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Abstract

The Yamabe invariant of a smooth compact manifold is by definition
the supremum of the scalar curvatures of unit-volume Yamabe metrics on
the manifold. For an explicit infinite class of 4-manifolds, we show that
this invariant is positive but strictly less than that of the 4-sphere. This
is done by using spinc Dirac operators to control the lowest eigenvalue of
a perturbation of the Yamabe Laplacian. These results dovetail perfectly
with those derived from the perturbed Seiberg-Witten equations [14], but
the present method is much more elementary in spirit.

1 Introduction

There is a natural diffeomorphism invariant [10, 21] which arises from a vari-
ational problem for the total scalar curvature of Riemannian metrics on any
given compact smooth n-manifold M . Observe that the group of smooth posi-
tive functions u : M → R+ acts on the space of smooth Riemannian metrics g
by conformal rescaling g 7→ u2g. The conformal class of a Riemannian metric g
is by definition the orbit γ = [g] of this action which contains g. Let C(M) = {γ}
denote the set of conformal classes of metrics on M . We may then define an
invariant of the smooth compact manifold M by setting

Y (M) := sup
γ∈C(M)

inf
g∈γ

∫
M
sg dµg(∫

M
dµg
)n−2

n

,

where sg and dµg respectively denote the scalar curvature and volume measure
of the Riemannian metric g. We will call this the Yamabe invariant of M .
∗Supported in part by NSF grant DMS-9623048
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To put this definition in context, recall [4] that, for n > 2, a Riemannian
metric is Einstein iff it is a critical point of the functional

g 7→ S(g) :=

∫
M
sg dµg(∫

M dµg
)n−2

n

.

The functional S, however, is neither bounded above nor below, so one cannot
hope to find a critical point by either minimizing or maximizing it. However,
the restriction of S to any conformal class is bounded below, and a remarkable
theorem [2, 16, 20] of Yamabe, Trudinger, Aubin, and Schoen asserts that each
conformal class γ contains metrics g, called Yamabe metrics, which attain the
minimum value

Yγ = inf
g∈γ
S(g).

This number is called the Yamabe constant of the conformal class γ. A simple
and beautiful argument of Aubin [2] shows that Yγ ≤ Y (Sn) = n(n−1)V 2/n

n for
any conformal class on any n-manifold, where Vn is the volume of the standard
metric on Sn. Thus the scalar curvatures of unit-volume Yamabe metrics on
M are bounded above, and their least upper bound is a real number Y (M) ≤
Y (Sn). Of course, this by no means guarantees1 that Y (M) is a critical value
of S. Indeed, there are many low-dimensional examples [4] of manifolds which
do not admit any Einstein metrics.

A conformal class γ contains a metric g ∈ γ with positive scalar curvature
iff Yγ > 0, so the Yamabe invariant Y (M) is positive iff M carries a metric of
positive scalar curvature. Now there is a substantial body of results [18, 9, 8, 23,
11, 24] concerning manifolds which admit metrics of positive scalar curvature,
and these results may be understood as simply providing one kind of estimate
for Yamabe invariants. The bulk of this literature consists of variations on a
theme of Lichnerowicz: on a spin manifold of positive scalar curvature, the
Dirac operator must have index zero. In the present article, we will show that
essentially the same method, applied to the twisted Dirac operators associated
with spinc structures, can be used to calculate the Yamabe invariant for many
4-manifolds.

For rather mysterious reasons, the Yamabe invariant seems to be most easily
computed in low dimensions. In dimension 2, for example, the Gauss-Bonnet
theorem asserts that Y (M) is a multiple of the Euler characteristic. In dimen-
sion 3, Anderson [1] has announced a computation of the Yamabe invariants
of all irreducible 3-manifolds with infinite π1. And in dimension 4, which will
be our field of concern, the advent of Seiberg-Witten theory [25] has made it

1 A plausible folk tradition maintains that it was Yamabe himself who first considered the
question of whether Y (M) can be realized as the scalar curvature of a unit-volume Yamabe
metric. However, Y (M) seems to make its first published appearance in an important paper
of O. Kobayashi [10], who called it the mu invariant. Other authors [1, 21] have elsewhere
called it the sigma constant.
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possible [13, 15] to compute the Yamabe invariants of most complex algebraic
surfaces. One remarkable feature that emerges is that Y (M) often distinguishes
between different smooth structures on the same topological 4-manifold.

The Seiberg-Witten method, however, is most finely tuned to manifolds with
Y (M) ≤ 0, although a perturbed version can be used [14] to show, for example,
that Y (CP2) = 12

√
2π < 8

√
6π = Y (S4). In this article, the last result will

be reproved by a much simpler method, while at the same time proving the
following substantial generalization:

Theorem A The Yamabe invariant of CP2 is unaltered by 0-surgeries:

Y (CP2#m(S1 × S3)) = Y (CP2) = 12
√

2π

for all m ≥ 0. In particular, these projective planes with handles all have
Yamabe invariant strictly less than Y (S4) = 8

√
6π.

The same reasoning also proves the following:

Theorem B Let k ∈ {1, 2, 3}, and let m be any natural number. Then

12
√

2π ≤ Y (kCP2#m(S1 × S3)) ≤ 4π
√

2k + 16.

In particular, these connected sums of CP2’s and S1 × S3’s all have Yamabe
invariant strictly less than Y (S4).

For Kähler-type complex surfaces of Kodaira dimension ≥ 0, Seiberg-Witten
theory allows one to show [15] that Y (M) is a bimeromorphic invariant — i.e.
it is unchanged by blowing up and down. One might therefore blithely suppose
that the same is true of all complex surfaces. However, the present methods
show that this supposition simply does not hold water:

Theorem C The Hopf surface and its one-point blow-up have different Yamabe
invariants. Thus the Yamabe invariant is not a bimeromorphic invariant for
complex surfaces of class V II.

The key inequality for the Yamabe invariant developed here is sensitive only
to homotopy type rather than to diffeomorphism type. The present methods
are thus oblivious to the deeper aspects of 4-manifold topology detected by
Seiberg-Witten invariants. Nonetheless, several peculiarities of dimension 4 —
e.g. the conformal invariance of harmonic 2-forms — will play a a crucial rôle.
It thus remains to be seen whether the ideas developed in this article have any
ramifications in higher dimensions.
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2 Perturbed Yamabe Laplacians

Let (M4, g) be a smooth 4-dimensional Riemannian manifold. The Yamabe
Laplacian of g will mean the elliptic operator

2g = 6∆g + sg (1)

acting on functions on M . Here sg denotes the scalar curvature of g, and ∆ =
d∗d = −div grad is the (positive) Laplace-Beltrami operator of g. Considered
as a map between spaces of functions (or densities) of appropriate conformal
weight, this operator is conformally invariant; namely, if g̃ = u2g for some
positive C2 function u, then

2g̃ϕ = u−3
2g(uϕ) (2)

for any function ϕ. The geometric essence of this statement is the fact that the
scalar curvature transforms under conformal rescalings according to the rule

sg̃ = u−3
2gu.

Let E ⊂ ⊗2T ∗M be the real line bundle spanned by the metric g. Evidently,
this depends only on the conformal class γ, and conversely the conformal class
is uniquely determined by E. A section f of E may simply be thought of as a
real valued function on M which transforms according to the rule

f 7→ f̃ = u−2f

when the metric g is replaced by g̃ = u2g, since this transformation rule ensures
that f̃ g̃ = fg. Sections of E will therefore be called functions of conformal
weight −2.

Example. Let ω be a smooth 2-form. The function

f = |ω|g
then transforms according to the rule

f 7→ f̃ = u−2f

when g 7→ g̃ = u2g. Thus f is a function of conformal weight −2. Notice that
while f2 is smooth, f will typically merely be Lipschitz if the locus where ω
vanishes is non-empty.

Lemma 1 Let γ be a smooth conformal class on a 4-manifold M , and let f
be a function of conformal weight −2 on M . Then the operator ♦g = 2g − f
transforms according to the rule

♦g̃ϕ = u−3♦g(uϕ)

when g is replaced by g̃ = u2g.
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Proof. We have

♦g̃ϕ = 2g̃ϕ− f̃ϕ
= u−3

2g(uϕ)− u−2fϕ

= u−3[2g(uϕ) − ufϕ]
= u−3♦g(uϕ)

by the conformal invariance of the Yamabe Laplacian.

Definition 1 Let g be a metric on M , and let f be a function of conformal
weight −2. The modified scalar curvature of the pair (g, f) will mean the func-
tion σ = σ(g,f) = s− f, where s = sg is the usual scalar curvature of g.

Lemma 2 Under conformal changes g 7→ g̃ = u2g, the modified scalar curva-
ture transforms according to the rule σ 7→ σ̃ = u−3♦gu.

Proof. Indeed, σ(g,f) = ♦g(1). By the previous lemma, we therefore have
σ(g̃,f̃) = ♦g̃(1) = u−3♦gu.

Proposition 3 Let g be a smooth Riemannian metric on a compact smooth
4-manifold M , and let f ∈ C0,α(M,E), α ∈ (0, 1), be a Hölder continuous
function of conformal weight −2. Then there is a conformally related metric
g̃ = u2g of class C2,α whose modified scalar curvature satisfies σ̃ > 0, σ̃ < 0, or
σ̃ ≡ 0. Moreover, these three possibilities are mutually exclusive.

Proof. Let λg be the lowest eigenvalue of ♦g :

λg = inf
u ∈ L2

1

‖u‖L2 = 1

〈♦gu, u〉L2(g).

Let u be a non-zero eigenfunction of ♦g corresponding to this eigenvalue:

♦gu = λgu.

By the interior Schauder estimates [7, p.109], u is of class C2,α. By the minimum
principle [7, p.35], u 6= 0, so g̃ = u2g is a C2,α metric conformal to g. Its modified
scalar curvature is

σ̃ = u−3♦gu = u−2λg ,

and so is strictly positive, strictly negative, or identically zero, exactly as promised.
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Now notice that ♦g̃ = 6∆g̃ + σ̃. Thus, for any positive C2 function v, the
modified scalar curvature of v2g̃ is at most v−2σ̃ at the minima of v, and at least
v−2σ̃ at the maxima of v. The three possibilities under discussion are therefore
mutually exclusive.

Notice that the L2 norm

‖ω‖2 =
(∫

M

|ω|2gdµg
)1/2

of a 2-form ω on any compact 4-manifold M is conformally invariant; that is,
it depends only on the conformal class γ = [g] of the metric.

Corollary 4 Let γ be a smooth conformal class on a smooth compact 4-manifold
M , and let ω be a differentiable 2-form on M . Then one of the following must
hold:

• there is a C∞ metric g ∈ γ with scalar curvature s > |ω|g; or

• Yγ < ‖ω‖2; or

• Yγ = ‖ω‖2, and there is a (C∞) Yamabe metric g ∈ γ with s = |ω| ≡
const. In particular, this happens only if ω is nowhere zero or vanishes
identically.

Proof. Let f = |ω|. The corresponding modified scalar curvature σ = s− |ω|
then defines a continuous map from the Banach space of C2 metrics in γ to
the Banach space of C0 functions. Thus the set of C2 metrics in γ with σ > 0
is therefore C2 open. However, the smooth metrics in γ are dense in the C2

metrics. Thus, if there is no smooth metric in γ with s > |ω|, there cannot be
a C2,α metric with s > |ω| either. But by Proposition 3, this happens precisely
if there is instead a C2,α metric g ∈ γ with s ≤ |ω|.

If the latter happens, we then have a metric g ∈ γ for which∫
s dµ√∫
dµ
≤
∫
|ω|dµ√∫
dµ
≤

√∫
|ω|2dµ = ‖ω‖2,

so that the definition of the Yamabe constant yields

Yγ ≤ ‖ω‖2.

If equality holds, moreover, the metric g is a Yamabe metric, and satisfies s ≡
|ω|. Since g is a Yamabe metric, it is smooth and has constant scalar curvature.
In particular, |ω| ≡ s must be constant.
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3 Polarizations

Let M be a compact oriented 4-manifold, and let γ be a conformal class on M .
Then the orientation and conformal structure induce a Hodge star operator

? : Λ2 → Λ2

on the bundle of 2-forms. That is to say, the Hodge star operator on middle-
dimensional forms determined by any metric g ∈ γ actually depends only on
the conformal class γ. This linear endomorphism of Λ2 satisfies ?2 = 1, so that
we have an eigenspace decomposition

Λ2 = Λ+ ⊕Λ−

depending only on γ and the orientation. The factors Λ±, corresponding to the
eigenvalues ±1, are vector bundles of rank 3, and reversing the orientation of
M just interchanges them. Sections of Λ+ are called self-dual 2-forms, whereas
sections of Λ− are called anti-self-dual 2-forms.

Now the Hodge theorem tells us that

H2(M,R) = {ϕ ∈ Γ(Λ2) | dϕ = 0, d ? ϕ = 0}.

Since ? defines an involution of the right-hand side, however, we therefore have
a direct sum decomposition

H2(M,R) = H+ ⊕H−,

where
H± = {ϕ ∈ Γ(Λ±) | dϕ = 0}

are the spaces of self-dual and anti-self-dual harmonic forms. Given any coho-
mology class ζ ∈ H2(M,R), we thus have a γ-induced decomposition

ζ = ζ+ + ζ−,

where ζ± ∈ H±.
The subspace H+ ⊂ H2(M,R) is called the polarization determined by γ.

The intersection form ∪ : H2 ×H2 → H4 = R becomes positive-definite when
restricted to H+, and H+ is a maximal subspace with this property. Indeed,
H− is the orthogonal complement of H+ with respect to ∪, and the restriction
of ∪ to H− is negative-definite. The dimension of H± is therefore a homotopy
invariant b± of M , and the difference τ = b+ − b− is called the signature of
M . It is important to point out that the polarization H+ ⊂ H2 really does [6]
depend on the conformal class γ unless b− = 0.

If ω is a self-dual harmonic 2-form with respect to γ, we have

‖ω‖22 = [ω] ∪ [ω] = [ω]2,

since |ω|2dµ = ω ∧ ?ω = ω ∧ ω. Thus Corollary 4 immediately implies
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Proposition 5 Let ζ ∈ H2(M,R) be a fixed cohomology class on a smooth
compact 4-manifold M , and let γ be any conformal class on M . Let φ denote
the unique γ-harmonic 2-form with [φ] = ζ. Then one of the following must
hold:

• there is a C∞ metric g ∈ γ with scalar curvature s > |φ+|g; or

• Yγ <
√

(ζ+)2; or

• Yγ =
√

(ζ+)2, and there is a Yamabe metric g ∈ γ with s = |ζ+| ≡ const.

Proof. Set ω = φ+ and apply Corollary 4.

4 Dirac Operators and Spinc Structures

Let M be a compact oriented 4-manifold. A cohomology class η ∈ H2(M,Z)
is then called characteristic if η ≡ w2(M) mod 2; by a theorem of Wu, such
elements always exist. Given such a class η, let L be the Hermitian complex
line bundle with c1(L) = η. This L is unique up to isomorphism. Moreover,
given a conformal class γ on M , the obstruction to the existence of a square-root
L1/2 of L precisely coincides with the obstruction to defining the spin bundles
S± of (M, γ). Thus one may define two rank-2 Hermitian vector bundles V± on
M such that

V± = S± ⊗ L1/2,

in the formal sense that on an any spin open set of M , S± and L1/2 may
be defined, and there is a canonical (but sign-ambiguous) isomorphism V± →
S±⊗L1/2. A choice of such bundles V± is called a spinc structure. If H1(M,Z)
contains no elements of order 2, the spinc structures on M are in one-to-one
correspondence with the set of characteristic elements η ∈ H2(M,Z).

Now fix a spinc structure on M , and choose some Hermitian connection θ
on the associated line bundle L→ M . If g is any metric on M , its Levi-Cività
connection and θ together induce a connection

∇θ : Γ(V+)→ Γ(V+ ⊗ T ∗M)

via the local identifications

V+ = S+ ⊗ L1/2.

On the other hand, Clifford multiplication induces a bundle homomorphism

V+ ⊗ T ∗M
·→ V−.
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Composing these maps gives us a (twisted) Dirac operator

Dθ : Γ(V+)→ Γ(V−).

The latter is an elliptic operator whose index is given by

ind (Dθ) =
c21(L) − τ(M)

8
.

When this index is positive, we get an estimate for the Yamabe constant of any
conformal class:

Theorem 6 Let M be a smooth compact oriented 4-manifold, and let η ∈
H2(M,Z) be a non-torsion, characteristic element such that η2 > τ(M). Let γ
be any smooth conformal class on M . Then

Yγ ≤ 4π
√

2(η+)2.

Moreover, equality occurs iff M is diffeomorphic to a rational complex surface,
in such a manner that η becomes the first Chern class c1(M), and some Yamabe
metric representing γ becomes a Kähler metric of constant, non-negative scalar
curvature.

Proof. Let ϕ denote the unique γ-harmonic 2-form such that the de Rham class
[ϕ] coincides with the image of η in real cohomology. If we had Yγ ≥ 4π

√
2(η+)2,

Proposition 5, applied to ζ = 4π
√

2η, would assert the existence of a smooth
metric g ∈ γ with sg ≥ 4π

√
2|ϕ+|g; and if equality holds, moreover, g may be

further assumed to be a Yamabe metric. We claim, however, that this leads
to a contradiction unless equality holds and the geometry is of the special kind
detailed above.

Indeed, set F = −2πiϕ, and let L → M be the unique Hermitian line
bundle with c1(L) = η. Since i

2πF then represents the image of c1(L) in real
cohomology, the Chern-Weil theorem tells us there is a U(1) connection θ on
L whose curvature is F . Choose a spinc structure with associated line bundle
L, and let Dθ : Γ(V+) → Γ(V−) be the corresponding Dirac operator. By
construction, the index

ind (Dθ) =
η2 − τ(M)

8
of this operator is positive. Thus there exists a smooth section ψ 6≡ 0 of V+

with Dθψ = 0. But, by the Weitzenböck formula [9, 11]

Dθ∗Dθ = ∇θ∗∇θ +
s

4
+

1
2
F+,

and we therefore have

0 = (ψ,∇∗∇ψ) +
s

4
|ψ|2 +

1
2

(ψ, F+ · ψ),
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where the self-dual 2-form F+ acts on V+ by Clifford multiplication. The latter
action is diagonalizable, with eigenvalues ±

√
2|F+| = ±2π

√
2|ϕ+|. Thus

0 ≥ (ψ,∇∗∇ψ) +
s− 4π

√
2|ϕ+|

4
|ψ|2.

Integrating over M , we thus have

0 ≥
∫
M

[|∇ψ|2 +
s− 4π

√
2|ϕ+|

4
|ψ|2]dµ.

But, by assumption, our metric g satisfies s ≥ 4π
√

2|ϕ+|. It follows that s =
4π
√

2|ϕ+|, g is a Yamabe metric, and ∇ψ = 0. The non-zero self-dual 2-form
ψ� ψ̄ is therefore parallel, so g is a Kähler metric. Moreover, L is now the anti-
canonical line bundle of the associated complex structure on M , so η = c1(M).
But since η is not a torsion class by assumption, and since M admits a Kähler
metric of non-negative scalar curvature, our complex surface is rational or ruled
[26]. Moreover, its Todd genus (c21 − τ)/8 is also positive, so it follows [3] that
M is rational — i.e. obtained from CP2 by blowing up and down.

5 The Main Theorems

We now restrict the last result to 4-manifolds with positive-definite intersection
forms.

Theorem 7 Let M be a smooth compact oriented 4-manifold with b−(M) = 0,
and suppose that η ∈ H2(M,Z) is a characteristic element such that η2 >
b2(M). Then

Y (M) ≤ 4π
√

2η2.

Moreover, if there is a a conformal class γ on M such that Yγ = 4π
√

2η2, then
η2 = 9 and M is diffeomorphic to CP2 in such a manner that γ becomes the
conformal class of the Fubini-Study metric.

Proof. Because b−(M) = 0, η+ = η for any conformal class γ, and Theorem
6 therefore asserts that Yγ ≤ 4π

√
2η2 for any conformal class γ. Taking the

supremum over all γ then yields the first part of the result.
The second part of the result similarly follows from Theorem 6 because CP2

is the only rational surface with b− = 0, and because [17] the isometry group
of any constant-scalar-curvature Kähler metric on CP2 must be a maximal
compact subgroup of the complex automorphism group PGL(3,C).
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Corollary 8 Let M be a smooth compact 4-manifold with non-trivial, positive-
definite intersection form. Then Y (M) ≤ 4π

√
2b2(M) + 16.

Proof. We may assume that b2 < 4, since the the upper bound in question
is otherwise a trivial consequence of Aubin’s estimate. Thus the intersection
form of M is automatically diagonalizable [19, p.19]. Choose a basis for the free
part of H2 relative to which the intersection form is represented by the identity
matrix, and let η be a characteristic element whose free part is a truncation of
(3, 1, 1) in this basis. Then η2 = 8 + b2(M) > b2(M). Now apply the previous
theorem.

Theorem 9 Let X1, X2, . . . , X` be 3-dimensional spherical space-forms, and let

M = kCP2#(S1 ×X1)# · · ·#(S1 ×X`)

for some k ≥ 1. Then

12
√

2π ≤ Y (M) ≤ 4π
√

2k + 16.

Proof. The upper bound in question is precisely that provided by the previous
corollary.

To obtain the lower bound, first let g denote the Fubini-Study metric on
CP2. This is an Einstein metric, and hence a Yamabe minimizer by the 4-
dimensional Gauss-Bonnet theorem. Thus

Y (CP2) ≥ Y[g] = S(g) = 12
√

2π.

Next, recall [10, 22] that Y (S1 ×Xj) = Y (S4). Now a fundamental result of O.
Kobayashi [10] asserts that

Y (Mj) ≥ 0 ∀j =⇒ Y (M1# · · ·#Mn) ≥ min
j
Y (Mj),

so we therefore have

Y (kCP2#(S1 ×X1)# · · ·#(S1 ×X`)) ≥ Y (CP2) ≥ 12
√

2π,

which is precisely the promised lower bound.

Theorems A and B are simply interesting special cases of this result.
Theorem C also follows quite easily. Indeed, a primary Hopf surface is

diffeomorphic to S1 × S3, whereas its one-point blow-up is diffeomorphic to
CP2#(S1 × S3), albeit in an orientation-reversing manner. Thus a primary
Hopf surface has Yamabe invariant equal to Y (S4) = 8

√
6π by [10, 22], whereas

its blow-up has Yamabe invariant equal to Y (CP2) = 12
√

2π by the above
result. Incidentally, the same argument also works for secondary Hopf surfaces
(finite quotients of primary Hopf surfaces).
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