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Scalar-flat Kahler metrics

on line bundles L — CPPy of Chern-class < —3.
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unless € > %, when Chrusciel fall-off sufficed.
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This is rather unsatisfactory, since real dimension
four is the setting for many of the most interesting
applications!

Fortunately, however, we will see today that

Chrusciel fall-off suffices to imply all the main
results of Hein-L, even in real dimension four.

This entails new proots in real dimension four that
are based on results in symplectic geometry.

In particular, Chrusciel fall-off suffices to imply all
the following results:
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Lemma. Any ALE Kahler manifold has only
one end.

Upshot:
Mass of an ALE Kahler manifold is unambiguous.

Does not depend on the choice of an end!
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In particular, this shows mass is coordinate-invariant,
without ever invoking Bartnik-Chrusciel!

Theorems A & B are corollaries concerning scalar-
flat Kahler metrics.
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Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever M 2 R*™. In terms of this divisor,
we then have

m(M, g) > (QWEWi I)W)ﬂ!?,lznj Vol (Dj>

with = <= (M, g, .J) is scalar-flat Kahler.
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Theorem D (Positive Mass Theorem). Any AE
Kahler manafold with non-negative scalar curva-
ture has non-negative mass:

AFE & Kdhler & s >0 = m(M,qg) > 0.
Moreover, m = 0 <= (M, g) is Euclidean space.

Equality = Ricci-flat
because Ricci-form L? harmonic and ¢ = 0.

Now use Bishop-Gromov inequality.
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e the smooth manifold M,

o the first Chern class ¢ = ¢ (M,.J) € H*(M)
of the complex structure, and

o the Kihler class [w] € H>(M) of the metric.

Theorem B. Let (M*,g,.J) be an ALE scalar-
flat Kdhler surface, and suppose that (M, .J) is

the minimal resolution of a surface singularity.
Then m(M, g) <0, with = iff g is Ricci-flat.
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Theorem C. Any ALE Kahler manifold (M, g, J)
of complex dimension m has mass given by

() W™ (m 1)
m(M, g) = = (2m — 1)pm—1 Jr4(2m — 1)x™m /M Sgdilg

In particular, this shows mass is coordinate-invariant,
without ever invoking Bartnik-Chrusciel!

Theorems A & B are corollaries concerning scalar-
flat Kahler metrics. But for such metrics, faster
fall-off is guaranteed, so new proof is not actually
needed!
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This causes major technical complications.

Fortunately, however, the symplectic structure is
always is standard at infinity!
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surface, let My, ; be an end of M, let My, ; be
the universal cover of M, ;, and let
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be an asymptotic coordinate system in which the
Kdhler metric g is C? and satisfies the Chrusciel
fall-off conditions. Then there is I';-equivariant
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C c R is a standard closed ball centered at the
origin, such that

P*w = wy,
with |(z)—z| = O(|z| %) and |Px—I| = (Jz|~179).

Quantitative version of Moser stability argument. . .
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Proposition. Let ' C U(2) be a finite subgroup

+ {1} that acts freely on the unit sphere S° C
C2. Then 3 4-dimensional compact connected

symplectic orbifold (X p,wp) such that
o (X, wp) contains unique singular point p;

e p has nbhd symplectomorphic to (AB,wq)/I’
for some standard ball Z C C? and standard
action of I' C U(2) ; and

e 3 symplectic immersion j : S° %+ Xp — {p},
with at worst transverse positively-oriented dou-
ble points, such that

[ X =3, )] 23

for some, and hence any, w-compatible almost-
complex structure .J.
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Definition. Let I' C U(2) be any finite subgroup
that acts freely on the unit sphere S° C C2.
Then

o If ' # {1}, a I'-capsule will mean this sym-
plectic orbifold (X p,wr). The singular point
p will be called the base-point of X .

o I[f I' = {1}, we instead define the ['-capsule
(X ,wp) to be CPy, equipped with its stan-
dard Fubini-Study symplectic structure. In this
case, the base-point p of X r will simply mean
[OZO:l]E(CPQ.
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Key tools:

Theorem (McDuff 1990). Let (V*,w) be a com-
pact symplectic 4-manaifold which contains a sym-
plectically embedded 2-sphere . C V' with pos-
itive normal bundle. Then (V,w) is symplecto-
morphic to a blow-up of CPy or S? x S2.

Theorem (McDuff 1992). Let (V4 w) be a com-
pact symplectic 4-manifold which contains a sym-
plectically immersed 2-sphere . & V with at
worst positively-oriented double points and with
[ c1 > 3. Then (V,w) is symplectomorphic to
a blow-up of CPy or S? x S2.



Lemma. Any ALE Kahler manifold has only

one end.



What if /4 has more than one end?



Compactity M as symplectic 4-manifold M.



Compactity M as symplectic 4-manifold M.



(| o=

Compactity M as symplectic 4-manifold M.



BN
/

Compactity M as symplectic 4-manifold M.

Each end-plug contains immersed symplectic 2-sphere
of positive normal bundle.



BN
/

Compactity M as symplectic 4-manifold M.

Each end-plug contains immersed symplectic 2-sphere
of positive normal bundle.

McDuff = M = rational complex surface.



BN
/

Compactity M as symplectic 4-manifold M.

Each end-plug contains immersed symplectic 2-sphere
of positive normal bundle.

McDuff = intersection form (+—---—).



BN
/

Compactity M as symplectic 4-manifold M.

Each end-plug contains immersed symplectic 2-sphere
of positive normal bundle.

McDuft = by (M) = 1.



BN
/

Compactity M as symplectic 4-manifold M.

Each end-plug contains immersed symplectic 2-sphere
of positive normal bundle.

McDuft = by (M) = 1.

Since each end contributes positive direction. . .
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Lemma. Any ALE Kahler manifold has only

one end.

In higher dimensions, one similarly shows that (M, .J)
can be compactified as Kahler orbifold. The Hodge
theorem on intersection form instead tells one that

form on HM(/]\Z, R) is of type (+—---—).]
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we can now prove mass formula in general,
assuming only Chrusciel fall-off.

The ideas needed were already in Hein-L.

The following result provides the key. ..
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Then there 1s a continuously differentiable 1-form
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df = p
where p 1s the Ricci form of g, and such that

/SQ/F G1jk — gki i Dl dap =
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We'll now deduce the mass formula. . .

Jrit — @ -njdaE: 2 / oINS 10O 9_25
/sg/r[’”’k k] R . (™)
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Let f: M — R be smooth cut-off function:
= ( away from end,
= 1 near infinity.

Set

U= p—d(f0)

/S o ki — Ikk.j) n'day =

Ar(d(cy), (W] )

— im — 1) +/MQS dp +0(o™%)

Limit as ¢ — o0 now yields the mass formula.
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So far, everything has been quite straightforward.

But the Penrose-type inequality is more subtle.



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever M 2 R*™. In terms of this divisor,
we then have

(M, g) > — "

|
o — 1)W)mlznj Vol(D)

with = <= (M, g, .J) is scalar-flat Kahler.




m<M79) — <

S(—c1), [w™ )

(m —1)!
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3 sum of holomorphic curves Poincaré dual to —c¢;y:

Truncate (M, w), then compactify as symplectic
manifold (M, w) by adding CPy — B*.

This is a symplectic blow-up of CPs.

For any compatible almost-complex structure, Taubes’
results in Seiberg-Witten allow us to find pseudo-
holomorphic curves representing blow-ups.

Choose almost-complex structure to coincide with
integrable ./ except in roughly conical asymptotic
region and standard neighborhood of line at infinity.

Technical challenge: Loss of control of derivatives!
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Robust under distortion of metric in outer region.
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3 sum of holomorphic curves Poincaré dual to —c;:

Truncate (M, w), then compactify as symplectic
manifold (M, w) by adding CPy — B*.

This is a symplectic blow-up of CPs.

For any compatible almost-complex structure, Taubes’
results in Seiberg-Witten allow us to find pseudo-
holomorphic curves representing blow-ups.

Choose almost-complex structure to coincide with
integrable ./ except in roughly conical asymptotic
region and standard neighborhood of line at infinity.

Calibrated geometry argument then shows that the
curves cannot enter asymptotic region, so remain in
region where we have original integrable .J.

In (M, .J), this gives desired Poincaré dual of —c;.
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It’

!
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