymptotically Locally Euclidean metric with

\[r = 0 \]
\[W_+ = 0 \]
Bubbling off $\overline{\mathbb{CP}_2}$’s:

Asymptotically Euclidean metric with

\[
\begin{align*}
 s &= 0 \\
 W_+ &= 0
\end{align*}
\]
Basic example:

Burns metric on $\mathbb{CP}_2 - \{\infty\}$:

$$g_{B,\epsilon} = \frac{d\rho^2}{1 - \epsilon \rho^{-2}} + \rho^2 \left(\theta_1^2 + \theta_2^2 + \left[1 - \epsilon \rho^{-2} \right] \theta_3^2 \right)$$

Conformal Greens rescaling of Fubini-Study.
If one of X, Y and Z is elliptic, collapses in limit to orbifold Riemann surface.
Typical example: