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For metrics on fixed M", the Weyl functional

7 ([g]) = /M W, 2dp,

only depends on the conformal class

gl = {u2g | u: M £S5 RHY.

Measures deviation [g| from conformal flatness.

Basic problems: For given smooth compact M.

e Are there any critical points?

e Can we classify them?
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Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (vcvd + §%Cd)Wa,cbd

called Bach tensor.
Solutions called Bach-flat metrics.

Any Einstein (M*, ¢) is Bach-flat.

Of course, conformally Einstein good enough!
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For M™
7 (g]) = / W, 2du,
M

has degenerate Euler-Lagrange equation
‘Wg‘(n—ﬁl)/?(vv.w 4o ) =0
when n > 4.

Einstein metrics are usually not critical points.
Clalabi-Yau x flat on K3 x T never critical

when ¢ > 0, because # o Vol(T*)!
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R: A% — A°
splits into 4 irreducible pieces:
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s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Henceforth, assume M compact, real dimension 4.
If (M*[g]) is Bach-flat, is it conformally Einstein?
No! anti-self-dual 4-manifolds: 1V = 0.

Another possibility: Double Poincaré-Einstein.
This prototype is rather degenerate.

But 4 genuine examples that aren’t.
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Henceforth, assume M compact, real dimension 4.
Open Problem:

Every Bach-flat 4-manifold one of these three types?
Einstein, 2ASD, Double Poincaré-Einstein?
Locally this is wildly false!

But no compact counter-examples are known!
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Henceforth, assume M compact, real dimension 4.
Today:

Bach-flat Kahler = one of these three types.
Builds on earlier local results of Andrzej Derdzinski.
Scalar curvature s plays the starring role.

Kahler surfaces:
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For any extremal Kéhler (M*, g, .J),
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C w :
g = “[ -+ el il
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where JF 1s Futaki invariant.

A is function on Kahler cone KK ¢ H?(M,R).

Proposition. If g is a Kahler metric on a com-
pact complex surface (M*,.J), with Kdihler class
wl, then g satisfies B =0 <—

e g 1s an extremal Kahler metric; and

e (W] is a critical point of A: I — R.
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Henceforth, assume M compact, real dimension 4.
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If not Kahler-Einstein:

. s 1s positive. Then
(M, s72qg) Einstein, A > 0, Hol = SO(4).

1. s 1s zero. Then
(M, q,.J) SFK, but not Ricci-flat.

1. s changes sign. Then

(M, s~2q) double Poincaré-FEinstein. Here,
s = 0 defines smooth connected Z3, and
M — Z has exactly two components.
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This happens <= ¢ > 0.
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Existence: Chen-L-Weber 08, et. al.
Page, Siu, Yau, Tian, Odaka-Spotti-Sun, ...
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[L '12: Bach-flat Kahler ¢ uniquely determined by
J up to complex automorphisms and homothety:.

Inspired by numerical experiments of GGideon Maschler.



[.mins > 0. Then

(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).

This happens <= ¢ > 0.

= (M*, J)is a Del Pezzo surface.



[.mins > 0. Then

(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).

This happens <= ¢ > 0.
— (M*, ) is a Del Pezzo surface.

(a) when Autg(M, J) reductive.



[.mins > 0. Then

(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).

This happens <= ¢ > 0.
— (M*, ) is a Del Pezzo surface.

(a) when Autg(M, J) reductive.
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(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).

This happens <= ¢ > 0.
= (M*, J)is a Del Pezzo surface.

(a) when Autg(M, J) reductive.
(b) when M = CPy#CPy or CPy#2CPs.
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(h) = Kod (M, .J) = —o0.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
II.s=0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
II.s=0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[II. mins < 0. Then

(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[Il.mins < 0. Then
(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

[fmins < 0,



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[II.mins < 0. Then
(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

[f min s < 0, then s either constant,



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[Il.mins < 0. Then
(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

[f min s < 0, then s either constant, or changes sign.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
II.s=0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[II. mins < 0. Then

(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[Il.mins < 0. Then
(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

(a) = Kod (M, .J) = 2.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[Il.mins < 0. Then
(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

(a) = Kod (M, .J) =2.(b) = Kod (M, .J) = —o0.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
II.s=0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[II. mins < 0. Then

(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[Il.mins < 0. Then
(a) (M, g,.J) Kahler-Einstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

Examples of (b): Hwang-Simanca, Te¢nnesen-Friedman
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If not, s = 0 only at finite set.

W £ 0 everywhere else.

h = s 2¢ is Ricci-flat, asymptotically Fuclidean.
Positive mass theorem (or Bishop-Gromov):
Ricci-flat i must be flat!

So Wi = 0.

Contradiction! So s = 0.
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Thus max s > 0. But
0> r:=—06sAs — 12]V5\2 + 50,
So Vs # 0 when s = 0.

Hence max s > 0, and s = 0 smooth hypersurtace.

s: M — R
Morse-Bott without critical manifolds of odd index

— regions s < 0 and s > 0 are both connected.

Similarly, hypersurface s = 0 connected, too.
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