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This began as a desire to reframe Roger Penrose’s
twistorial ideas in a context that was not constrained
by self-duality.

My early ambitwistor approach to the problem hinged
on correctly understanding of the Einstein condition
from a conformal point of view.

Many of the important ideas originated in the work
of Lionel Mason, Paul Tod, and their collaborators.
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Abstract. The aim of this work is to give a twistorial characterisation of the field equations
of conformal gravity and of Einstein spacetimes. We provide strong evidence for a
particularly concise characterisation of these equations in terms of ‘formal neighbourhoods’
of the space of complex null geodesics.

We consider second-order perturbations of the metric of complexified Minkowski
space. These coriespond to certain infinitesimal deformations of its space of complex null
geodesics, PN.

PN has a natural codimension one embedding into a larger space (the product of
twistor space and its dual). We show that deformations extend automatically to the
fourth-order embedding (that is, the fourth formal neighbourhood). They extend to the
fifth formal neighbourhood if and only if the corresponding perturbation in the metric has
vanishing Bach tensor (these are the equations of conformal gravity). Finally, deformations
which extend to the sixth formal neighbourhood correspond to perturbations in the metric
that are conformally related to ones satisfying the Einstein equations, at least when the
Weyl curvature is sufficiently algebraically general.

One can attempt to construct such formal neighbourhoods in the fully curved case.
We present arguments which suggest that our results will also hold when spacetime is fully
curved.

1. Introduction

Penrose’s non-linear graviton construction (Penrose 1976) provides sufficient new
mathematical insight into Einstein’s equations that one would expect that it should
also have wide ranging physical applications. However the construction only produces
gravitons in helicity eigenstates, that is spacetimes with either pure Asp (anti-self-dual)
or pure sp (self-dual) Weyl curvature. In order to make contact with physics one
should be able to have general Weyl curvature (subject only to field equations).

In this paper we present evidence for a particular type of generalisation of the
non-linear graviton construction. This uses the space of complex null geodesics instead
of twistor space.

LeBrun (1983) has proved that a complex spacetime together with its conformal
structure, M, can be reconstructed from its space of complex null geodesics, PN (see
§ 2 for a statement of the theorem). This generalises the part of Penrose’s non-linear
graviton construction in which it is shown that an Asp spacetime can be reconstructed
from its twistor space.

It remains to characterise field equations on M in terms of holomorphic structures
on PN. In this paper we present a second-order analysis which suggests a particularly
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Absrract

W study conformal transformations in four-dimensional manifolds. In particular, we pre-
senl a new set of iwo necossary and sullicienl conditbons for a gpace to be conformal to an
Einsicin space. The first condition defimes the class of spaces coaformal (o € spaces, wherens
the last ame (the vanishing of (e Bach tensor) gives the particalar subelass of  spaces which
are oonformally related 1o Einstedn spaces.

SO Introduction and Maifaengiicd Preliminaies

The study of Riemannian spaces conformally related to Elnstein spaces is a
problem which has been addressed since the 1920s.

The first work on this subject was that of H, W, Brinkman [1]. He studied
the necessary and sulficient conditions for spaces Lo be conformally related to
Einstein spaces in n dimensions with a particular example in four-dimensions,
However, since his arguments involved existence and compatibility of differen-
tial equations [1, 2], a constructive set of necessiry and sufTicient conditbons is
very difficult to infer. Later, other authors also contributed to 4 further under-
standing of the problem [3], but awing fo the vast variely of algebraically dis-
tinet types of Weyl tensors, no general set of conditions have vel been found in
# dimensions,

! This wark has been partialty sapparted by a grant from the Nationel Scicnce Fousdation,
25ER.C. Advanced D'ellow.

343
DO | TR AT BN 11 MR 0 5 T Plcran Pablseng Covpuustion



Commun. Math. Phys. 139, 1-43 (1991) Communications in

© Springer-Verlag 1991

Thickenings and Conformal Gravity

Claude LeBrun*
Department of Mathematics, SUNY, Stony Brook, NY 11794, USA

Received June 6, 1989

Abstract. A twistor correspondence is given for complex conformal space-times
with vanishing Bach and Eastwood—-Dighton tensors; when the Weyl curvature is
algebraically general, these equations are precisely the conformal version of
Einstein’s vacuum equations with cosmological constant. This gives a fully curved
version of the linearized correspondence of Baston and Mason [B-M].

0. Introduction

In this paper we provide a twistor correspondence for conformal gravity, meaning
roughly a reformulation of the conformally invariant aspects of Einstein’s vacuum
equations in terms of deformations of complex analytic spaces. This correspondence
was conjectured by Baston and Mason [B-M] on the basis of some insightful
(albeit heuristic) arguments concerning the linearized theory, and the chief new
idea that will be explored here, the rdle of Poisson structures (cf. [W]) in the
relevant extension problem, arose directly from the efforts of the present author
to give the calculations of Baston and Mason precise meaning.

We work throughout in the context of conformal classes of complex-Riemannian
4-manifolds. Recall that a complex-Riemannian manifold is a complex manifold
equipped with a non-degenerate holomorphic symmetric 2-tensor, so that each
tangent space is endowed with a complex quadratic form; two such complex-
Riemannian metrics are called conformally equivalent if one is obtained from the
other by multiplication by a non-zero holomorphic function. Such structures arise
naturally from the analytic continuation of real-analytic pseudo-Riemannian
metrics and their conformal classes into the complex domain, and one may return
to the realm of pseudo-Riemannian geometry by restricting to the fixed-point set
of an anti-holomorphic involution (“complex conjugation”) respecting the structure.
While it is possible to reformulate some of our results without this foray into the
complex domain, we will avoid so doing here for the sake of brevity.

* Research supported in part by NSF grant DMS-8704401
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If g conformal to an Einstein metric & = u2g, then

e the Bach tensor

1
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of ¢ vanishes; and

e the Eastwood-Dighton tensor

_jkt _
Egpe =W o VeWe ™ =W VW

ke
of g also vanishes.

Conversely, these conditions = 3 Einstein h = u2g
near any p € M where W* : AT — AT max rank.
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Interesting special case:
Suppose (M*, g, J) Kéhler.
In Kahler case, Bp =0 = E ;. = 0, too.

Fact implicitly due to Andrze] Derdzinski '83.

(M*, h) Einstein and conformal to Kéhler ¢ —
g is Bach-flat = ¢ is extremal Kahler metric.

(M*, h) also compact, but not Kéhler-Einstein =

s >0 and h = const 3_29
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Theorem. Each del Pezzo (M*,J) admits a
J-compatible conformally Kahler, FEinstein
metric, and this metric is geometrically unique.

Uniqueness: Bando-Mabuchi 87, L. "12.
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Moduli Spaces of Einstein metrics

& (M) = {Einstein h}/(Diffeos x RT)

Known to be connected for certain 4-manifolds:
M = T K3,  HYD, CHyT.

Berger, Hitchin, Besson-Courtois-Gallot, L.
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Is Einstein moduli space connected?

Progress to date:
Nice characterizations of known Einstein metrics.

Exactly one connected component of moduli space!
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Theorem (L '15). On any del Pezzo M*, the
conformally Kahler, Einstein metrics are exactly
characterized by the property that

W (w,w) >0

everywhere on M, for w an arbitrary non-trivial
global self-dual harmonic 2-form.

Corollary. These known Einstein metrics on any
del Pezzo M* sweep out exactly one connected
component of the Einstein moduli space & (M ).
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Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Kahler = AT = Rw @ ReA2V
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Reasonably satistying result.
But W™ (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Wu's criterion:

det(W ) > 0.
Wu (2019): terse, opaque proof that <.
L (2019): completely different proof.

L (2020): related classification result.
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Let aw > 3 > ~ be eigenvalues of W™

0

Wr=1| g8

~

a+f+v7=0
a>0 <0, HW"#£0
det(W™T) = aBy

det(W") >0 = o has multiplicity 1.

Get almost-complex structure .J on M or M by
w=h(J").
Claim: (M, h) compact Einstein = .J integrable.
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Theorem B. Let (M, h) be a simply-connected
compact oriented Einstein 4-manifold, and sup-
pose that its self-dual Weyl curvature

WT AT = AT
satisfies
det(W™") > 0
at every point of M. Then h 1s conformal to an

orientation-compatible Bach-flat extremal Kahler
metric g with scalar curvature s >0 on M.

Simply connected hypothesis is essential!
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Theorem E. Let (M, h) be a compact oriented
Einstein 4-manifold. If

5v/2
21+/21

everywhere on M, then actually det(TV ") > 0.
Consequently, all the results described remain

true if we merely tmpose this ostensibly weaker
hypothesis.

det(W ) > — s
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Some indication of the proof:

By second Bianchi identity;,

h Einstein = W™ = (6IW)" = 0.

|
(OW)pea = =VaWhea = =Vierap + o Vas

Our strategy:

study weaker equation

SWT =0

as proxy for Einstein equation.
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If h = f2¢ satisfies
SWT =0

then ¢ instead satisfies

S(fIWT) =0

which in turn implies the Weitzenbock formula

0= V*V(fWT) + ng+ 6 Wt oWt £ 2f WA

for fIVF € End(AT).
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We'll choose g = f~2h and w adapted to problem,

take L? inner product of the Weitzenbock formula

0= V*V(fWT) + ng+ 6 Wt oWt £ 2fWHAT

with w ® w, and integrate by parts. This yields:

0= / (7, VoV (w05 (w,0) 6| () P2l Pleo?] £
o >
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Let aw > 3 > ~ be eigenvalues of W™

0

Wr=1| g8

~

a+8+v=0
a>0 <0, HW"#£0
det(W™T) = aBy

det(W") >0 = o has multiplicity 1.

So v = avj, : M — RT a smooth function. Set

f=ay ™ g=fh =



Eigenvalues of W™ carry a conformal weight:



Eigenvalues of W™ carry a conformal weight:

For g = f—2h,



Eigenvalues of W™ carry a conformal weight:

For g = f—2h,




Eigenvalues of W™ carry a conformal weight:

For g = f—2h,

So our choice of f = o~ 1/3 implies



Eigenvalues of W™ carry a conformal weight:

For g = f—2h,

So our choice of f = o~ 1/3 implies

o= al/3 =



Eigenvalues of W™ carry a conformal weight:

For g = f—2h,

So our choice of f = o~ 1/3 implies

0= al/s = 1

— af =1



Eigenvalues of W™ carry a conformal weight:

For g = f—2h,

o 2o

So our choice of f = o~ 1/3 implies

0= al/s = 1

— af =1
Now choose w € AT so that
W) =aw, |uly=v2

after at worst passing to double cover M — M.
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M

Because

(d+d*)? = Vv — oW +§

on AT,



1
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1
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So Vw = 0, and ¢ is Kahler!
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And Many Happy Returns!



