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EINSTEIN METRICS AND MOSTOW RIGIDITY

Claude LeBrun

Abstract. Using the new diffeomorphism invariants of Seiberg and Wit-
ten, a uniqueness theorem is proved for Einstein metrics on compact quo-
tients of irreducible 4-dimensional symmetric spaces of non-compact type.
The proof also yields a Riemannian version of the Miyaoka-Yau inequality.

A smooth Riemannian manifold (M, g) is said [1] to be Einstein if
its Ricci curvature is a constant multiple of g. Any irreducible locally-
symmetric space is Einstein, and, in light of Mostow rigidity [5], it is
natural to ask whether, up to diffeomorphisms and rescalings, the stan-
dard metric is the only Einstein metric on any compact quotient of an
irreducible symmetric space of non-compact type and dimension > 2. For
example, any Einstein 3-manifold has constant curvature, so the answer
is certainly affirmative in dimension 3. In dimension ≥ 4, however, so-
lutions to Einstein’s equations can be quite non-trivial. Nonetheless, the
following 4-dimensional result was recently proved by means of an entropy
comparison theorem [2]:

Theorem 1 (Besson-Courtois-Gallot). Let M4 be a smooth compact
quotient of hyperbolic 4-space H4 = SO(4, 1)/SO(4), and let g0 be its stan-
dard metric of constant sectional curvature. Then every Einstein metric g
on M is of the form g = λϕ∗g0, where ϕ : M → M is a diffeomorphism
and λ > 0 is a constant.

In this note, we will prove the analogous result for the remaining 4-
dimensional cases:

Theorem 2. Let M4 be a smooth compact quotient of complex-hyperbolic
2-space CH2 = SU(2, 1)/U(2). Let g0 be its standard complex-hyperbolic
metric. Then every Einstein metric g on M is of the form g = λϕ∗g0,
where ϕ : M → M is a diffeomorphism and λ > 0 is a constant.

In contrast to Theorem 1, the proof of this result is based on the new
4-manifold invariants [4] recently introduced by Witten [6].
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1. Seiberg-Witten invariants

While the results in this section are largely due to Edward Witten [6],
the crucial sharp form of the scalar-curvature inequality was pointed out
to the author by Peter Kronheimer.

Let (M, g) be a smooth compact Riemannian manifold, and suppose
that M admits an almost-complex structure. Then the given component
of the almost-complex structures on M contains almost-complex structures
J : TM → TM , J2 = −1 which are compatible with g in the sense that
J∗g = g. Fixing such a J , the tangent bundle TM of M may be given
the structure of a rank-2 complex vector bundle T 1,0 by defining scalar
multiplication by i to be J . Setting ∧0,p := ∧pT 1,0

∗ ∼= ∧pT 1,0, we may
then define rank-2 complex vector bundles V± on M by

V+ = ∧0,0 ⊕ ∧0,2(1)
V− = ∧0,1,(2)

and g induces canonical Hermitian inner products on these bundles.
As described, these bundles depend on the choice of a particular almost-

complex structure J , but they have a deeper meaning [3] that depends only
on the homotopy class c of J ; namely, if we restrict to a contractible open
set U ⊂ M , the bundles V± may be canonically identified with S± ⊗L1/2,
where S± are the left- and right-handed spinor bundles of g, and L1/2

is a complex line bundle whose square is the ‘anti-canonical’ line-bundle
L = (∧0,2)∗ ∼= ∧0,2. For each connection A on L compatible with the g-
induced inner product, we can thus define a corresponding Dirac operator

DA : C∞(V+) → C∞(V−).

If J is parallel with respect to g, so that (M, g, J) is a Kähler manifold,
and if A is the Chern connection on the anti-canonical bundle L, then
DA =

√
2(∂ ⊕ ∂

∗
), where ∂ : C∞(∧0,0) → C∞(∧0,1) is the J-antilinear

part of the exterior differential d, acting on complex-valued functions, and
where ∂

∗
: C∞(∧0,2) → C∞(∧0,1) is the formal adjoint of the map induced

by the exterior differential d acting on 1-forms; more generally, DA will
differ from

√
2(∂ ⊕ ∂

∗
) by only 0th order terms.

The Seiberg-Witten equations

DAΦ = 0(3)
F+

A = iσ(Φ).(4)

are equations for an unknown smooth connection A on L and an unknown
smooth section Φ of V+. Here the purely imaginary 2-form F+

A is the self-
dual part of the curvature of A, and, in terms of (1), the real-quadratic
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map σ : V+ → ∧2
+ is given by

σ(f, φ) = (|f |2 − |φ|2)ω
4

+ *m(f̄φ),

where ω(·, ·) = g(J ·, ·) is the ‘Kähler’ form. Notice that |F+| = 2−3/2|Φ|2.
For each solution (A,Φ) of (3) and (4), one can generate a new solution

(A + 2d log f, fΦ) for any f : M → S1 ⊂ C ; two solutions which are
related in this way are called gauge equivalent, and may be considered
to be geometrically identical. A solution is called reducible if Φ ≡ 0;
otherwise, it is called irreducible.

A useful generalization of the Seiberg-Witten equations is obtained by
replacing (4) with the equation

iF+ + σ(Φ) = ε(5)

for an arbitrary ε ∈ C∞(∧+). We can then consider the map which sends
solutions of (3) and (5) to the corresponding ε ∈ C∞(∧+), and define a
solution to be transverse if it is a regular point of this map, i.e. if the
linearization C∞(V+ ⊕ ∧1) → C∞(∧2

+) of the left-hand-side of (5), con-
strained by the linearization of (3), is surjective.

Example. Let (M, g, J) be a Kähler surface of constant scalar curvature
s < 0. Let Φ = (

√
−s, 0) ∈ ∧0,0 ⊕∧0,2, and let A be the Chern connection

on the anti-canonical bundle. Since F+
A = −isω/4, (Φ, A) is an irreducible

solution of the Seiberg-Witten equations (3) and (4).
The linearization of (3) at this solution is just

(∂ ⊕ ∂
∗
)(u + ψ) = −

√
−s

2
α,(6)

where (u, ψ) ∈ C∞(V+) is the linearization of Φ = (f, φ) and α ∈ ∧0,1 is
the (0, 1)-part of the purely imaginary 1-form which is the linearization of
A. Linearizing (5) at our solution yields the operator

(u, ψ, α) -→ id+(α− ᾱ) +
√
−s

2
(.eu)ω +

√
−s*mψ.

Since the right-hand-side is a real self-dual form, it is completely char-
acterized by its component in the ω direction and its (0, 2)-part. The
ω-component of this operator is just

(u, ψ, α) -→ .e

[

−∂̄∗α+
√
−s

2
u

]

,
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while the (0, 2)-component is

(u, ψ, α) -→ i∂̄α− i

√
−s

2
ψ.

Substituting (6) into these expressions, we obtain the operator

C∞(C ⊕ ∧0,2) −→ C∞(R ⊕ ∧0,2)

(u, ψ) -→ (
1√
−s

.e
[

∆− s

2

]

u,− i√
−s

[

∆− s

2

]

ψ),

which is surjective because s/2 < 0 is not in the spectrum of the Laplacian.
The constructed solution is therefore transverse.

Relative to c = [J ], a metric g will be called excellent if it admits only
irreducible transverse solutions of (3) and (4). Relative to any excellent
metric, the set of solutions of (3) and (4), modulo gauge equivalence, is
finite [4, 6]. Notice that a metric g is automatically excellent if the corre-
sponding equations (3) and (4) admit no solutions at all.

Definition 1. Let (M, c) be a compact 4-manifold equipped with a a ho-
motopy class c = [J ] of almost-complex structures. Assume either

b+(M) > 1
or

b+ = 1 and (2χ+ 3τ)(M) > 0.

If g is an excellent metric on M , define the (mod 2) Seiberg-Witten in-
variant nc(M) ∈ Z2 to be

nc(M) = #{gauge classes of solutions of ( 3) and ( 4)} mod 2

calculated with respect to g.

It turns out [4] that nc(M) is actually metric-independent; when b+ = 1,
this fact depends on the assumption that c1(L)2 = 2χ + 3τ > 0, which
guarantees that (3) and (4) cannot admit reducible solutions for any met-
ric.

Theorem 3. Let (M,J) be a compact complex surface, where the under-
lying oriented 4-manifold M is as in Definition 1. Suppose that (M,J) ad-
mits a Kähler metric g of constant scalar curvature s < 0, and let c = [J ].
Then nc(M) = 1 ∈ Z2.
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Proof. With respect to g we shall show that, up to gauge equivalence,
there is exactly one solution of the Seiberg-Witten equations, namely the
one described in the above example. Indeed, the Weitzenböck formula for
the twisted Dirac operator and equation (4) tell us that

0 = D∗
ADAΦ = ∇∗∇Φ+

s

4
Φ +

1
4
|Φ|2Φ,

which implies [4] the C0 estimate |Φ|2 ≤ −s, with equality only at points
where ∇Φ = 0. Since

|F+
A |2 =

1
8
|Φ|4 ≤ s2

8
,

it follows that
∫

M
|F+

A |2dµ ≤
∫

M

(s

4
|ω|

)2
dµ =

∫

M
|ρ+|2dµ

where the Ricci form ρ is in the same cohomology class as the closed form
FA, namely 2πc1(L) = 2πc1(M,J). But since s is constant, ρ is harmonic,
and we must therefore have that

∫

M
|ρ+|2dµ = 2π2c1(L)2 +

1
2

∫

M
|ρ|2dµ

≤ 2π2c1(L)2 +
1
2

∫

M
|FA|2dµ

=
∫

M
|F+

A |2dµ

because a harmonic form minimizes the L2 norm among closed forms in
its deRham class. Hence FA = ρ, and A differs from the Chern connection
on L by twisting with a flat connection. But also |Φ|2 ≡ −s, which forces
∇Φ ≡ 0. Since c1(L) 1= 0, the induced connection on ∧0,2 ⊂ V+ has non-
trivial curvature, and Φ must therefore be a section of ∧0,0. Since Φ is
parallel, the induced connection on ∧0,0 must not only be flat, but also
have trivial holonomy. Thus A must exactly be the Chern connection on
L, and our solution coincides, up to gauge transformation, with that of
the example. In particular, every solution with respect to g is irreducible
and transverse, so g is excellent. But since there is only one gauge class of
solutions with respect to g, we conclude that nc(M) = 1 mod 2.

The following refinement of an observation of Witten [6, §3] is the real
key to the proof of Theorem 2.

Theorem 4. Let M be a smooth compact oriented 4-manifold with

2χ(M) + 3τ(M) > 0.
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Suppose that there is a an orientation-compatible class c = [J ] of almost-
complex structures for which the Seiberg-Witten invariant nc(M) ∈ Z2 is
non-zero. Let g be a metric of constant scalar curvature s and volume V
on M . Then

s
√

V ≤ −25/2π
√

2χ+ 3τ ,

with equality iff g is Kähler-Einstein with respect to some integrable com-
plex structure J in the homotopy class c.

Proof. For any given metric g on M , there must exist a solution of (3)
and (4), since otherwise we would have nc(M) = 0. But since |F+

A |2 =
|Φ|4/8 ≤ s2/8, with equality iff ∇Φ = 0, it follows that

2χ+ 3τ = c1(L)2 =
1

4π2

∫

M

(

|F+
A |2 − |F−

A |2
)

dµ ≤ 1
32π2

∫

M
s2dµ,

with equality only if

∇F+
A ≡ 0 and F−

A = 0.

If equality holds, the parallel self-dual form
√

2FA/|FA|

corresponds via g to a parallel almost-complex structure J , and the man-
ifold is thus Kähler, with Kähler class 8π/s times c1(M,J) = c1(L). But
since s is constant, the Ricci form is harmonic, and the manifold is Kähler-
Einstein.

On the other hand, any Kähler-Einstein metric will saturate the bound
in question, since the first Chern class of a Kähler-Einstein surface is
[sω/8π], and the metric volume form is dµ = ω2/2.

2. The Miyaoka-Yau inequality

For any compact oriented Riemannian 4-manifold (M, g), the Euler
characteristic and signature can be expressed as

χ(M) =
1

8π2

∫

M

(

|W+|2 + |W−|2 +
s2

24
− |ric0|2

2

)

dµ

τ(M) =
1

12π2

∫

M

(

|W+|2 − |W−|2
)

dµ

where s, ric0, W+ and W− are respectively the scalar, trace-free Ricci, self-
dual Weyl, and anti-self-dual Weyl parts of the curvature tensor; pointwise
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norms are calculated with respect to g, and dµ is the metric volume form.
If g is Einstein, ric0 = 0, and M therefore satisfies

(2χ± 3τ)(M) =
1

4π2

∫

M

(

2|W±|2 +
s2

24

)

dµ,

so the Hitchin-Thorpe inequality 2χ+ 3τ ≥ 0 holds, with strict inequality
unless M is finitely covered by a 4-torus or K3 surface.

Now assume that M admits a homotopy class of almost-complex struc-
tures for which the Seiberg-Witten invariant is non-zero. If g is an Einstein
metric on M , Theorem 4 then tells us that

2χ+ 3τ ≤ 1
32π2

∫

M
s2dµ

≤ 3
[

1
4π2

∫

M

(

|2W−|2 +
s2

24

)

dµ

]

= 3(2χ− 3τ)

with equality iff the metric is Kähler and W− = 0. But the curvature
operator of any Kähler manifold is an element of ∧1,1 ⊗ ∧1,1, and in real
dimension 4 one also has ∧1,1 = ∧− ⊕ Cω, where ω is the Kähler form;
when

W− : ∧− → ∧− and ric0 : ∧− → ∧+

both vanish, the curvature operator must therefore be of the form

R =
s

8
ω ⊗ ω +

s

12
1∧−

and so satisfy
∇R = 0,

which is to say that (M, g) must be locally symmetric. Unless g is flat, the
non-triviality of the Seiberg-Witten invariant now forces s to be negative,
and the point-wise form of the curvature tensor then implies that the
exponential map induces an isometry between the universal cover of (M, g)
and a complex-hyperbolic space which has been rescaled so as to have the
same scalar curvature. This proves the following generalization of the
Miyaoka-Yau inequality [7]:

Theorem 5. Let (M, g) be a compact Einstein 4-manifold, and suppose
that M admits an almost-complex structure J for which the Seiberg-Witten
invariant is non-zero. Also assume that M is not finitely covered by the
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4-torus T 4. Then, with respect to the orientation of M determined by J ,
the Euler characteristic and signature of M satisfy

χ ≥ 3τ,

with equality iff the universal cover of (M, g) is complex-hyperbolic 2-space
CH2 := SU(2, 1)/U(2) with a constant multiple of its standard metric.

On the other hand, Theorem 3 tells us the Seiberg-Witten invariant
of any complex hyperbolic 4-manifold M = CH2/Γ is actually non-zero.
Theorem 5 and Mostow rigidity thus imply Theorem 2.
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