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Einstein manifolds and extremal Kähler metrics

By Claude LeBrun at Stony Brook

Abstract. In joint work with Chen and Weber, the author has elsewhere shown that
CP2K2CP2 admits an Einstein metric. The present paper gives a new and rather di¤erent
proof of this fact. Our results include new existence theorems for extremal Kähler metrics,
and these allow one to prove the above existence statement by deforming the Kähler–
Einstein metric on CP2K3CP2 until bubbling-o¤ occurs.

1. Introduction

Recall that a Riemannian metric is said to be Einstein i¤ it has constant Ricci curva-
ture [3]. When this happens, the constant value assumed by the Ricci curvature is called the
Einstein constant. A fundamental problem of global Riemannian geometry is to determine
precisely which smooth compact manifolds admit Einstein metrics.

While we still remain quite far from being able to determine precisely which smooth
compact 4-manifolds admit Einstein metrics, notable progress has recently been achieved
regarding narrower versions of the problem. For example, it was shown in [7] that if M 4

is the underlying smooth oriented manifold of a compact complex surface, then M admits
an Einstein metric with positive Einstein constant i¤ it is di¤eomorphic to a Del Pezzo
surface. In other words, the only allowed di¤eotypes are S2 � S2 and CP2KkCP2, with
0e k e 8; and, conversely, each of these candidates does actually admit an Einstein metric
with positive Einstein constant.

The existence direction of the above assertion is proved by means of Kähler geome-
try. For example, the theory of the complex Monge–Ampère equation can be used to show
that all but two of the above candidates admit Kähler–Einstein metrics ([24], [25], [26]).
However, CP2KCP2 and CP2K2CP2 cannot admit Kähler–Einstein metrics, owing to
the non-reductive nature of their automorphism groups [20]. Nonetheless, Page [21]
was able to construct an explicit cohomogeneity-one Einstein metric on CP2KCP2, and
Derdziński [10] subsequently discovered that this metric is actually conformally Kähler.
Following this lead, Chen, Weber, and the present author later proved [7] that CP2K2CP2
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also admits a conformally Kähler, Einstein metric, although, in contrast to the Page metric,
we do not know its explicit form.

The present article will provide a new proof for the existence of an Einstein metric on
CP2K2CP2. In the process, we will actually give a direct proof of the following, ostensibly
stronger statement:

Theorem A. There is an Einstein metric h on M ¼ CP2K2CP2 which is conformally

Kähler, and for which the conformally related Kähler metric g minimizes the L2-norm of the

scalar curvature among all Kähler metrics on M. As a consequence, h is therefore an absolute

minimizer of the Weyl functional among all conformally Kähler metrics on M.

For a definition of the Weyl functional, see §3 below. Notice that Theorem A
does not assert that the relevant Einstein metric actually coincides with the metric
of [7]. However, this is in fact true, as a consequence of uniqueness results recently proved
in [17].

Another main purpose of the present article is to prove new existence results for
extremal Kähler metrics. On any toric Del Pezzo surface, we show, in Theorems 1 and 2
below, that any Kähler class in a large, specific neighborhood of c1 is represented by an
extremal Kähler metric. This not only implies Theorem A, but also allows us to prove the
following:

Theorem B. Let g be the conformally Einstein, Kähler metric on CP2K2CP2 dis-

cussed in Theorem A. Then there is a 1-parameter family gt, t A ½0; 1Þ, of extremal Kähler

metrics on CP2K3CP2, such that g0 is Kähler–Einstein, and such that gtj
! g in the

Gromov–Hausdor¤ sense for some tj % 1.

The approach that will be developed here hinges on a systematic study of the squared
L2-norm

CðgÞ ¼
Ð

M

s2
g dmg

of the scalar curvature, restricted to the space of Kähler metrics. An important variational
problem for this functional was first studied by Calabi ([4], [5]), who constrained g to only
vary in a fixed Kähler class ½o� A H 2ðM;RÞ. Calabi called the critical metrics of his
restricted problem extremal Kähler metrics, and showed that the relevant Euler–Lagrange
equations are equivalent to requiring that ‘1;0s be a holomorphic vector field. In fact, every
extremal Kähler metric turns out to be an absolute minimizer for the Calabi problem, and
the proof of this [6] moreover implies the sharp estimate

1

32p2

Ð
M

s2
g dmg f

ðc1 �WÞ2

W2
þ 1

32p2
kFðWÞk2

with equality i¤ g is an extremal Kähler metric. Here

FðWÞ : H 0
�
M;OðT 1;0MÞ

�
! C
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denotes the Futaki invariant, and the relevant norm is the one induced by the L2-norm on
the space of holomorphy potentials [12]. In particular, for any extremal Kähler metric g

with Kähler class W, one has

Ð
M

s2
0 dmg ¼ 32p2 ðc1 �WÞ2

W2
;

Ð
M

ðs � s0Þ2
g dmg ¼ kFðWÞk2;

where

s0 ¼
Ð

M

s dmg ¼
Ð

s dmgÐ
dmg

denotes the average scalar curvature. Thus, letting KHH 2ðM;RÞ be the Kähler cone of
ðM; JÞ, we are led to consider the action function A : K ! R defined by

AðWÞ ¼ ðc1 �WÞ2

W2
þ 1

32p2
kFðWÞk2;ð1Þ

which we write schematically as

AðWÞ ¼ TðWÞ þBðWÞ;

where

TðWÞ ¼ ðc1 �WÞ2

W2

is a manifestly topological term, and where the Futaki term

BðWÞ ¼ 1

32p2
kFðWÞk2

will be shown, in Lemmas A.1 and B.1, to be uniformly bounded.

In practice, A is an explicitly computable rational function of several variables.
Nonetheless, the actual expression is su‰ciently complicated that the judicious use of com-
puter algebra is of enormous help in reliably obtaining the correct answer. For this reason,
a number of the proofs presented here partially depend on calculations carried out with the
assistance of Mathematica. However, these calculations are merely elaborate algebraic ma-
nipulations which could, in principle, be directly verified by a careful human with su‰cient
time and patience. For clarity of presentation, we have grouped these computer-assisted
calculations into two appendices. In spite of their typographical location, these appendices
are logically independent on the rest of the paper, and might rightly be said to represent the
beginning rather than the end of the article. For this reason, results proved in the ap-
pendices are freely cited throughout the body of the paper, without the slightest danger of
circular reasoning.
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2. Extremal Kähler metrics

In this section, we will prove two results on the existence of extremal Kähler metrics.
While these appear ([11]) to be of genuinely independent interest, we will be principally
interested in them here because of the key role they will play in the proofs of Theorems A
and B.

Theorem 1. Let MACP2K2CP2 be the blow-up of CP2 at two distinct points, and

let ½o� be a Kähler class on M for which

Tð½o�Þ :¼ ðc1 � ½o�Þ2

½o�2
e

3

2
c2

1 �
1

4
¼ c2

1 þ 3:25:

Then there is an extremal Kähler metric g on M with Kähler form o A ½o�.

Theorem 2. Let MACP2K3CP2 be the blow-up of CP2 at three non-collinear points,
and let ½o� be a Kähler class on M for which

Tð½o�Þ :¼ ðc1 � ½o�Þ2

½o�2
e

3

2
c2

1 �
1

4
¼ c2

1 þ 2:75:

Then there is an extremal Kähler metric g on M with Kähler form o A ½o�.

To prove these results, we will rely on a continuity method argument analogous to the
one used to prove [7], Theorem 27. This time, however, we will start at the anti-canonical
class c1 and work outward. To make this feasible, we will temporarily just assume that c1

is represented by an extremal Kähler metric. For M ¼ CP2K3CP2, this assumption is
certainly valid, since the anti-canonical class contains the Kähler–Einstein metric of Siu
[24]. In the case of M ¼ CP2K2CP2, we will eventually validate this assumption by pro-
viding a new proof in Proposition 1 below; in the interim, however, we will try to put the
reader at ease by mentioning that this fact has actually been previously proved elsewhere
([7], [13]) using di¤erent methods.

By rescaling, we may also assume that the target Kähler class ½o� satisfies c1 � ½o� ¼ c2
1,

so that ½o� ¼ c1 þ h for some h A H 2ðM;RÞ with c1 � h ¼ 0. We now join c1 to the given ½o�
by a straight line segment

½0; 1� C t 7! ½ot� :¼ ð1 � tÞc1 þ t½o� ¼ c1 þ th

and notice that the ½ot� are all Kähler classes, by convexity of the Kähler cone. Since
h2 < 0,

½ot�2 ¼ ðc1 þ thÞ2 ¼ c2
1 þ t2h2

f c2
1 þ h2 ¼ ½o�2;

so that

Tð½ot�Þ ¼
ðc1 � ½ot�Þ2

½ot�2
e

ðc1 � ½o�Þ2

½o�2
¼ Tð½o�Þe 3

2
c2

1 �
1

4
Et A ½0; 1�:
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We are therefore required to prove the existence of a solution in each ½ot�. It is therefore
natural to consider the set

E ¼ ft A ½0; 1� j ½ot� is represented by an extremal Kähler metricg;

and define

t ¼ supft A ½0; 1� j ½0; t�HEg:

We have already assumed that 0 A E, so E3j, and t A ½0; 1�. On the other hand, an
inverse-function theorem argument (cf. [18]) implies that E is open in ½0; 1�. One connected
component of E therefore either takes the form ½0; tÞ or ½0; 1�. It therefore su‰ces to show
that t A E, as this will then immediately imply that E ¼ ½0; 1�.

To attain this goal, we will make systematic use of the Weak Compactness Theorem
of Chen and Weber [9]. This result guarantees that, given a sequence of unit-volume ex-
tremal Kähler metrics on a compact complex surface, one can extract a subsequence which
Gromov–Hausdor¤ converges to an extremal Kähler orbifold metric, provided there is
a uniform upper bound on the Sobolev constants. Such an upper bound can in turn be
guaranteed (cf. [7]) if the metrics in question have uniformly bounded, positive scalar
curvature, and if all belong to the controlled cone

Að½o�Þe 3

2
c2

1 � eð2Þ

for some e > 0, where

A ¼ 1

32p2

Ð
M

s2 dm

for an extremal Kähler metric. However,

A ¼ TþB;

where

B ¼ 1

32p2

Ð
M

ðs � s0Þ2
dm

for an extremal Kähler metric, and we show in Lemmas A.1 and B.1 that

B <
1

4

for every Kähler class on either of these manifolds. On either of these manifolds, it follows
that inequality (2) holds for any convergent sequence of Kähler classes with

Te
3

2
c2

1 �
1

4
;
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where e is the infimum of
1

4
�B over a small neighborhood of the limit class. Moreover,

Lemmas A.2 and B.2 show that extremal Kähler metrics on these manifolds always have
everywhere-positive scalar curvature which is uniformly bounded on any compact subset
of the Kähler cone K. Hence, by rescaling to unit volume and then scaling back, every
sequence in E has a subsequence for which the corresponding extremal Kähler manifolds
fðM; gjÞg converge to an extremal Kähler orbifold ðN; gyÞ in the Gromov–Hausdor¤
topology.

We will now specialize to the case of an increasing sequence tj % t, with the goal of
showing that t A E. In order to show that, modulo di¤eomorphisms, the gj actually con-
verge smoothly to a metric on the given M, we must rule out bubbling. Recall (cf. [7], [9])
that smooth convergence will fail only if the sectional curvatures of our metrics gj fail to be
uniformly bounded, and that when this happens, after once again passing to a subsequence,
one can find a sequence of rescalings k�1

j gj, kj ! 0, and a sequence of base-points pj A M

such that fðM; pj; k
�1
j gjÞg converges in the pointed Gromov–Hausdor¤ topology to a

non-trivial ALE scalar-flat Kähler surface ðX ; ĝgyÞ. Such a pointed limit is called a deepest

bubble. Because all the metrics in our sequence are toric, so is the deepest bubble. This
implies [7], Lemma 17, that b2ðX Þ3 0, and that H2ðX ;ZÞ is generated by embedded holo-
morphic CP1’s. Moreover, for large j in the subsequence, the pointed Gromov–Hausdor¤
convergence guarantees that X is di¤eomorphic to an open subset Uj HM, in such a man-
ner that c1ðX Þ is obtained by restricting c1ðMÞ to Uj, and such that H2ðUjÞ is generated by
embedded 2-spheres Sj which are symplectic with respect to the Kähler form oj. Finally,
the homomorphism H2ðUj;ZÞ ! H2ðM;ZÞ induced by inclusion is injective, and the
restriction of the intersection form of M to Uj is negative definite.

Our strategy will now combine ideas from [7] and [8]. Suppose that ðX ; ĝgyÞ is a
deepest bubble arising from some sequence gj :¼ gtj

, where tj % t. Let S HX be any holo-
morphic embedded CP1, and let k > 0 be the positive integer defined by S � S ¼ �k. Then
for each j su‰ciently far out in our subsequence, we can find an otj

-symplectic 2-sphere
Sj HM with Sj � Sj ¼ �k, for the fixed positive integer k. By the adjunction formula, we
then also have c1 � Sj ¼ 2 � k. As j varies, the homology class ½Sj� could in principle
change. However, since c2

1 > 0 and bþðMÞ ¼ 1, the subset of H2ðM;RÞ defined by

c1 � A ¼ 2 � k;

A � A ¼ �k

is compact, and the set of A A H2ðM;ZÞ satisfying these conditions is therefore finite. By
refining our subsequence, we may therefore assume that A ¼ ½Sj� is independent of j. More-
over, since S has finite area in ðX ; ĝgyÞ, which is a rescaled limit of regions Uj HM, with
magnification tending to infinity, we must be able to represent ½S� by symplectic 2-spheres
Sj of arbitrarily small area in ðM; gjÞ as j ! y. Since the area of Sj is fj½oj� � ½Sj�j by
Wirtinger’s inequality, taking the limit as j ! y now yields

W � A ¼ 0;

where W ¼ ½ot� is the limit Kähler class.
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On the other hand, the sphere Sj is symplectic with respect to the Kähler form
oj ¼ otj

of our subsequence. Now, by construction,

½oj� ¼ ujc1 þ ð1 � ujÞW

for a sequence of positive numbers uj ¼ 1 � ðtj=tÞ & 0. Since Sj is symplectic, we therefore
have ½oj� � A ¼ ½oj� � ½Sj� > 0, for large j. Since W � A ¼ 0, this says that

ujðc1 � AÞ ¼
�
ujc1 þ ð1 � ujÞW

�
� A > 0:

Hence

c1 � A > 0:

However, c1 � A ¼ 2 � k by the adjunction formula. We thus conclude that k < 2. It fol-
lows that k ¼ 1, thereby reducing our bubbling problem to a single case.

To deal with the remaining k ¼ 1 case, we now classify the homology classes

A A H2ðM;ZÞ

satisfying

c1 � A ¼ 1;

A � A ¼ �1:

For this purpose, it is best to concentrate on the case of M ¼ CP2K3CP2, since we can
identify H 2ðCP2K2CP2Þ with a hyperplane in H 2ðCP2K3CP2Þ. If we choose a basis for
H2ðCP2K3CP2Þ consisting of a projective line L and three exceptional divisors E1, E2,
E3, corresponding to the three blown-up points in CP2, the intersection form then becomes

1

�1

�1

�1

0
BBB@

1
CCCA

and c1 is Poincaré dual to ð3;�1;�1;�1Þ. Setting A ¼ ðn; a; b; cÞ, we thus have

3n þ a þ b þ c ¼ 1;

n2 � a2 � b2 � c2 ¼ �1;

and the identity 9n2 ¼ 9n2 can therefore be rewritten as

5ða2 þ b2 þ c2Þ þ ða � bÞ2 þ ða � cÞ2 þ ðb � cÞ2 þ ða þ 1Þ2 þ ðb þ 1Þ2 þ ðc þ 1Þ2 ¼ 13:

Hence a2 þ b2 þ c2 < 3. On the other hand, a2 þ b2 þ c2 ¼ n2 þ 1f 1. Thus, after
possibly permuting E1, E2, and E3, we may assume that c ¼ 0, that jaj ¼ 1, and that
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jbje 1. Since a þ b þ c1 1 mod 3, the only solutions, up to permutation of the Ej, are
therefore

ðn; a; b; cÞ ¼ ð0; 1; 0; 0Þ and ðn; a; b; cÞ ¼ ð1;�1;�1; 0Þ;

respectively corresponding to

A ¼ E1 and A ¼ L � E1 � E2:

Throwing in permutations, we conclude that there are exactly six possibilities

A ¼ E1; E2; E3; L � E1 � E2; L � E1 � E3; L � E2 � E3

on M ¼ CP2K3CP2, and exactly three possibilities

A ¼ E1; E2; L � E1 � E2

on M ¼ CP2K2CP2. This is good news, because these classes are actually all represented
by holomorphic ð�1Þ-curves on either choice of M. Since these holomorphic curves must
have positive area for any Kähler metric, any Kähler class W on M must therefore satisfy
W � A > 0 for any such class A ¼ ½S�. This rules out bubbling when k ¼ 1, and our previous
argument therefore shows that bubbling has now been definitively ruled out in all cases.

As tj ! t, the sectional curvatures of the gj therefore remain uniformly bounded, and
these metrics therefore converge to a smooth, toric, extremal Kähler metric on a complex
surface di¤eomorphic to M. The collection of totally geodesic holomorphic curves consist-
ing of the points of non-trivial isotopy must converge to a configuration of totally geodesic
holomorphic curves with the same self-intersections as the original curves in M, and with
areas obtained by taking naı̈ve limits, allowing us to read o¤ both the limit complex struc-
ture and the limit Kähler class. This shows that the limit extremal Kähler metric is actually
compatible with the original complex structure on M, with Kähler class W. Thus t A E, and
hence E ¼ ½0; 1�. The target Kähler class ½o� therefore contains an extremal Kähler metric,
and Theorems 1 and 2 have therefore been proved, modulo the assumption that c1 con-
tains an extremal Kähler metric. We now complete the argument by justifying this last
assumption.

Proposition 1. The anti-canonical class of CP2K2CP2 is represented by an extremal

Kähler metric.

Proof. We begin by once again recalling ([24], [26]) that c1 is represented on
CP2K3CP2 by a Kähler–Einstein metric; thus, the above argument provides a water-tight
proof of Theorem 2 on CP2K3CP2, without assuming anything concerning Theorem 1 on
CP2K2CP2. We now identify CP2K2CP2 with the blow-down of CP2K3CP2 along the ex-
ceptional divisor E1, and let

p : CP2K3CP2 ! CP2K2CP2

denote the blowing-down map. If W is any Kähler class on CP2K2CP2, then

½ot� ¼ ð1 � tÞc1 þ tðp�WÞ
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is a Kähler class on M ¼ CP2K3CP2 for any t A ½0; 1Þ, and this Kähler class satisfies
Tð½ot�ÞeTðWÞ for any t, since the Poincaré dual of c1ðCP2K2CP2Þ is exactly the push-
forward, via p, of the Poincaré dual of c1ðCP2K3CP2Þ. We now assume henceforth that
TðWÞ < 8:75; this holds in particular, if we take W ¼ c1ðCP2K2CP2Þ, but we shall also
allow for other possibilities, as doing so will cost us no additional e¤ort.

Since Tð½ot�ÞeTðWÞ < 8:75, there is, by Theorem 2, an extremal Kähler metric
gt on M with Kähler form ot A ½ot� for all t A ½0; 1Þ. Moreover, ½ot� satisfies (2) for all
t A ½0; 1Þ, with e ¼ 8:75 �TðWÞ. Because the gt also have positive, uniformly bounded
scalar curvatures by Lemma B.2, these metrics therefore have uniformly bounded Sobolev
constants, and the Chen–Weber Theorem therefore guarantees the existence of a Gromov–
Hausdor¤ limit of some sequence gtj

, tj % 1, with limit a compact extremal Kähler orbifold
ðN; Jy; gyÞ. On the other hand, the sectional curvatures of the gt are certainly not

uniformly bounded as t ! 1, as the presence of a totally geodesic 2-sphere of area
a ¼ 1 � t & 0, forces sup K % þy by the classical Gauss–Bonnet Theorem. Thus, a non-
trivial deepest bubble must arise. On the other hand, our symplectic argument to rule out
bubbles containing a spherical class A with A2 ¼ �k still works in the present context when
k f 2; the only di¤erence is that the limit class p�W A H 2ðM;RÞ no longer belongs to the
Kähler cone, but rather sits on its boundary. We therefore have still excluded any deepest
bubble except one whose homology is carried by ð�1Þ-curves. Moreover, E1 is the only
homological ð�1Þ-curve whose symplectic area tends to zero as t ! 1. Since E1 has non-
zero self-intersection, it cannot simultaneously arise from two disjoint bubbles. Nor can
it arise as from a bubble on a bubble; if it did, the limit on a coarser length scale would
contain a CP1 of negative self-intersection, and plumbing this together with our additional
blow-up would then produce a symplectic 2-sphere in ðM; gtj

Þ of self-intersectione�2 and
area tending to zero, contradicting our previous adjunction-formula argument. Thus, the
limit orbifold must be obtained from M ¼ CP2K3CP2 by collapsing a single 2-sphere rep-
resenting E1. Since the link of such a 2-sphere is simply connected, it follows that this limit
orbifold N is actually a manifold; and Mayer–Vietoris immediately tells us that b2ðNÞ ¼ 3.
Similarly, the bubble must have b2 ¼ 1, and must be asymptotically Euclidean rather than
merely being ALE. Consequently, the bubble that forms must be the Burns metric [14] on
the Oð�1Þ line bundle over CP1, since ([15], [23]), up to homothety, this is the only asymp-
totically Euclidean scalar-flat Kähler surface with b2 ¼ 1.

Because the Burns metric has isometry group Uð2Þ, the toric structure of the bubble is
therefore uniquely determined up to conjugation, with points of non-trivial isotropy given
by the zero section and two fibers of the line bundle. By contrast, the set of points of

M ¼ CP2K3CP2

at which the torus action has non-trivial isotropy consists of the six ð�1Þ-curves

E 0
1

E2 E3

E 0
3 E 0

2

E1
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where E 0
j � Ej ¼ L � E1 � E2 � E3. Since the bubble is obtained by rescaling a tubular

neighborhood of some 2-sphere representing E1, and because the Killing fields generating
its toric structure are limits of the Killing fields on CP2K3CP2, the rescaled region must in
fact contain the exceptional divisor E1, as this curve is one connected component of the
zero locus of an appropriate Killing field. Since the Riemannian diameter of the region of
curvature concentration tends to zero ([9]), and since radial geodesics in the Burns metric
are length minimizing, even at large radii, the region of curvature concentration can only
contain a disk of small intrinsic diameter in the curves E 0

2 and E 0
3; thus, the region of cur-

vature concentration meets the locus of exceptional isotropy only in E1 and in small adjoin-
ing disks in E 0

2 and E 0
3. In particular, E2, E3, and E 0

1 are contained in the region of smooth
convergence as tj % 1. These totally geodesic submanifolds therefore give rise to totally
geodesic submanifolds in the Gromov–Hausdor¤ limit. These limit submanifolds are more-
over holomorphic curves, since the original complex structures converge smoothly to the
limit complex structure Jy in the region in question; and these three limit curves all have
self-intersection �1, since a tubular neighborhood of each original curve survives di¤eo-
morphically in the limit. Thus, ðN; JyÞ is a compact complex surface which can be blown
down, at the limit E2 and E3 curves, to a compact complex surface with b2 ¼ 1 containing a
rational curve of self-intersection þ1. Surface classification ([2], Proposition 4.3) now tells
us that this blow-down must be CP2. Hence ðN; JyÞ is actually the blow-up of CP2 at
two distinct points. Moreover, ðN; Jy; gyÞ contains a chain of three ð�1Þ-curves whose
homology classes generate H2ðN;RÞ, and the areas of these curves are WðE2Þ, WðE 0

1Þ, and
WðE3Þ. The limit extremal Kähler metric gy therefore has Kähler class W. Specializing to
the case where W is the anti-canonical class then proves the claim. r

Notice that the above argument actually proves more than what was initially claimed.
Indeed, by simply deleting the last sentence of the proof, we obtain the following result:

Proposition 2. Let W be any Kähler class on CP2K2CP2 for which

TðWÞ < 8:75 ¼ c2
1 þ 1:75:

Then there is an extremal Kähler metric g in W, and a one-parameter family gt, t A ½0; 1Þ of

extremal Kähler metrics on CP2K3CP2, where g0 is Kähler–Einstein, and with gtj
! g in the

Gromov–Hausdor¤ sense for some tj % 1.

3. Einstein metrics

Let ðM; JÞ now be a Del Pezzo surface, and again let KHH 2ðM;RÞ be its Kähler
cone. The following variational principle ([7], [16]) unlocks the mysteries of conformally
Kähler, Einstein metrics:

Proposition 3. Suppose that h is an Einstein metric on M which is conformally related

to a J-compatible Kähler metric g with Kähler class ½o� A K. Then ½o� is a critical point

of A. Moreover, g is an extremal Kähler metric, and the scalar curvature s of g is everywhere

positive.

Conversely, if W A K is a critical point of A, and if o A W is the Kähler form of an

extremal Kähler metric g with scalar curvature s > 0, then h ¼ s�2g is an Einstein metric

on M.
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Because of the crucial role this result plays in our discussion, we will now briefly
sketch the proof, while referring the reader to [7] for more details.

For any smooth compact oriented 4-manifold M, one may consider the conformally
invariant Riemannian functional

WðgÞ ¼
Ð

M

jW j2g dmg ¼ �12p2tðMÞ þ 2
Ð

M

jWþj2 dm;

where W is the Weyl curvature and Wþ is its self-dual part. Following standard conven-
tion, we will call W the Weyl functional. The gradient of W on the space of Riemannian
metrics ([1], [3]) is minus the Bach tensor B, as defined by

Bab ¼ ‘c‘d þ 1

2
rcd

� �
Wacbd ;

¼ ð2‘c‘d þ rcdÞðWþÞacbd :

Because
Ð
jW j2 dm is invariant under di¤eomorphisms and conformal rescalings, we have

Ba
a ¼ 0; ‘aBab ¼ 0

for any 4-dimensional Riemannian metric. The Bianchi identities imply that any Einstein
metric satisfies the Bach-flat condition B ¼ 0. Since the Bach-flat condition is conformally
invariant, any conformally Einstein 4-dimensional metric is therefore ([3], [22]) Bach-flat,
too.

We now specialize to the case of Kähler metrics. For any Kähler metric g on a com-
plex surface ðM; JÞ, one has

jWþj2 ¼ s2

24
ð3Þ

with respect to the orientation induced by J. (Of course, equation (3) is not conformally
invariant—but neither is the Kähler condition!) In particular, any Bach-flat Kähler metric
is a critical point of the Calabi functional

CðgÞ ¼
Ð

s2 dm;

either as a functional on a fixed Kähler class W ¼ ½o�, or on the entire space of Kähler
metrics, with W allowed to vary. In particular, any Bach-flat Kähler metric g must be an
extremal Kähler metric, and its Kähler class must be a critical point of A : K ! R.

Equation (3) reflects the deeper fact that the self-dual Weyl tensor of a Kähler surface
is completely determined by the scalar curvature and the Kähler form. If ðM 4; g; JÞ is a
Kähler manifold with Kähler form o, then

ðWþÞcd
ab ¼ s

12
½oabo

cd � d½ca d
d�
b þ J ½c

a J
d�
b �
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and plugging this into the formula for the Bach tensor yields

Bab ¼ s

6
r
�
ab þ

1

4
J c

a J d
b ‘c‘ds þ 1

12
‘a‘bs þ 1

12
gabDs:ð4Þ

However, the extremal Kähler metric condition is equivalent to requiring that the Hessian
‘‘s of the scalar curvature be J-invariant. At an extremal Kähler metric, we can therefore
define an anti-self-dual 2-form c by

c ¼ BðJ�; �Þ ¼ 1

6

h
srþ 2iqqs

i
0
;

where r is the Ricci form and where the subscript ‘‘0’’ denotes projection into the primitive
ð1; 1Þ-forms L1;1

0 ¼ L�. Since B is symmetric and divergence-free, we thus have

ðdcÞb ¼ �‘acab ¼ ‘aðBacJ
c
b Þ ¼ J c

b‘
aBac ¼ 0;

so that the anti-self-dual 2-form c is co-closed, and hence harmonic. In particular, the
1-parameter family gt ¼ g þ tB then consists entirely of Kähler metrics. The first varia-
tion W is �

Ð
jBj2 dm for this family of Kähler metrics, and so can vanish only if B ¼ 0.

Thus, if W is a Kähler class which is a critical point of A and if g is an extremal Kähler
metric which belongs to W, then g is necessarily Bach-flat.

Now the trace-free Ricci tensor r
�

transforms under conformal changes by

r̂
� ¼ r

� þ 2u Hess0ðu�1Þ;

and equation (4) tells us that any Bach-flat Kähler metric satisfies

r
� ¼ �2s�1 Hess0ðsÞ:

Thus, any Bach-flat Kähler metric with s > 0 has a conformal rescaling ĝg ¼ s�2g which is
Einstein. Proposition 3 now follows.

Now let M specifically be the Del Pezzo surface CP2K2CP2, let KHH 2ðM;RÞ be
its Kähler cone, and let �KK ¼ K=Rþ, where the positive reals act by scalar multiplication.
Since the function TðWÞ ¼ ðc1 �WÞ2=W2 is homogeneous of degree 0, we now consider it as
a function on �KK. For any t A R, let Yt H �KK be the region defined by TðWÞe t.

Lemma 1. If 7 < t < 8, then Yt is homeomorphic to the closed unit 2-disk, and so, in

particular, is compact.

Proof. On the manifold M ¼ CP2KCP2 under discussion, an element of H 2ðM;RÞ
is determined by the numbers

d

b g

gþ d b þ d
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it assigns to the three exceptional curves portrayed as representing the upper edges of the
pentagon. Since these three numbers represent areas, they all must be positive. Conversely,
any cohomology class for which these three numbers are positive is actually a Kähler class.
Indeed, we can either blow down M along the top curve to obtain CP1 � CP1, or along the
two top diagonal curves to obtain CP2. Pulling back product metrics on CP1 � CP1 then
allows one to specify any desired value of b, and g. Pulling back a multiple of the Fubini–
Study metric and adding this on as well, we can then choose d arbitrarily. Hence a coho-
mology class W A H 2ðM;RÞ is a Kähler class i¤ it assigns a positive value to each of these
three exceptional curves. Of course, any cohomology class W with this property must con-
sequently also satisfy W2 > 0 and c1 �W > 0.

Now, suppose that the convex cone in H 2ðM;RÞ defined by

W2 > 0;

c1ðMÞ �W > 0;

ðc1 �WÞ2 < 8W2

ð5Þ

contained a cohomology class that was not a Kähler class. By continuity, it would therefore
contain a class W which was non-negative on all three exceptional curves, but which
vanished on at least one of them. But W would then be the pull-back of some cohomology
class

W

on a blow-down N, obtained by collapsing exactly one exceptional curve, which
satisfied

W2 > 0 and

½c1ðNÞ � W�2 < 8

W2 ¼ c2
1ðNÞ W2:

But this is a contradiction, because c1ðNÞ and

W

A H 2ðN;RÞ would then be a pair of time-
like vectors in a 2-dimensional Minkowski space which violated the reverse Cauchy–
Schwarz inequality for the Lorentzian inner product. Hence the open convex cone defined
by (5) is actually a subset of the Kähler cone K. Consequently, for any t A ð7; 8Þ, the set of
W A H 2ðM;RÞ with

W2 > 0;

c1ðMÞ �W > 0;

ðc1 �WÞ2
e tW2

ð6Þ

consists entirely of Kähler classes, and its quotient by Rþ therefore exactly equals Yt.
However, this quotient can be identified with the intersection of (6) with the hyperplane
c1 �W ¼ 7. Writing elements of this hyperplane uniquely as W ¼ c1 þ h, where c1 � h ¼ 0,
we thus have identified Yt with the closed ball

jh2je 7ðt � 7Þ
t

in the 2-dimensional space-like hyperplane c?1 HH 2ðM;RÞ. This proves the claim. r

Theorem A is now an easy consequence. Indeed, because Lemma A.1 tells us that

0eB <
1

4
on the entire Kähler cone, the infimum of A for M ¼ CP2K2CP2 must be less

81LeBrun, Einstein manifolds and extremal Kähler metrics



than Tðc1Þ þ
1

4
¼ c2

1 þ
1

4
¼ 7:25, whereas Af 7:25 outside the interior of Y7:25. Since Y7:25

is compact by Lemma 1, there is consequently an interior point �WW of Y7:25 at which A
achieves its minimum. Notice that �WW is a critical point of A, and let W be a Kähler class
which projects to �WW. By Theorem 1, W is represented by an extremal Kähler metric g,
and by Lemma A.2, this extremal Kähler metric has positive scalar curvature s > 0. Prop-
osition 3 then tells us that h ¼ s�2g is an Einstein metric on M, and, by construction, h

minimizes the Weyl functional among all conformally Kähler metrics on M. We have thus
succeeded in proving Theorem A. Theorem B now similarly follows from Proposition 2,
since 7:25 < 8:75.

A. Computations for CPK2CP2

In this section, we will use a combination of elementary symplectic geometry and
computer-assisted algebra to estimate some key geometric invariants of extremal Kähler
metrics on M ¼ CPK2CP2 that are needed in the body of the paper. We begin by fixing
a Kähler class, normalized by rescaling so that the proper transform of the projective line
between the two blow-up points has area 1:

f

1

b g

gþ 1 b þ 1

Take the two blow-up points to be ½1; 0; 0�; ½0; 1; 0� A CP2, and fix the maximal torus

eiy

eif

1

2
64

3
75

in the automorphism group. Then, for any T 2-invariant metric, the moment map of the
torus action will take values in a pentagon, which after translation becomes the following:

y

x

b

2p

gþ 1

2p
g

2p

b þ 1

2p
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Let F1 and F2 be Futaki invariants of this Kähler class with respect to the vector fields with
Hamiltonians �x and �y. Then [19] for any T 2-invariant metric,

F1 ¼
Ð

M

xðs � s0Þ dm ¼ 1

V
ðb � 2gÞ 1

3
þ gþ g2

� �
þ gðg� bÞð2 þ b þ 2gÞ

� �
;

F2 ¼
Ð

M

yðs � s0Þ dm ¼ 1

V
ðg� 2bÞ 1

3
þ b þ b2

� �
þ bðb � gÞð2 þ gþ 2bÞ

� �
;

where

V ¼ bgþ b þ gþ 1

2
:

Note that, by Archimedes’ principle, the push-forward of the volume measure of M is
exactly 4p2 times the Euclidean measure on the moment polygon. Thus, for example, the
average values x0 and y0 of the Hamiltonians x and y on M are also the x and y coordi-
nates of the barycenter of the moment pentagon. This same observation also makes it
straightforward to compute the following useful constants:

A :¼
Ð

M

ðx � x0Þ2
dm

¼ 1 þ 6ð1 þ bÞ½b þ b2 þ b3 þ gð1 þ 4b þ 4b2 þ 2b3Þ þ g2ð1 þ bÞ3�
288p2V

;

B :¼
Ð

M

ðy � y0Þ2
dm

¼ 1 þ 6ð1 þ gÞ½gþ g2 þ g3 þ bð1 þ 4gþ 4g2 þ 2g3Þ þ b2ð1 þ gÞ3�
288p2V

;

C :¼
Ð

M

ðx � x0Þðy � y0Þ dm

¼ � 1 þ 6ð1 þ bÞð1 þ gÞðb þ gþ 3bgÞ
576p2V

:

If our metric is extremal, we then have

s � s0 ¼ aðx � x0Þ þ bðy � y0Þ;ð7Þ

where the constants a and b are given by

a ¼ BF1 � CF2

AB � C2
;

b ¼ AF2 � CF1

AB � C2
:

Consequently,

Ð
M

ðs � s0Þ2
dm ¼ BF2

1 � 2CF1F2 þ AF2
2

AB � C2

83LeBrun, Einstein manifolds and extremal Kähler metrics



for any extremal Kähler metric, and even without assuming the existence of an extremal
Kähler metric our arguments therefore assign a prominent role to the quantity

BðWÞ ¼ 1

32p2

BF2
1 � 2CF1FþAF2

2

AB � C2

¼ 8½g2ð1 þ 4gþ 6g2 þ 4g3Þ þ bgð�1 þ 3gþ 18g2 þ 26g3 þ 16g4Þ

þ 2b5ð2 þ 8gþ 21g2 þ 33g3 þ 27g4 þ 9g5Þ

þ b2ð1 þ 3gþ 27g2 þ 79g3 þ 89g4 þ 42g5Þ

þ b4ð6 þ 26gþ 89g2 þ 168g3 þ 150g4 þ 54g5Þ

þ b3ð4 þ 18gþ 79g2 þ 173g3 þ 168g4 þ 66g5Þ�=

½48b6ð1 þ gÞ6 þ 48b5ð1 þ gÞ3ð3 þ 12gþ 14g2 þ 6g3Þ

þ ð1 þ 2gÞ2ð1 þ 8gþ 20g2 þ 24g3 þ 12g4Þ

þ 4b4ð1 þ gÞ2ð47 þ 282gþ 573g2 þ 504g3 þ 180g4Þ

þ 4bð3 þ 33gþ 140g2 þ 306g3 þ 376g4 þ 252g5 þ 72g6Þ

þ 8b2ð7 þ 70gþ 270g2 þ 535g3 þ 592g4 þ 354g5 þ 90g6Þ

þ 8b3ð17 þ 153gþ 535g2 þ 963g3 þ 966g4 þ 522g5 þ 120g6Þ�:

Lemma A.1. One has B <
1

4
throughout the Kähler cone of CPK2CP2.

Proof. Subtracting four times the numerator of the above expression from the
denominator yields

1 þ 12gþ 24g2 þ 8g3 � 4g4 þ 16g5 þ 48g6 þ 48b6ð1 þ gÞ6

þ 16b5ð1 þ 31gþ 93g2 þ 129g3 þ 108g4 þ 60g5 þ 18g6Þ

þ 4bð3 þ 41gþ 116g2 þ 162g3 þ 168g4 þ 124g5 þ 72g6Þ

þ 8b2ð3 þ 58gþ 162g2 þ 219g3 þ 236g4 þ 186g5 þ 90g6Þ

þ 8b3ð1 þ 81gþ 219g2 þ 271g3 þ 294g4 þ 258g5 þ 120g6Þ

þ 4b4ð�1 þ 168gþ 472g2 þ 588g3 þ 561g4 þ 432g5 þ 180g6Þ:

Term by term, this is greater than 4ðg2 � g4 þ g6 þ b2 � b4 þ b6Þ > 0. Thus the denomi-
nator of our expression for B is more than four times larger than the corresponding

numerator. Hence B <
1

4
, as claimed. r

The coe‰cient a of equation (7) is explicitly given by
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�192p2g½1 þ 4gþ 6g2 þ 4g3 þ 6b3ð1 þ gÞ3 þ 2b2ð6 þ 18gþ 17g2 þ 6g3Þ

þ bð7 þ 21gþ 22g2 þ 10g3Þ�=

½1 þ 10gþ 36g2 þ 64g3 þ 60g4 þ 24g5 þ 24b5ð1 þ gÞ5

þ 12b4ð1 þ gÞ2ð5 þ 20gþ 23g2 þ 10g3Þ

þ 16b3ð4 þ 28gþ 72g2 þ 90g3 þ 57g4 þ 15g5Þ

þ 12b2ð3 þ 24gþ 69g2 þ 96g3 þ 68g4 þ 20g5Þ

þ 2bð5 þ 45gþ 144g2 þ 224g3 þ 180g4 þ 60g5Þ�

and b is given by the analogous expression with b and g interchanged. In particular, both of
these coe‰cients are always negative.

Lemma A.2. If g is an extremal Kähler metric on M ¼ CP2K2CP2, then the scalar

curvature s of g is positive at every point of M. Moreover, there is a smooth function

f : K ! R such that smax ¼ f ðWÞ for any extremal Kähler metric.

Proof. Since a and b are negative, the values of s0 þ aðx � x0Þ þ bðy � y0Þ at ð0; 0Þ

and
b

2p
;
g

2p

� �
are certainly upper and lower bounds for s. Making the substitution

s0 ¼ 4p
c1 �W

V
¼ 4p

3 þ 2b þ 2g

1

2
þ b þ gþ bg

into the value at
b

2p
;
g

2p

� �
gives us the positive lower bound

smin f 24p½ð1 þ 2gÞð1 þ 2gþ 2g2Þ2 þ 8b5ð1 þ gÞ4

þ 4b4ð5 þ 24gþ 40g2 þ 32g3 þ 13g4 þ 2g5Þ

þ 8b3ð3 þ 14gþ 25g2 þ 26g3 þ 16g4 þ 4g5Þ

þ 4b2ð4 þ 16gþ 33g2 þ 50g3 þ 40g4 þ 12g5Þ

þ 2bð3 þ 12gþ 32g2 þ 56g3 þ 48g4 þ 16g5Þ�=

½1 þ 10gþ 36g2 þ 64g3 þ 60g4 þ 24g5 þ 24b5ð1 þ gÞ5

þ 12b4ð1 þ gÞ2ð5 þ 20gþ 23g2 þ 10g3Þ

þ 16b3ð4 þ 28gþ 72g2 þ 90g3 þ 57g4 þ 15g5Þ

þ 12b2ð3 þ 24gþ 69g2 þ 96g3 þ 68g4 þ 20g5Þ

þ 2bð5 þ 45gþ 144g2 þ 224g3 þ 180g4 þ 60g5Þ�
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while making the same substitution into the value at ð0; 0Þ gives us a smooth function f

with f ðWÞ ¼ smax for any extremal Kähler metric, and the requirement that f be homoge-
neous of degree �1 then specifies an appropriate smooth extension of f to the entire Kähler
cone. r

B. Computations for CPK3CP2

We now carry out computations analogous to those in the previous appendix, but this
time for M ¼ CPK3CP2. First recall that the general Kähler class on this manifold is
determined by four real numbers:

f

aþ d

b g

gþ d b þ d

a

By applying a Cremona transformation, we may also assume that df 0. After rescaling,
the region d > 0 can then be completely understood in terms of those classes for which
d ¼ 1; these are exactly parameterized by the three arbitrary positive real numbers a, b,
and g. Of course, any invariant geometrical conclusion we reach regarding this region will
automatically also apply to the ‘‘mirror’’ region reached by the Cremona transformation.
This will allow us to understand the entire Kähler cone K, as long as we are careful to also
account for the hyperplane d ¼ 0.

We now once again fix the 2-torus in the automorphism group corresponding to

½z1 : z2 : z3� 7! ½eiyz1 : eifz2 : z3�:

The image of M under the moment map is then the hexagon

y

x

b

2p

gþ 1

2p

a

2p

g

2p

a

2p

b þ 1

2p

and our formulas [19] for the components of the Futaki invariant become

F1 ¼
Ð

M

xðs � s0Þ dm

¼ 1

V
ðaþ b � 2gÞ 1

3
þ gþ g2

� �
þ ðg� aÞðg� bÞð2 þ aþ b þ 2gÞ

� �
;
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F2 ¼
Ð

M

yðs � s0Þ dm

¼ 1

V
ðaþ g� 2bÞ 1

3
þ b þ b2

� �
þ ðb � aÞðb � gÞð2 þ aþ gþ 2bÞ

� �
;

where

V ¼ ab þ agþ bgþ aþ b þ gþ 1

2

is the volume of ðM;WÞ. Three other essential coe‰cients needed in our computation are

A :¼
Ð

M

ðx � x0Þ2 dm

¼ ð288p2VÞ�1�1 þ 6b þ 12b2 þ 12b3 þ 6b4 þ 6g2ð1 þ bÞ4

þ 6a4ð1 þ gþ bÞ2 þ 6gð1 þ 5b þ 8b2 þ 6b3 þ 2b4Þ

þ 6a2
�
2 þ 8b þ 9b2 þ 4b3 þ b4 þ 6g2ð1 þ bÞ2 þ 2gð2 þ bÞ2ð1 þ 2bÞ

�
þ 12a3

�
1 þ 3b þ 2b2 þ 2g2ð1 þ bÞ þ gð3 þ 6b þ 2b2Þ

�
þ 6a

�
1 þ 5b þ 8b2 þ 6b3 þ 2b4 þ 4g2ð1 þ bÞ3

þ gð5 þ 20b þ 24b2 þ 12b3 þ 2b4Þ
��
;

B :¼
Ð

M

ðy � y0Þ2
dm

¼ ð288p2VÞ�1�1 þ 6gþ 12g2 þ 12g3 þ 6g4 þ 6b2ð1 þ gÞ4 þ 6a4ð1 þ b þ gÞ2

þ 6bð1 þ 5gþ 8g2 þ 6g3 þ 2g4Þ

þ 6a2
�
2 þ 8gþ 9g2 þ 4g3 þ g4 þ 6b2ð1 þ gÞ2 þ 2bð2 þ gÞ2ð1 þ 2gÞ

�
þ 12a3

�
1 þ 3gþ 2g2 þ 2b2ð1 þ gÞ þ bð3 þ 6gþ 2g2Þ

�
þ 6a

�
1 þ 5gþ 8g2 þ 6g3 þ 2g4 þ 4b2ð1 þ gÞ3

þ bð5 þ 20gþ 24g2 þ 12g3 þ 2g4Þ
��

and

C :¼
Ð

M

ðx � x0Þðy � y0Þ dm

¼ �ð576p2VÞ�1½1 þ 6gþ 6g2 þ 12a4ð1 þ b þ gÞ2 þ 6b2ð1 þ 4gþ 3g2Þ

þ 6bð1 þ 5gþ 4g2Þ

þ 24a3
�
1 þ 3gþ 2g2 þ 2b2ð1 þ gÞ þ bð3 þ 6gþ 2g2Þ

�
þ 18a2

�
1 þ 4gþ 3g2 þ b2ð3 þ 6gþ 2g2Þ þ 2bð2 þ 6gþ 3g2Þ

�
þ 6a

�
1 þ 5gþ 4g2 þ 2b2ð2 þ 6gþ 3g2Þ þ bð5 þ 20gþ 12g2Þ

��
:
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If our metric is extremal, we once again have

s � s0 ¼ aðx � x0Þ þ bðx � x0Þð8Þ

for the constants

a ¼ BF1 � CF2

AB � C2
;

b ¼ �CF1 þ AF2

AB � C2

and hence

Ð
M

ðs � s0Þ2
dm ¼

BF2
1 � 2CF1FþAF2

2

AB � C2
:

For any Kähler class W ¼ ½o� on CPK3CP2 with d ¼ 1, BðWÞ is the right-hand side over
32p2, so automated calculation reveals that BðWÞ equals

8
�
g2ð1 þ 4gþ 6g2 þ 4g3Þ þ bgð�1 þ 3gþ 18g2 þ 26g3 þ 16g4Þ

þ 2b5ð2 þ 8gþ 21g2 þ 33g3 þ 27g4 þ 9g5Þ

þ b2ð1 þ 3gþ 27g2 þ 79g3 þ 89g4 þ 42g5Þ

þ b4ð6 þ 26gþ 89g2 þ 168g3 þ 150g4 þ 54g5Þ

þ b3ð4 þ 18gþ 79g2 þ 173g3 þ 168g4 þ 66g5Þ

þ 2a5
�
2 þ 9b5 þ 8gþ 21g2 þ 33g3 þ 27g4 þ 9g5 þ 9b4ð3 þ gÞ

þ 3b2ð7 þ 5gÞ þ 3b3ð11 þ 6gÞ þ bð8 þ 12gþ 15g2 þ 18g3 þ 9g4Þ
�

þ a4
�
168g3 þ 150g4 þ 54g5 þ 18b5ð3 þ gÞ þ b4ð150 þ 72g� 18g2Þ

þ 6b3ð28 þ 12g� 15g2 � 6g3Þ þ 6 þ 26gþ 89g2

þ b2ð89 � 6g� 162g2 � 90g3 � 18g4Þ

þ 2bð13 þ 2g� 3g2 þ 36g3 þ 36g4 þ 9g5Þ
�

þ a2
�
1 þ 3gþ 27g2 þ 79g3 þ 89g4 þ 42g5 þ 6b5ð7 þ 5gÞ

� b4ð�89 þ 6gþ 162g2 þ 90g3 þ 18g4Þ

þ 3b2ð9 � 56g� 165g2 � 144g3 � 54g4Þ

� b3ð�79 þ 111gþ 432g2 þ 324g3 þ 90g4Þ

þ 3bð1 � 23g� 56g2 � 37g3 � 2g4 þ 10g5Þ
�
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þ a3
�
4 þ 18gþ 79g2 þ 173g3 þ 168g4 þ 66g5 þ 6b5ð11 þ 6gÞ

þ 6b4ð2812g� 15g2 � 6g3Þ þ b3ð173 � 324g2 � 216g3 � 36g4Þ

� b2ð�79 þ 111gþ 432g2 þ 324g3 þ 90g4Þ

þ bð18 � 46g� 111g2 þ 72g4 þ 36g5Þ
�

þ a
�
2b5ð8 þ 12gþ 15g2 þ 18g3 þ 9g4Þ þ gð�1 þ 3gþ 18g2 þ 26g3 þ 16g4Þ

þ 2b4ð13 þ 2g� 3g2 þ 36g3 þ 36g4 þ 9g5Þ

þ 3b2ð1 � 23g� 56g2 � 37g3 � 2g4 þ 10g5Þ

þ bð�1 � 30g� 69g2 � 46g3 þ 4g4 þ 24g5Þ

þ b3ð18 � 46g� 111g2 þ 72g4 þ 36g5Þ
��	

��
1 þ 2gþ 2bð1 þ gÞ þ 2að1 þ b þ gÞ

��
1 þ 10gþ 36g2 þ 64g3 þ 60g4 þ 24g5

þ 24b5ð1 þ gÞ5 þ 24a5ð1 þ b þ gÞ5

þ 12b4ð1 þ gÞ2ð5 þ 20gþ 23g2 þ 10g3Þ

þ 16b3ð4 þ 28gþ 72g2 þ 90g3 þ 57g4 þ 15g5Þ

þ 12b2ð3 þ 24gþ 69g2 þ 96g3 þ 68g4 þ 20g5Þ

þ 2bð5 þ 45gþ 144g2 þ 224g3 þ 180g4 þ 60g5Þ

þ 12a4ð1 þ b þ gÞ2�5 þ 20gþ 23g2 þ 10g3 þ 10b3ð1 þ gÞ

þ b2ð23 þ 46gþ 16g2Þ þ 2bð10 þ 30gþ 23g2 þ 5g3Þ
�

þ 16a3
�
4 þ 28gþ 72g2 þ 90g3 þ 57g4 þ 15g5 þ 15b5ð1 þ gÞ2

þ 3b4ð19 þ 57gþ 50g2 þ 13g3Þ

þ 3b3ð30 þ 120gþ 155g2 þ 78g3 þ 13g4Þ

þ 3b2ð24 þ 120gþ 206g2 þ 155g3 þ 50g4 þ 5g5Þ

þ bð28 þ 168gþ 360g2 þ 360g3 þ 171g4 þ 30g5Þ
�

þ 12a2
�
3 þ 24gþ 69g2 þ 96g3 þ 68g4 þ 20g5 þ 20b5ð1 þ gÞ3

þ b4ð68 þ 272gþ 366g2 þ 200g3 þ 36g4Þ

þ 4b3ð24 þ 120gþ 206g2 þ 155g3 þ 50g4 þ 5g5Þ

þ 2bð12 þ 84gþ 207g2 þ 240g3 þ 136g4 þ 30g5Þ

þ b2ð69 þ 414gþ 864g2 þ 824g3 þ 366g4 þ 60g5Þ
�

þ 2a
�
60b5ð1 þ gÞ4 þ 12b4ð15 þ 75gþ 136g2 þ 114g3 þ 43g4 þ 5g5Þ
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þ 12b2ð12 þ 84gþ 207g2 þ 240g3 þ 136g4 þ 30g5Þ

þ 8b3ð28 þ 168gþ 360g2 þ 360g3 þ 171g4 þ 30g5Þ

þ 5 þ 45gþ 144g2 þ 224g3 þ 180g4 þ 60g5

þ 3bð15 þ 120gþ 336g2 þ 448g3 þ 300g4 þ 80g5Þ
��
:

Lemma B.1. One has B <
1

4
throughout the Kähler cone of CPK3CP2.

Proof. Subtracting four times the numerator from the denominator yields

1 þ 12gþ 24g2 þ 8g3 � 4g4

þ 16g5 þ 48g6 þ 48b6ð1 þ gÞ6 þ 48a6ð1 þ b þ gÞ6

þ 16b5ð1 þ 31gþ 93g2 þ 129g3 þ 108g4 þ 60g5 þ 18g6Þ

þ 4bð3 þ 41gþ 116g2 þ 162g3 þ 168g4 þ 124g5 þ 72g6Þ

þ 8b2ð3 þ 58gþ 162g2 þ 219g3 þ 236g4 þ 186g5 þ 90g6Þ

þ 8b3ð1 þ 81gþ 219g2 þ 271g3 þ 294g4 þ 258g5 þ 120g6Þ

þ 4b4ð�1 þ 168gþ 472g2 þ 588g3 þ 561g4 þ 432g5 þ 180g6Þ

þ 16a5
�
1 þ 31gþ 93g2 þ 129g3 þ 108g4 þ 60g5 þ 18g6 þ 18b6ð1 þ gÞ

þ 12b5ð5 þ 16gþ 7g2Þ þ 6b4ð18 þ 102gþ 98g2 þ 27g3Þ

þ 3b3ð43 þ 324gþ 482g2 þ 276g3 þ 54g4Þ

þ 3b2ð31 þ 275gþ 550g2 þ 482g3 þ 196g4 þ 28g5Þ

þ bð31 þ 330gþ 825g2 þ 972g3 þ 612g4 þ 192g5 þ 18g6Þ
�

þ 4a4
�
�1 þ 168gþ 472g2 þ 588g3 þ 561g4 þ 432g5 þ 180g6 þ 180b6ð1 þ gÞ2

þ 24b5ð18 þ 102gþ 98g2 þ 27g3Þ

þ b4ð561 þ 6468gþ 9624g2 þ 5112g3 þ 936g4Þ

þ 12b3ð49 þ 757gþ 1505g2 þ 1196g3 þ 426g4 þ 54g5Þ

þ 4bð42 þ 650gþ 1788g2 þ 2271g3 þ 1617g4 þ 612g5 þ 90g6Þ

þ 2b2ð236 þ 3576gþ 8631g2 þ 9030g3 þ 4812g4 þ 1176g5 þ 90g6Þ
�

þ 4a
�
3 þ 41gþ 116g2 þ 162g3 þ 168g4 þ 124g5 þ 72g6 þ 72b6ð1 þ gÞ5

þ 4b5ð31 þ 330gþ 825g2 þ 972g3 þ 612g4 þ 192g5 þ 18g6Þ

þ 4b4ð42 þ 650gþ 1788g2 þ 2271g3 þ 1617g4 þ 612g5 þ 90g6Þ
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þ bð41 þ 570gþ 1812g2 þ 2816g3 þ 2600g4 þ 1320g5 þ 360g6Þ

þ 2b2ð58 þ 906gþ 2832g2 þ 4189g3 þ 3576g4 þ 1650g5 þ 360g6Þ

þ 2b3ð81 þ 1408gþ 4189g2 þ 5778g3 þ 4542g4 þ 1944g5 þ 360g6Þ
�

þ 8a3
�
1 þ 81gþ 219g2 þ 271g3 þ 294g4 þ 258g5 þ 120g6 þ 120b6ð1 þ gÞ3

þ 6b5ð43 þ 324gþ 482g2 þ 276g3 þ 54g4Þ

þ 6b4ð49 þ 757gþ 1505g2 þ 1196g3 þ 426g4 þ 54g5Þ

þ b3ð271 þ 5778gþ 14082g2 þ 14328g3 þ 7176g4 þ 1656g5 þ 120g6Þ

þ bð81 þ 1408gþ 4189g2 þ 5778g3 þ 4542g4 þ 1944g5 þ 360g6Þ

þ b2ð219 þ 4189gþ 11592g2 þ 14082g3 þ 9030g4 þ 2892g5 þ 360g6Þ
�

þ 8a2
�
3 þ 58gþ 162g2 þ 219g3 þ 236g4 þ 186g5 þ 90g6 þ 90b6ð1 þ gÞ4

þ 6b5ð31 þ 275gþ 550g2 þ 482g3 þ 196g4 þ 28g5Þ

þ b4ð236 þ 3576gþ 8631g2 þ 9030g3 þ 4812g4 þ 1176g5 þ 90g6Þ

þ 3b2ð54 þ 944gþ 2838g2 þ 3864g3 þ 2877g4 þ 1100g5 þ 180g6Þ

þ bð58 þ 906gþ 2832g2 þ 4189g3 þ 3576g4 þ 1650g5 þ 360g6Þ

þ b3ð219 þ 4189gþ 11592g2 þ 14082g3 þ 9030g4 þ 2892g5 þ 360g6Þ
�
:

Since this is term-by-term larger than

4ða2 � a4 þ a6Þ þ 4ðb2 � b4 þ b6Þ þ 4ðg2 � g4 þ g6Þ > 0;

the denominator is more than four times larger than the numerator, and B <
1

4
on the

complement of the hyperplane d ¼ 0 in the Kähler cone K. Since the Futaki invariant van-
ishes on this hyperplane [19], B ¼ 0 there, and we therefore have the strict inequality

B <
1

4
on all of K.

Lemma B.2. If g is an extremal Kähler metric on M ¼ CP2K3CP2, then the scalar

curvature s of g is positive everywhere on M. Moreover, there is a continuous function

f : K ! R such that smax ¼ f ðWÞ for any extremal Kähler metric, and this f remains

bounded as one approaches the pull-back of any class from CP2K2CP2.

Proof. The group of permutations of a, b, and g acts transitively on the vertices
of our hexagon, so it essentially su‰ces to compute the value of s at a given vertex, since
the maximum and minimum must occur at some critical point. In fact, evaluating s at the
vertex ðx; yÞ ¼ ða=2p; 0Þ gives
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24p½1 þ 10gþ 32g2 þ 48g3 þ 36g4 þ 8g5 þ 8b5ð1 þ gÞ4 þ 8a5ð1 þ b þ gÞ4

þ 4b4ð9 þ 44gþ 80g2 þ 68g3 þ 25g4 þ 2g5Þ

þ 8b3ð6 þ 37gþ 80g2 þ 78g3 þ 34g4 þ 4g5Þ

þ 4b2ð8 þ 60gþ 147g2 þ 160g3 þ 80g4 þ 12g5Þ

þ 2bð5 þ 44gþ 120g2 þ 148g3 þ 88g4 þ 16g5Þ

þ 4a4
�
5 þ 2b5 þ 24gþ 40g2 þ 32g3 þ 13g4 þ 2g5 þ b4ð19 þ 18gÞ

þ b3ð50 þ 96gþ 40g2Þ þ 2b2ð29 þ 84gþ 72g2 þ 20g3Þ

þ 2bð15 þ 58gþ 75g2 þ 42g3 þ 9g4Þ
�

þ 8a3
�
3 þ 17gþ 34g2 þ 35g3 þ 19g4 þ 4g5 þ 4b5ð1 þ gÞ

þ b4ð25 þ 48gþ 20g2Þ þ b3ð52 þ 151gþ 125g2 þ 30g3Þ

þ b2ð52 þ 201gþ 246g2 þ 122g3 þ 20g4Þ

þ bð23 þ 110gþ 177g2 þ 133g3 þ 45g4 þ 4g5Þ
�

þ 4a2
�
4 þ 28gþ 69g2 þ 84g3 þ 52g4 þ 12g5 þ 12b5ð1 þ gÞ2

þ 2b4ð31 þ 90gþ 78g2 þ 20g3Þ

þ 2b3ð53 þ 210gþ 267g2 þ 128g3 þ 20g4Þ

þ 6b2ð15 þ 75gþ 123g2 þ 86g3 þ 25g4 þ 2g5Þ

þ bð35 þ 210gþ 420g2 þ 388g3 þ 168g4 þ 24g5Þ
�

þ 2a
�
3 þ 26gþ 74g2 þ 100g3 þ 68g4 þ 16g5 þ 16b5ð1 þ gÞ3

þ 4b4ð19 þ 74gþ 99g2 þ 54g3 þ 9g4Þ

þ 4b3ð28 þ 142gþ 243g2 þ 175g3 þ 51g4 þ 4g5Þ

þ 2b2ð41 þ 258gþ 528g2 þ 470g3 þ 186g4 þ 24g5Þ

þ bð28 þ 210gþ 498g2 þ 536g3 þ 276g4 þ 48g5Þ
��	

½1 þ 10gþ 36g2 þ 64g3 þ 60g4 þ 24g5 þ 24b5ð1 þ gÞ5 þ 24a5ð1 þ b þ gÞ5

þ 12b4ð1 þ gÞ2ð5 þ 20gþ 23g2 þ 10g3Þ

þ 16b3ð4 þ 28gþ 72g2 þ 90g3 þ 57g4 þ 15g5Þ

þ 12b2ð3 þ 24gþ 69g2 þ 96g3 þ 68g4 þ 20g5Þ

þ 2bð5 þ 45gþ 144g2 þ 224g3 þ 180g4 þ 60g5Þ
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þ 12a4ð1 þ b þ gÞ2�5 þ 20gþ 23g2 þ 10g3 þ 10b3ð1 þ gÞ

þ b2ð23 þ 46gþ 16g2Þ þ 2bð10 þ 30gþ 23g2 þ 5g3Þ
�

þ 16a3
�
4 þ 28gþ 72g2 þ 90g3 þ 57g4 þ 15g5 þ 15b5ð1 þ gÞ2

þ 3b4ð19 þ 57gþ 50g2 þ 13g3Þ

þ 3b3ð30 þ 120gþ 155g2 þ 78g3 þ 13g4Þ

þ 3b2ð24 þ 120gþ 206g2 þ 155g3 þ 50g4 þ 5g5Þ

þ bð28 þ 168gþ 360g2 þ 360g3 þ 171g4 þ 30g5Þ
�

þ 12a2
�
3 þ 24gþ 69g2 þ 96g3 þ 68g4 þ 20g5 þ 20b5ð1 þ gÞ3

þ b4ð68 þ 272gþ 366g2 þ 200g3 þ 36g4Þ

þ 4b3ð24 þ 120gþ 206g2 þ 155g3 þ 50g4 þ 5g5Þ

þ 2bð12 þ 84gþ 207g2 þ 240g3 þ 136g4 þ 30g5Þ

þ b2ð69 þ 414gþ 864g2 þ 824g3 þ 366g4 þ 60g5Þ
�

þ 2a
�
5 þ 45gþ 144g2 þ 224g3 þ 180g4 þ 60g5 þ 60b5ð1 þ gÞ4

þ 12b4ð15 þ 75gþ 136g2 þ 114g3 þ 43g4 þ 5g5Þ

þ 12b2ð12 þ 84gþ 207g2 þ 240g3 þ 136g4 þ 30g5Þ

þ 8b3ð28 þ 168gþ 360g2 þ 360g3 þ 171g4 þ 30g5Þ

þ 3bð15 þ 120gþ 336g2 þ 448g3 þ 300g4 þ 80g5Þ
��

which is smooth and term-by-term positive for a; b; gf 0.

This expression can be uniquely extended to all d > 0 by turning the numerator and
denominator into homogeneous polynomials of ða; b; g; dÞ of degree 9 and 10, respectively.
The resulting expression is then smooth across d ¼ 0, because the numerator and denomi-
nator of the above expression actually do contain some terms of degree 9 and 10, respec-
tively. Permuting a, b, and g, we obtain six smooth positive functions. Taking the minimum
of these then shows that smin is everywhere positive, while taking the maximum produces
the required continuous positive function f : K ! R. r
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Math. J. 11 (1957), 145–150.

[21] D. Page, A compact rotating gravitational instanton, Phys. Lett. B 79 (1979), 235–238.

[22] R. Penrose and W. Rindler, Spinors and space-time, Volume 2: Spinor and twistor methods in space-time

geometry, Cambridge Univ. Press, Cambridge 1986.

[23] Y. S. Poon, Compact self-dual manifolds with positive scalar curvature, J. Di¤. Geom. 24 (1986), 97–132.

[24] Y. Siu, The existence of Kähler–Einstein metrics on manifolds with positive anti-canonical line bundle and

suitable finite symmetry group, Ann. Math. 127 (1988), 585–627.

[25] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101

(1990), 101–172.

[26] G. Tian and S. T. Yau, Kähler–Einstein metrics on complex surfaces with c1 > 0, Comm. Math. Phys. 112

(1987), 175–203.

Mathematics Department, State University of New York, Stony Brook, NY 11794, USA

e-mail: claude@math.sunysb.edu

Eingegangen 16. September 2010, in revidierter Fassung 28. Juni 2011

94 LeBrun, Einstein manifolds and extremal Kähler metrics


