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Abstract

Peng Wu [22] recently announced a beautiful characterization of
conformally Kähler, Einstein metrics of positive scalar curvature on
compact oriented 4-manifolds via the condition det(W+) > 0. In this
note, we buttress his claim by providing an entirely different proof of
his result. We then present further consequences of our method, which
builds on techniques previously developed in [16].

1 Introduction

Recall that a Riemannian metric h is said to be Einstein if it has constant
Ricci curvature. This is equivalent to saying that it solves the Einstein

equation

r = λh, (1)

where r is the Ricci tensor of h, and where the real constant λ (which is not
specified in advance) is called the Einstein constant of h. Given a smooth
compact manifold M , it is a fundamental problem of modern Riemannian
geometry to completely understand the moduli space

E (M) = {Solutions of (1)}/(Diff (M)× R
×),

of Einstein metrics onM , where the diffeomorphism group Diff (M) of course
acts on solutions of (1) via pull-backs, while the group of positive reals R+

acts on solutions by constant rescalings. One key goal of this paper is to
study this problem for a specific class of 4-manifolds M .

Our focus on dimension four reflects the degree to which this dimension
seems to represent a sort of “Goldilocks zone” for the Einstein equation (1).
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In lower dimensions, Einstein metrics necessarily have constant sectional
curvature, making them locally boring — albeit still globally interesting. In
higher dimensions, on the other hand, Einstein metrics turn out to exist in
surprising profusion, leading to wildly disconnected Einstein moduli spaces
on even the most familiar manifolds [5, 6, 21]. But, by contrast, dimension
four seems “just right” for (1), because four-dimensional Einstein metrics
display such a remarkably well-balanced combination of local flexibility and
global rigidity that their geometry often seems to be optimally adapted to
the manifold where they reside. For example, if M4 is a compact quotient
of real or complex-hyperbolic space, or a 4-torus, or K3, then the Einstein
moduli space E (M) is actually explicitly known, and in each case actually
turns out to be connected [2, 4, 10, 12].

Unfortunately, however, there are very few other 4-manifolds M whose
Einstein moduli spaces E (M) are both non-empty and completely under-
stood. In particular, we still only partially understand the Einstein moduli
spaces of the smooth compact 4-manifolds that arise as del Pezzo surfaces.
Recall that a compact complex 2-manifold (M4, J) is called a del Pezzo
surface iff it has ample anti-canonical line bundle. Up to diffeomorphism,
there are exactly ten such manifolds, namely S2 × S2 and the nine con-
nected sums CP2#mCP2, m = 0, 1, . . . , 8. These are exactly [7] the oriented
smooth compact 4-manifolds that admit both an Einstein metric with λ > 0
and an orientation-compatible symplectic structure. However, on any of
these spaces, every known Einstein metric is conformally Kähler. In most
cases, these currently-known Einstein metrics are actually Kähler-Einstein
[17, 20], but in exactly two cases they are instead constructed [7, 15] as non-
trivial conformal rescalings of extremal Kähler metrics. This situation has
prompted the author to elsewhere characterize the known Einstein metrics
on del Pezzo surfaces by means of two different non-Kähler criteria. First,
they are [14] the only λ > 0 Einstein metrics on compact 4-manifolds that
are Hermitian with respect to an integrable complex structure. Perhaps
more compellingly, they are also the only Einstein metrics on compact ori-
ented 4-manifolds for which the self-dual Weyl curvature W+ is everywhere
positive in the direction of a global self-dual harmonic 2-form [16]. Because
the latter characterization merely depends on the Einstein metric belonging
to an explicit open set in the space of Riemannian metrics, it in particular
allows one to prove that, on any del Pezzo M4, the known Einstein met-
rics exactly sweep out a single connected component in the Einstein moduli
space E (M).

Still, both of these previous characterizations suffer from the defect of
not being formulated in terms of a purely local condition on the curvature

2



tensor. It is for this reason that a new characterization recently announced
by Peng Wu [22], formulated purely in terms of a property of the self-dual
Weyl curvature, represents an important advance in the subject.

To explain Wu’s criterion, let us first recall that the bundle Λ2 of 2-forms
over an oriented Riemannian 4-manifold (M,h) naturally decomposes, in a
conformally invariant way, as a direct sum

Λ2 = Λ+ ⊕ Λ−

of the (±1)-eigenspaces Λ± of the Hodge star operator. Here, sections of
Λ+ are called self-dual 2-forms, while sections of Λ− are called anti-self-dual
2-forms. But since the Riemann curvature tensor may be identified with a
self-adjoint linear map

R : Λ2 → Λ2

it can therefore be decomposed into irreducible pieces

R =



















W+ + s
12
I

◦
r

◦
r W− + s

12
I



















where s is the scalar curvature,
◦
r= r − s

4
g is the trace-free Ricci curvature,

and where W± are the trace-free pieces of the appropriate blocks. The
corresponding pieces W±a

bcd of the Riemann curvature tensor are both con-
formally invariant, and are respectively called the self-dual and anti-self-dual

Weyl curvature tensors.
Wu observes that the self-dual Weyl curvature W+ : Λ+ → Λ+ of

any conformally Kähler, Einstein metric on any del Pezzo surface satisfies
det(W+) > 0. He then offers a rather terse and cryptic proof that the con-
verse is also true. One main purpose of this article is to provide an entirely
different proof of Wu’s beautiful result:

Theorem A. Let (M,h) be a simply-connected compact oriented Einstein

4-manifold, and suppose that its self-dual Weyl curvature W+ : Λ+ → Λ+

satisfies det(W+) > 0 at every point of M . Then h is conformal to an

orientation-compatible extremal Kähler metric g on M .

With [13] and [16], this now immediately implies the following:
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Corollary. Any simply-connected compact oriented Einstein 4-manifold with

det(W+) > 0 is orientedly diffeomorphic to a del Pezzo surface. Conversely,

the underlying smooth oriented 4-manifold M of any del Pezzo surface car-

ries Einstein metrics h with det(W+) > 0, and these sweep out exactly one

connected component of the moduli space E (M) of Einstein metrics on M .

Note that the simple-connectivity hypothesis is essential in Theorem A.
Otherwise, a counter-example would be given by (S2 × S2)/Z2, obtained
by dividing the Riemannian product of two round, unit-radius 2-spheres by
the simultaneous action of the antipodal map on both factors. However,
Proposition 2.3 below shows that this example is typical, in the following
sense: for a compact oriented Einstein manifold with det(W+) > 0, the
only possible fundamental groups are {1} and {±1}. Thus, one can always
reduce to the simply-connected case by at worst passing to a double cover.

While the method of proof used here is quite different from Wu’s, both
approaches are deeply indebted to the pioneering work of Derdziński [8]. In
fact, the method developed here also naturally yields results about more
general 4-manifolds with harmonic self-dual Weyl curvature:

Theorem B. Let (M,h) be a compact oriented Riemannian 4-manifold

whose self-dual Weyl curvature W+ is harmonic, in the sense that

δW+ := −∇ ·W+ = 0.

Suppose moreover that b+(M) 6= 0, and that h satisfies det(W+) > 0 at

every point of M . Then M admits an orientation-compatible Kähler metric

g of scalar curvature s > 0 such that h = s−2g.

Conversely, if (M4, g, J) is a Kähler surface of scalar curvature s > 0,
Derdziński discovered that h = s−2g then satisfies both δW+ = 0 and
det(W+) > 0. This makes it completely straightforward to classify the
smooth compact oriented 4-manifolds that carry metrics h of the type cov-
ered by Theorem B. Indeed, if a compact complex surface (M,J) admits
Kähler metrics g with s > 0, it is necessarily rational or ruled [23], and, con-
versely, any rational or ruled surface has arbitrarily small deformations that
admit such metrics [11, 19]. Up to oriented diffeomorphism, the complete
list of the 4-manifoldsM that admit such metrics h therefore exactly consists
of CP2, (Σ

2 × S2)#kCP2, and Σ2
κS2, where Σ is any compact orientable

2-manifold, k is any non-negative integer, and Σ2
κS2 is the non-trivial ori-

ented 2-sphere bundle over Σ. Notice, however, that the moduli space of
such metrics on any of these manifolds is always infinite-dimensional, in
marked contrast to the Einstein case.
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We should also point out that dropping the b+(M) 6= 0 hypothesis
in Theorem B only changes the story very slightly. Indeed, as is shown
in Proposition 2.2 below, any compact oriented (M4, h) with δW+ = 0,
det(W+) > 0, and b+(M) = 0 has a double-cover M̂ → M with b+(M̂ ) = 1.
Theorem B therefore applies to the pull-back of h to this double cover.

These results are all proved in §2 below. Finally, in §3, we then prove a
generalization that does not explicitly require det(W+) to be positive:

Theorem C. Let (M,h) be a compact oriented Riemannian 4-manifold that

satisfies δW+ = 0. If

W+ 6= 0 and det(W+) ≥ − 5
√
2

21
√
21

|W+|3

everywhere on M , then actually det(W+) > 0. Thus, after at worst passing

to a double cover M̂ → M , h becomes conformally Kähler, in the man-

ner described by Theorem B. In particular, if (M,h) is a simply-connected

Einstein manifold, it actually falls under the purview of Theorem A.

2 The Proofs of Theorems A and B

Let (M,h) be a compact oriented Riemannian 4-manifold with det(W+) > 0
everywhere. Since W+ : Λ+ → Λ+ is self-adjoint, we can diagonalize W+

at any point of M as

W+ =





α
β

γ



 ,

by choosing a suitable orthonormal basis for Λ+; and, after re-ordering our
basis if necessary, we may arrange that α ≥ β ≥ γ at our given point.
However, by its very definition, the self-dual Weyl curvatureW+ : Λ+ → Λ+

automatically satisfies trace(W+) = 0, and this of course means that

α+ β + γ = 0.

It thus follows that α > 0 and γ < 0 as long as W+ 6= 0 at the point in
question. We therefore immediately see that detW+ = αβγ always has the
same sign as minus the middle eigenvalue β. Consequently, our assumption
that detW+ > 0 is equivalent to saying that exactly one of the eigenvalues,
namely α, is positive at each point, while both the other two are negative.
In particular, the positive eigenvalue α always has multiplicity one, so that
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α : M → R is always the unique positive solution of the characteristic equa-
tion det(W+ − αI) = 0, and so is a smooth positive function on M . Since
the α-eigenspace of W+ is exactly the kernel of (W+ − αI) : Λ+ → Λ+,
this eigenspace moreover varies smoothly from point to point. Thus, our
assumption that detW+ > 0 implies that the unique positive eigenspace of
W+ defines a smooth real line sub-bundle L ⊂ Λ+. Up to bundle isomor-
phism, it follows that L is intrinsically classified by

w1(L) ∈ H1(M,Z2) = Hom(π1(M),Z2),

and so will necessarily be trivial if M is simply-connected — or, indeed, if
π1(M) merely does not contain a subgroup of index 2.

Since the condition det(W+) > 0 is conformally invariant, the above
discussion similarly applies to any metric g = f−2h arising by conformal
rescaling h, using a smooth positive function f : M → R

+. On the other
hand, the endomorphism W+ : Λ+ → Λ+ is explicitly given by

ϕab 7−→ [W+(ϕ)]cd :=
1

2
W+ab

cd ϕab,

so constructing it out of the conformal-weight-zero tensor field W+a
bcd in-

volves raising an index. Thus, replacing h with g = f−2h rescales the top
eigenvalue by a factor of f2:

αg = f2αh.

We will henceforth impose the interesting choice

f = α
−1/3
h (2)

of the conformal factor f , because this then has the nice property that

αg = f2αh = α
1/3
h = f−1.

It then follows that α := αg satisfies

αf ≡ 1 (3)

for this preferred conformal rescaling g = f−2h of the original metric.
With respect to this conformally altered metric g, there exist, at each

point, exactly two self-dual 2-forms ω which satisfy

W+
g (ω) = αg ω, |ω|2g = 2. (4)
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Since these both belong to the real line bundle L ⊂ Λ+, and differ by sign,
we can find a global self-dual 2-form ω on M satisfying these requirements
everywhere if and only if L is trivial, which happens precisely in the case
where w1(L) = 0. On the other hand, if this class is non-zero, we can then
just pass to the double cover ̟ : M̂ → M given by the elements of norm√
2 in L, and we then instead obtain a tautological global self-dual 2-form

on M̂ satisfying (4) with respect to the pulled-back metric ĝ = ̟∗g. In
this case, notice that the connected Riemannian manifold (M̂, ĝ) admits an
isometric involution σ : M̂ → M̂ induced by scalar multiplication by −1 in
L, and that this involution satisfies σ∗ω = −ω by construction.

Our stipulation that |ω|2g = 2 has been imposed so that ω can be put in
the point-wise normal form

ω = e1 ∧ e2 + e3 ∧ e4

by choosing an appropriate oriented orthonormal frame at any given point.
Thus, whether on M or on M̂ , our global 2-form ω will give rise to a unique
orientation-compatible almost-complex structure J defined by

ω = g(J ·, ·).

In other words, the tensor-field J explicitly obtained from ω by index-raising

Ja
b = ωacg

cb

with respect to g will then automatically satisfy

Ja
bJb

c = −δca,

thus making it a g-compatible almost-complex structure on M or M̂ .
Our main argument will hinge on a few simple facts about self-dual 2-

forms and the Weyl curvature, starting with the following:

Lemma 1. Let (M,h) be an oriented Riemannian 4-manifold for which

det(W+) > 0 everywhere. Also suppose that the top eigenspace L ⊂ Λ+ of

W+ is trivial as a real line bundle L → M . Let g = f−2h be some conformal

rescaling of h, and let ω then be a self-dual 2-form on M that satisfies (4)
everywhere. Then

W+(∇aω,∇aω) ≤ 0, (5)

everywhere, where all terms are to be computed with respect to g.

Proof. The covariant derivative ∇ω of ω belongs to Λ1 ⊗ ω⊥ ⊂ Λ1 ⊗ Λ+

because ω has constant norm with respect to g. The result therefore follows
from the fact that W+(φ, φ) ≤ 0 for any φ ∈ ω⊥ ⊂ Λ+.
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Secondly, we will need the following standard algebraic observation:

Lemma 2. At any point p of an oriented 4-manfold (M,g),

|W+|2 ≥ 3

2
α2 (6)

where α = αg is the the top eigenvalue of W+
g at p.

Proof. Because traceW+ = 0,

|W+|2 = α2 + β2 + (−α− β)2 =
3

2
α2 + 2(β +

1

2
α)2 ≥ 3

2
α2

where β is the middle eigenvalue of W+
g at p.

Finally, we remind the reader of the Weitzenböck formula

(d+ d∗)2ω = ∇∗∇ω − 2W+(ω) +
s

3
ω (7)

for the Hodge Laplacian on self-dual 2-forms.
We are now finally ready to see what all this means when h is an Einstein

metric. But our discussion will actually pertain to the much larger class of
oriented 4-manifolds (M,h) which have harmonic self-dual Weyl curvature,
in the sense that

δW+ := −∇ ·W+ = 0. (8)

When h is Einstein, (8) holds as a consequence of the second Bianchi iden-
tity; but the reader should keep in mind that (8) is actually much weaker
than the Einstein condition. The reason (8) will be so useful for our pur-
poses is that it displays a weighted conformal invariance [18] under confor-
mal changes of metric. Namely, if h satisfies δW+ = 0, then any conformal
rescaling g = f−2h will instead have the property that δ(fW+) = 0. This
then implies the useful Weitzenböck formula

0 = ∇∗∇(fW+) +
s

2
fW+ − 6fW+ ◦W+ + 2f |W+|2I (9)

for fW+ with respect to g. For other applications of this fact, see [8, 9, 16].

Theorem 2.1. Let (M,h) be a compact oriented Riemannian manifold with

δW+ = 0 and det(W+) > 0. Also suppose that the positive eigenspace

L ⊂ Λ+ of W+ is trivial as a real line bundle L → M . Then the conformally

rescaled metric g = f−2h defined by (2) is an orientation-compatible Kähler

metric on M .
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Proof. Since L → M is trivial, we can choose a global self-dual 2-form ω
on M which satisfies (4) at every point. Always working henceforth with
respect to g, we now take the inner product of (9) with ω ⊗ ω, and then
integrate on M . Integrating by parts, and using (3), (5), (6), and (7), we
then have

0 =

ˆ

M

〈(

∇∗∇fW+ +
s

2
fW+ − 6fW+ ◦W+ + 2f |W+|2I

)

, ω ⊗ ω
〉

dµg

=

ˆ

M

[

〈W+,∇∗∇(ω ⊗ ω)〉+ s

2
W+(ω, ω)− 6|W+(ω)|2 + 2|W+|2|ω|2

]

f dµg

=

ˆ

M

[

− 2W+(∇eω,∇eω)− 2W+(ω,∇e∇eω)

+
s

2
α|ω|2 − 6α2|ω|2 + 2|W+|2|ω|2

]

f dµg

≥
ˆ

M

[

− 2α〈ω,∇e∇eω〉+
s

2
α|ω|2 − 6α2|ω|2 + 3α2|ω|2

]

f dµg

=

ˆ

M

[

2〈ω,∇∗∇ω〉+ s

2
|ω|2 − 3α|ω|2

]

(αf) dµg

=

ˆ

M

[1

2
〈ω,∇∗∇ω〉+ 3

2
〈ω,∇∗∇ω〉+ s

2
|ω|2 − 3W+(ω, ω)

]

dµg

=
1

2

ˆ

M
|∇ω|2 dµg +

3

2

ˆ

M

〈

ω,∇∗∇ω − 2W+(ω) +
s

3
ω
〉

dµg

=
1

2

ˆ

M
|∇ω|2 dµg +

3

2

ˆ

M

〈

ω, (d+ d∗)2ω
〉

dµg

=
1

2

ˆ

M
|∇ω|2 dµ+ 3

ˆ

M
|dω|2 dµ

≥ 1

2

ˆ

M
|∇ω|2 dµ,

This shows that ∇ω ≡ 0 with respect to our rescaled metric g. Since it
of course also follows that ∇J ≡ 0, we now see that (M,g, J) is actually
a Kähler manifold, with Kähler form ω. In particular, this shows that the
initial metric h = f2g is conformally Kähler.

On the other hand, because the curvature tensor of a Kähler surface
(M4, g, J) belongs to ⊙2Λ1,1, the fact that

Λ+ = Rω ⊕ℜe Λ2,0 (10)
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for (M,g) implies that that its self-dual Weyl curvature takes the form

W+ =





s/6
−s/12

−s/12





in an orthonormal basis adapted to (10). In particular, det(W+) = s3/3325,
so a Kähler metric g has det(W+) > 0 if and only if its scalar curvature s is
positive. It follows that any Kähler metric conformal to a Riemannian metric
h with detW+ > 0 must necessarily have s > 0. Moreover, we now see that
the top eigenvalue α ofW+ for any such metric g is given by s/6. Thus, when
h satisfies (8), we have succeeded in expressing it as h = α−2g = 36s−2g for a
Kähler metric g of positive scalar curvature s. However, when this happens,
g̃ = 62/3g is also a Kähler metric, and has scalar curvature s̃ = 6−2/3s, and
we therefore also have h = s̃−2g̃ for a Kähler metric g̃ with positive scalar
curvature s̃. This was the form preferred by Derdziński [3, 8], who discovered
that, conversely, any Kähler surface (M4, g, J) of scalar curvature s > 0 gives
rise to a Riemannian metric h on M with δW+ = 0 and detW+ > 0 via the
ansatz h = s−2g.

On the other hand, any compact Kähler surface (M4, g, J) of positive
scalar curvature has geometric genus h2,0 = 0 by an argument due to Yau
[23]. But since b+(M) = 1+2h2,0 for any compact Kähler surface [1], this is
equivalent to saying b+(M) = 1. Geometrically, this means that a self-dual
2-form on (M,g) is harmonic if and only if it is a constant multiple of the
Kähler form ω. Of course, since the space of self-dual harmonic 2-forms is
conformally invariant in dimension 4, we also see that the self-dual harmonic
2-forms on (M,h) likewise consists of the constant multiples of ω.

This now allows us to back-track a little, and finally deal with the case
where the the real-line bundle L → M is non-trivial. In this setting, the
conformal factor defined by (2) still defines a metric g on M , but it is only
when we pull it back to ̟ : M̂ → M that this rescaled metric can be
associated with a global self-dual 2-form ω satisfying W+(ω) = αω and
|ω|̟∗g =

√
2. But now we can just apply Theorem 2.1 to (M̂,̟∗g), thereby

showing that it is a Kähler manifold with Kähler form ω and positive scalar
curvature. In particular, this implies that b+(M̂ ) = 1. Thus, any self-dual
harmonic 2-form on (M̂,̟∗g) is a constant multiple of the Kähler form
ω. However, by construction, there is an involution σ : M̂ → M̂ with
̟ ◦ σ = ̟ and σ∗ω = −ω. It follows that b+(M) = 0, since a non-trivial
self-dual harmonic form on (M,g) would otherwise pull back to a σ-invariant
self-dual harmonic form on (M̂ ,̟∗g); and this is impossible, because any
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such form would also have to be a constant multiple of ω, which is not
σ-invariant. We have thus proved the following:

Proposition 2.2. Let (M,h) be a compact oriented Riemannian 4-manifold

with δW+ = 0 and det(W+) > 0. Then either

(i) b+(M) = 1, and there is an orientation-compatible Kähler metric g on

M of scalar curvature s > 0, such that h = s−2g; or else

(ii) b+(M) = 0, and there is a conformal rescaling g of h whose pull-

back ̟∗g to a suitable double cover ̟ : M̂ → M is a positive-scalar

curvature Kähler metric on M̂ that is related to ̟∗h as in case (i).

Theorem B is now an immediate consequence of Proposition 2.2.
Notice that the conformally rescaled metric g is globally well-defined

on M in both cases of Propostion 2.2; moreover, it has scalar curvature
s > 0, and may be renormalized so as to arrange that h = s−2g. The
distinction between the two cases is really a matter of holonomy; in the first
case, the holonomy of g is a subgroup of U(2), while in the second case it
instead belongs to the larger group U(2)⋊Z2 of real-linear transformations
of C2 generated by complex conjugation (z1, z2) 7→ (z̄1, z̄2) and the unitary
transformations. Of course, the natural representation U(2)⋊Z2 → Z2 gives
rise to a double cover M̂ → M , and passing to this cover then simplifies
matters by reducing to the case of U(2) holonomy.

Using [13] and the simple-connectivity of del Pezzos, we also now have:

Proposition 2.3. Let (M,h) be a compact oriented Riemannian Einstein

4-manifold with det(W+) > 0. Then (M,h) actually satisfies det(W+) > 0
at every point. Moreover, either

(i) π1(M) = 0, and M admits an orientation-compatible complex structure

J that makes (M,J) into a del Pezzo surface, and relative to which the

Einstein metric h becomes conformally Kähler; or else,

(ii) π1(M) = Z2, and M is doubly covered by a del Pezzo surface (M̂, J) of
even signature on which the pull-back of the Einstein metric h becomes

conformally Kähler.

Theorem A now becomes an immediate corollary of Proposition 2.3.

3 The Proof of Theorem C

The method used to prove Theorems A and B does not actually require
detW+ to be positive. Indeed, in this section, we will obtain essentially
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the same results under the weaker assumption that the top and middle
eigenvalues α and β of W+ satisfy

4β ≤ α 6= 0

everywhere. The following lemma will allow us to restate this hypothesis as
an effective condition on det(W+).

Lemma 3. Let (M,h) be an oriented Riemannian 4-manifold, and let p ∈ M
be a point where W+ 6= 0. Let α and β once again denote the highest and

middle eigenvalues of W+ at p. Then

β ≤ α

4
⇐⇒ det(W+) ≥ − 5

21

√

2

21
|W+|3.

Moreover, both of these equivalent statements are conformally invariant, in

the sense that if either holds at p for the metric h, then both necessarily hold

at p for every metric g which is a conformal rescaling of h.

Proof. Let x = β/α, and then notice that, because α ≥ β ≥ −α − β, we
automatically have x ∈ [−1

2
, 1]. Now set y = 1 + x + x2, and notice that

x 7→ y defines an increasing smooth map [−1

2
, 1] → [3

4
, 3] because dy

dx = 1+2x
is non-negative for x ≥ −1

2
. But this now makes it apparent that

detW+

|W+|3 =
αβ(−α− β)

(α2 + β2 + (−α− β)2)3/2

= − x+ x2

23/2(1 + x+ x2)3/2

= −2−3/2
(

y−1/2 − y−3/2
)

is a decreasing function of x ∈ [−1

2
, 1], since

d

dy

[

−2−3/2
(

y−1/2 − y−3/2
)]

= −2−3/2

(

−1

2
y−3/2 +

3

2
y−5/2

)

= −(2y)−5/2(3− y)

is non-positive for y ∈ [3
4
, 3]. As a consequence,

β

α
≤ 1

4
⇐⇒ detW+

|W+|3 ≥ − x+ x2

23/2(1 + x+ x2)3/2

∣

∣

∣

x= 1

4

= − 5
√
2

21
√
21

.

Moreover, since both det(W+)/|W+|3 and x = β/α are manifestly unaltered
by conformal changes of the metric, the equivalence in question is obviously
conformally invariant.
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Most of the ideas we used in §2 merely depend on the assumption that
the top eigenvalue α of W+ has multiplicity one everywhere. However, the
key inequality (5) is quite different, and strongly depends on the assumption
that det(W+) > 0. Nonetheless, we can generalize this inequality as follows:

Lemma 4. Let (M,h) be an oriented Riemannian 4-manifold on which the

top eigenvalue αh of W+

h has multiplicity one everywhere, and so defines a

smooth function αh on M . Also suppose that the top eigenspace L ⊂ Λ+ of

W+ is trivial as real line bundle L → M . Let g = f−2h be some conformal

rescaling of h, and let ω then be a self-dual 2-form on M that satisfies (4)
everywhere. Let β = βg : M → R be the continuous function given by the

middle eigenvalue of W+
g at each point of M . Then

W+(∇eω,∇eω) ≤ β|∇ω|2 (11)

everywhere, where all terms are to be computed with respect to g.

Proof. The covariant derivative ∇ω of ω belongs to Λ1 ⊗ ω⊥ ⊂ Λ1 ⊗ Λ+

because ω has constant norm with respect to g. The result therefore follows
from the fact that W+(φ, φ) ≤ β|φ|2 for any φ ∈ ω⊥.

With these lemmata in hand, a return visit to our previously-explored
territory immediately reveals the following:

Theorem 3.1. Let (M,h) be a compact oriented Riemannian manifold with

δW+ = 0. Assume that W+ 6= 0 everywhere, and that

det(W+) ≥ − 5

21

√

2

21
|W+|3

at every point. Noting that this in particular implies that the top eigenvalue

αh : M → R
+ of W+

h defines a smooth positive function on M , let us also

now suppose that the real line bundle L → M given by the αh-eigenspace of

W+

h is trivial. Then the conformally rescaled metric

g = α
2/3
h h

is an orientation-compatible Kähler metric of positive scalar curvature.

Proof. Let ω be a self-dual 2-form that satisfies (4) at every point of M
with respect to the rescaled metric g. Here we have once again arranged
that g = f−2h has the property that α := αg satisfies

αf ≡ 1,
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as in (3), by choosing f according to (2). Now Lemma 3 tells us that our
hypotheses imply that β ≤ α/4, while Lemma 4 provides us with a crucial
inequality (11) involving β. On the other hand, (6) and (7) are completely
general facts about 4-dimensional geometry that in particular apply to our
current situation. Assembling these pieces, we therefore have

0 =

ˆ

M

〈(

∇∗∇fW+ +
s

2
fW+ − 6fW+ ◦W+ + 2f |W+|2I

)

, ω ⊗ ω
〉

dµg

=

ˆ

M

[

〈W+,∇∗∇(ω ⊗ ω)〉+ s

2
W+(ω, ω)− 6|W+(ω)|2 + 2|W+|2|ω|2

]

f dµg

=

ˆ

M

[

− 2W+(∇eω,∇eω)− 2W+(ω,∇e∇eω)

+
s

2
α|ω|2 − 6α2|ω|2 + 2|W+|2|ω|2

]

f dµg

≥
ˆ

M

[

− 2β|∇ω|2 − 2α〈ω,∇e∇eω〉+
s

2
α|ω|2 − 6α2|ω|2 + 3α2|ω|2

]

f dµg

≥
ˆ

M

[

− α

2
|∇ω|2 − 2α〈ω,∇e∇eω〉+

s

2
α|ω|2 − 3α2|ω|2

]

f dµg

=

ˆ

M

[

− 1

2
|∇ω|2 + 2〈ω,∇∗∇ω〉+ s

2
|ω|2 − 3α|ω|2

]

(αf) dµg

=

ˆ

M

[3

2
〈ω,∇∗∇ω〉+ s

2
|ω|2 − 3W+(ω, ω)

]

dµg

=
3

2

ˆ

M

〈

ω,∇∗∇ω − 2W+(ω) +
s

3
ω
〉

dµg

=
3

2

ˆ

M

〈

ω, (d+ d∗)2ω
〉

dµg

= 3

ˆ

M
|dω|2 dµ,

so the self-dual 2-form ω must actually be closed, and hence harmonic.
However, since ω also has constant norm

√
2, this means that (M4, g, ω)

is an almost-Kähler manifold. But, by construction, W+(ω, ω) > 0 and
h = f2g satisfies δ(W+) = 0. Thus, by [16, Proposition 2], our almost-
Kähler manifold is actually Kähler, and has positive scalar curvature.

However, a Kähler surface (M,g, J) of positive scalar curvature neces-
sarily satisfies det(W+) > 0 at every point. Moreover, a result of Yau [23]
guarantees that any such (M,g, J) must have vanishing geometric genus,
and so enjoys the topological property that b+(M) = 1. Applying Theorem
3.1 either to M or to the double cover M̂ → M associated with the real line

14



bundle L, the same argument used to prove Proposition 2.2 now yields the
following:

Proposition 3.2. Let (M,h) be a compact oriented Riemannian 4-manifold

with δW+ = 0 that also satisfies

det(W+) ≥ − 5

21

√

2

21
|W+|3

at every point. Then actually det(W+) > 0 everywhere, and either

(i) b+(M) = 1, and there is an orientation-compatible Kähler metric g on

M of scalar curvature s > 0, such that h = s−2g; or else

(ii) b+(M) = 0, and there is a conformal rescaling g of h whose pull-

back ̟∗g to a suitable double cover ̟ : M̂ → M is a positive-scalar

curvature Kähler metric on M̂ that is related to ̟∗h as in case (i).

Similarly, the same reasoning used to prove Proposition 2.3 now yields:

Proposition 3.3. Let (M,h) be a compact oriented Einstein 4-manifold

that also satisfies

det(W+) ≥ − 5

21

√

2

21
|W+|3

at every point. Then (M,h) satisfies det(W+) > 0 everywhere, and either

(i) π1(M) = 0, and M admits an orientation-compatible complex structure

J that makes (M,J) into a del Pezzo surface, and relative to which the

Einstein metric h becomes conformally Kähler; or else,

(ii) π1(M) = Z2, and M is doubly covered by a del Pezzo surface (M̂, J) of
even signature on which the pull-back of the Einstein metric h becomes

conformally Kähler.

Theorem C is now an immediate corollary of these last Propositions.
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