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1 Introduction

In the late 1970s, Stephen Hawking [16] and Gary Gibbons [15], along with
a small group of other gravitational physicists at Cambridge, first began
their systematic exploration of the multiverse of complete, non-compact,
Ricci-flat Riemannian 4-manifolds. They termed such spaces gravitational

instantons, in the expectation that these would eventually come to represent
tunneling modes in a theory of quantum gravity. Their striking discover-
ies included the construction of two infinite families of half-conformally-flat
gravitational instantons, respectively generalizing the Eguchi-Hanson metric
[14] and the Euclidean Taub-NUT metric, and specific properties of these
unanticipated families turned out to have long-term implications for the di-
rection of differential-geometric research. Indeed, the fact that the Ricci-flat
metrics in these new families were all anti-self-dual then allowed Hitchin [19]
to pioneer an essentially independent approach to them, based on Penrose’s
nonlinear graviton construction [28]. Soon afterwards, it was then realized
these metrics were also hyper-Kähler, in the new sense that had recently
been introduced by Calabi [8], and considering them in this broader context
not only gave rise to new methods [20, 21] of constructing such spaces, but
also led to a satisfyingly complete classification of asymptotically locally
Euclidean (ALE) hyper-Kähler gravitational instantons [22]. This inspired
repeated flurries of intensive mathematical activity [10, 12, 17, 18, 27, 30]
during the following decades, eventually resulting in an essentially complete
classification of hyper-Kähler gravitational instantons with curvature in L2.
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(However, since there are known examples [3] of complete hyper-Kähler 4-
manifolds whose curvature is not in L2, the current advanced state of the
subject may still not represent the end of the story.) Such results also al-
low one to deduce classification theorems for complete Ricci-flat 4-manifolds
that are Kähler [31] or anti-self-dual [33], because either of these hypotheses
suffices to imply that the universal cover of the manifold is hyper-Kähler.

However, while the mathematical papers cited above generally stream-
line their terminology by building the assumption of being hyper-Kähler
into the very definition of a “gravitational instanton,” Gibbons, Hawking,
and their physicist colleagues certainly never intended for the term to be
narrowed in this way. Indeed, one of Hawking’s first examples [16] of a
gravitational instanton was the Riemannian Schwarzschild metric, a com-
plete Ricci-flat manifold diffeomorphic to S2 × R2 that is gotten from the
simplest Lorentzian black-hole solution by formally replacing time t with it.
This example is not even locally hyper-Kähler, but, in view with its close re-
lationship with gravitational physics, it most certainly deserves to be called
a “gravitational instanton.” The same must also be said of the more general
Riemannian Kerr metrics, which are again complete Ricci-flat metrics on
S2 × R2, and which are formally obtained from their Lorentzian spinning-
black–hole analogues by multiplying both time and the angular-momentum
parameter by i.

While these last-mentioned metrics are not even locally Kähler, they
turn out to be conformally Kähler, and so are, in particular, Hermitian.
They are also asymptotically locally flat (ALF), in the sense of Definition 1
below; in particular, they have cubic volume growth. Finally, they are toric,
in the sense that their isometry groups contain a 2-torus T2.

Complete oriented Ricci-flat Riemannian manifolds with all of these
properties were recently classified [7] by the first two authors of this pa-
per. They fall into just four smooth connected families, thereby realizing
exactly four different diffeotypes. In addition to the Kerr family alluded to
above, the other possibilities are the Taub-bolt metric, the reverse-oriented
Taub-NUT metric, and a family discovered by Chen and Teo [11] in 2011.
This Chen-Teo family had been completed unanticipated by the physics
community, and the Hermitian nature of these metrics was only discovered
later, by Aksteiner and Andersson [1]. In fact, Biquard and Gauduchon [7]
did much more than merely classify such metrics; indeed, by building on
earlier work by Paul Tod [32], they showed that these metrics can always be
constructed from axisymmetric harmonic functions on Euclidean 3-space.

However, one disquieting feature of this otherwise compelling story is
that it only concerns metrics that are invariant under an isometric T2-action.
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The aim of this paper is to replace this symmetry assumption with an open,
purely Riemannian condition. Indeed, the Ricci-flat metrics occurring in
the above classification turn out to all have the property that their self-dual
Weyl tensors W+ : Λ+ → Λ+ satisfy det(W+) > 0 everywhere. Einstein
metrics with this property are said to satisfy Wu’s criterion, in honor of
Peng Wu [34], who first discovered that compact Einstein manifolds with
this property are necessarily conformally Kähler. Our main observation
here is that the first author’s proof [24] of Wu’s criterion can be adapted to
the context of ALF gravitational instantons, provided one imposes fall-off
conditions on the metric that are stringent enough to provide good control
the boundary terms. Our first main result is the following:

Theorem A. Let (M,h0) be any toric, Hermitian, but non-Kähler ALF
gravitational instanton. If h is another Ricci-flat Riemannian metric on
M that is sufficiently C3

1 -close to h0, then (M,h) is also a Hermitian ALF
gravitational instanton, and carries a non-trivial Killing field ξ. Moreover,
h is conformally related to a complete, strictly extremal Kähler metric g.

For the proof, see §3 below, where the C3
1 norm is also defined.

For two of the four families of toric Hermitian gravitational instantons,
the metric satisfies both det(W+) > 0 and det(W−) > 0, and our methods
can therefore be applied for both orientations. Doing so then leads to a
stronger result in these cases:

Theorem B. Let (M,h0) be a Kerr or Taub-bolt gravitational instanton,
and let h be another Ricci-flat metric on M that is sufficiently C3

1 -close to
h0. Then (M,h) is once again a Kerr or Taub-bolt gravitational instanton.

For the proof, see §4 below. That section also highlights the result of
Aksteiner, Anderson, Dahl, Nilsson and Simon [2] which originally led us to
expect for Theorem B to hold. In addition, we have added a brief discussion
of a recent preprint1 by Minyang Li [25] that indicates that Theorem B could
be generalized to also cover the two other families of gravitational instantons
that appear in the Biquard-Gauduchon classification.

2 Wu’s Criterion, Revisited

In this section, we will see that a remarkable open criterion introduced by
Peng Wu [34] in the context compact Einstein 4-manifolds also leads to

1The first version of our own paper was submitted to the arXiv during the weekend
between the submission of Li’s e-print and its public posting.
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compelling results in other contexts. Wu originally observed that a compact
oriented simply-connected Einstein 4-manifold with Einstein constant λ > 0
has det(W+) > 0 if the metric is conformally Kähler, and then gave a rather
opaque argument to show that the converse is also true. This prompted the
third author of the present paper to give an entirely different proof [24] of
Wu’s criterion that actually proves more; for example, it turns out that a
compact oriented Riemannian 4-manifold (M,h) with b+(M) 6= 0 satisfies
δW+ = 0 and det(W+) > 0 if and only if b+(M) = 1 and h = s−2g for
some Kähler metric g on M with scalar curvature s > 0. In what follows,
we will localize many key steps in [24] in order to obtain results that are
better adapted to the study of gravitational instantons.

Suppose that (M,h) is an oriented Riemannian 4-manifold whose self-
dual Weyl curvature tensor W+ is harmonic, in the sense that

δW+ := −∇ ·W+ = 0. (1)

For example, if h is Einstein, equation (1) follows as a consequence of the
second Bianchi identity. However, independent of such considerations, the
Dirac-type equation (1) always implies [29, equation (6.8.40)] that

0 = ∇∗∇W+ +
s

2
W+ − 6W+ ◦W+ + 2|W+|2I, (2)

a Weitzenböck formula that has often been eclipsed by its very useful con-
traction [6, equation (16.73)] with W+. Next, let f : M → R+ be a smooth
positive function on M , and consider the corresponding conformal rescaling
g = f−2h of the original metric h. Owing to the weighted conformal in-
variance [29, equation (6.8.8)] of the Dirac-type equation (1), one then finds
that

δ(fW+) = 0 (3)

with respect to the conformally rescaled metric g. The same calculation
[29, equation (6.8.35)] that proves (2) therefore now gives us a Weitzenböck
formula

0 = ∇∗∇(fW+) +
s

2
fW+ − 6fW+ ◦W+ + 2f |W+|2I (4)

for fW+ with respect to the rescaled metric g.
We will next need to clearly understand when an oriented Riemannian

4-manifold has det(W+) > 0. Since W+ : Λ+ → Λ+ is self-adjoint, we can
diagonalize W+ at any point p ∈ M as

W+ =




α
β

γ



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by choosing a suitable orthonormal basis for Λ+; and, after re-ordering our
basis if necessary, we may arrange that α ≥ β ≥ γ at p. However, by its
very definition, the self-dual Weyl curvature W+ : Λ+ → Λ+ automatically
satisfies Trace(W+) = 0, and it therefore follows that

α+ β + γ = 0.

Hence α > 0 and γ < 0 at any point where W+ 6= 0, and we thus see that
detW+ = αβγ always has the same sign as −β, where β is once again the
middle eigenvalue. In other words, detW+ > 0 everywhere iff exactly one

of the eigenvalues, namely α, is positive at each point, while both the other
two are negative:

W+ ∼




+
−

−


 .

This in particular implies that the positive eigenvalue α has multiplicity
one everywhere. If we let S(Λ+) ⊂ Λ+ denote the sphere bundle de-
fined by |ω|2 = 2, then the the smooth function Q : S(Λ+) → R defined
by Q(ω) = W+(ω, ω) has non-degenerate fiberwise Hessian along the set
P ⊂ S(Λ+) of fiberwise maxima. Equivalently, the restriction of dQ to the
fibers, considered as a section of the vertical cotangent bundle of S(Λ+), is
transverse along P to the zero section of this vector bundle. The implicit
function theorem therefore guarantees that P is a submanifold of S(Λ+),
and that it is moreover transverse to the fibers of S(Λ+) → M . It therefore
follows that the set P of α-eigenforms ω ∈ S(Λ+) can locally be parame-
terized by a system of smooth local sections of Λ+ → M . Since there are
exactly two choices of such an ω at each point of M , differing only by sign,
we conclude that P := {ω ∈ Λ+ | W+

h (ω) = αhω, |ω|2h = 2} is a smooth
principal Z2-bundle over M . More importantly, α : M → R actually defines
a smooth positive function α = W+(ω, ω)/2 on M , obtained by taking ±ω
to be the two local sections of P ⊂ Λ+ near an arbitrary point of M .

Remark. Because x = α is the unique positive solution of the depressed
cubic equation

0 = det(xI −W+) = x3 −
[
1

2
|W+|2

]
x− det(W+), (5)

Cardano’s formula provides an explicit expression

α = 22/3ℜe 3

√

det(W+) + i

√
|W+|6
54

− [det(W+)]2 (6)
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for the eigenvalue α in terms of |W+|2 and det(W+), where the cube root
means the principal branch, with positive real part. However, this explicit
formula does not make it obvious that α remains smooth at points where
|W+|3 = 3

√
6 det(W+) > 0, or in other words, where β = γ < 0. Because

the smoothness of α : M → R+ plays such a central role in what follows,
we have therefore chosen to emphasize the above abstract explanation of its
regularity, rather than focusing on the explicit formula (6). ♦

For simplicity, we will henceforth assume that M is simply connected.
This then guarantees that the principal Z2-bundle P → M is in fact trivial.
Consequently, there is then a smooth globally-defined self-dual 2-form ω on
M with W+(ω) = αω and |ω|2 = 2 at every point; moreover, the only other
such global 2-form is −ω, so this ω is actually unique up to overall sign.
Equivalently, our assumption that M is simply connected implies that the
α-eigenspace L ⊂ Λ+ of W+ is a trivial real line-bundle L → M .

Now the condition det(W+) > 0 is conformally invariant, so the above
discussion also applies to the conformal rescaling g = f−2h of h defined by
any smooth positive function f : M → R+. However, the endomorphism
W+ : Λ+ → Λ+ is defined by raising an index

ϕab 7−→ [W+(ϕ)]cd :=
1

2
W+ab

cd ϕab,

and so carries a conformal weight, even though the näıve Weyl tensorW+a
bcd

is literally conformally invariant. Consequently, replacing h with g = f−2h
rescales the top eigenvalue by a factor of f2:

αg = f2αh.

We will henceforth impose the interesting choice

f = α
−1/3
h (7)

for our conformal factor f , which then has the consequence that

αg = f2αh = α
1/3
h = f−1.

In particular, α := αg therefore satisfies

αf ≡ 1 (8)

for this carefully chosen conformally-rescaled metric g = f−2h.
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Since our assumption that M is simply-connected again implies that the
α-eigenbundle L ⊂ Λ+ of W+ is a trivial real line-bundle, there once again
exists a global self-dual 2-form ω on M that satisfies

W+
g (ω) = αg ω, |ω|2g = 2 (9)

at every point of M ; moreover, this ω is unique up to overall sign. Here,
normalizing ω ∈ Λ+ so that |ω|2g = 2 is equivalent to requiring that

ω = g(J ·, ·)

for a unique almost-complex structure J that is compatible with both g and
the given orientation. If we can show, under suitable circumstances, that
∇ω = 0 with respect to the Levi-Civita connection ∇ of g, it will then follow
that J is integrable, and that (M,g, J) is Kähler, with Kähler form ω. When
δW+ = 0, our strategy for proving this will be based on a careful study of
the inner product

0 =
〈
∇∗∇(fW+) +

s

2
fW+ − 6fW+ ◦W+ + 2f |W+|2I, ω ⊗ ω

〉
(10)

of (4) with ω ⊗ ω. To make headway on this, we will need a few key facts
about self-dual 2-forms and the Weyl curvature, starting with the following:

Lemma 1. Let (M,h) be a simply-connected oriented Riemannian 4-manifold
for which det(W+) > 0 everywhere. Let g = f−2h be a conformal rescaling
of h, and let ω be a self-dual 2-form that satisfies (9) everywhere. Then

W+(∇aω,∇aω) ≤ 0, (11)

everywhere, where every term is understood to be defined with respect to g.

Proof. The covariant derivative ∇ω of ω belongs to Λ1 ⊗ ω⊥ ⊂ Λ1 ⊗ Λ+

because ω has constant norm with respect to g. The result therefore follows
from the fact that W+(φ, φ) ≤ 0 for any φ ∈ ω⊥ ⊂ Λ+.

We will also need the following standard algebraic observation:

Lemma 2. At any point p of an oriented Riemannian 4-manifold (M,g),

|W+|2 ≥ 3

2
α2 (12)

where α = αg is the the top eigenvalue of W+
g at p.
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Proof. Because Trace (W+) = 0,

|W+|2 = α2 + β2 + (−α− β)2 =
3

2
α2 + 2(β +

1

2
α)2 ≥ 3

2
α2

where β is the middle eigenvalue of W+
g at p.

Finally, we will also need the Weitzenböck formula [29, equation (6.8.38)]

(d+ d∗)2ω = ∇∗∇ω − 2W+(ω) +
s

3
ω (13)

for the Hodge Laplacian on self-dual 2-forms; cf. [5, p. 324].

Lemma 3. If (M,h) is a simply-connected oriented Riemannian 4-manifold
that satisfies det(W+) > 0, then the conformally rescaled metric g = f−2h
defined by (7) and the self-dual 2-form ω defined by (9) together satisfy

〈∇∗∇(fW+), ω ⊗ ω〉 ≥ 2|∇ω|2, (14)

at every point of M , where both sides are computed relative to g.

Proof. Since fα := fαg ≡ 1, W+(ω) = αω, and |ω|2 ≡ 2, we have

〈∇∗∇(fW+), ω ⊗ ω〉 = 〈−∇a∇a(fW
+), ω ⊗ ω〉

= −∇a∇a〈fW+, ω ⊗ ω〉+ 2∇a〈fW+,∇a(ω ⊗ ω)〉
−f〈W+,∇a∇a(ω ⊗ ω)〉

= ∆(fα|ω|2) + 4∇a〈fW+, ω ⊗∇aω〉
−f〈W+,∇a∇a(ω ⊗ ω)〉

= 4∇a〈(fα)ω,∇aω〉 − f〈W+,∇a∇a(ω ⊗ ω)〉
= 2∇a∇a|ω|2 − f〈W+,∇a∇a(ω ⊗ ω)〉
= −f〈W+,∇a∇a(ω ⊗ ω)〉
= −2f〈W+, ω ⊗∇a∇aω〉 − 2f〈W+, (∇aω)⊗ (∇aω)〉
= −2(fα)〈ω,∇a∇aω〉 − 2fW+(∇aω,∇aω)

= ∆|ω|2 + 2|∇ω|2 − 2fW+(∇aω,∇aω)

= 2|∇ω|2 − 2fW+(∇aω,∇aω)

Since det(W+) > 0, Lemma 1 then implies the promised inequality (14).

Proposition 1. Let (M,h) be a simply-connected oriented Riemannian 4-
manifold that satisfies δW+ = 0 and det(W+) > 0 everywhere. Then the

8



conformally-rescaled metric g = f−2h defined by (7) and the self-dual 2-form
ω defined by (9) together satisfy

0 ≥ 1

2
|∇ω|2 +

3

2

〈
ω, (d+ d∗)2ω

〉
(15)

at every point of M , where all terms are to be computed with respect to g.

Proof. By applying (8), (9), (11), (12), (13), and (14) to (10), we have

0 =
〈
∇∗∇fW+ +

s

2
fW+ − 6fW+ ◦W+ + 2f |W+|2I, ω ⊗ ω

〉

= 〈∇∗∇(fW+), ω ⊗ ω〉+
[s
2
W+(ω, ω)− 6|W+(ω)|2 + 2|W+|2|ω|2

]
f

≥ 2|∇ω|2 +
[s
2
α|ω|2 − 6α2|ω|2 + 2|W+|2|ω|2

]
f

≥ 2|∇ω|2 +
[s
2
α|ω|2 − 6α2|ω|2 + 3α2|ω|2

]
f

≥ 2|∇ω|2 +
[s
2
|ω|2 − 3α|ω|2

]
(αf)

= 2|∇ω|2 +
[s
2
|ω|2 − 3α|ω|2

]

=
1

2
|∇ω|2 + 3

2
〈ω,∇∗∇ω〉 − 3

4
∆|ω|2 +

[s
2
|ω|2 − 3α|ω|2

]

=
1

2
|∇ω|2 + 3

2

[
〈ω,∇∗∇ω〉 − 2W+(ω, ω) +

s

3
|ω|2

]

=
1

2
|∇ω|2 +

3

2

〈
ω, (d+ d∗)2ω

〉
,

thus proving the promised pointwise inequality.

Lemma 4. Under the hypotheses of Proposition 1, the 2-form ω satisfies

(2
√
6|W+| − s) ≥ 2|∇ω|2

with respect to the rescaled metic g, at every point of M .

Proof. Since |ω|2 ≡ 2, the proof of Proposition 1 shows, in particular, that

0 ≥ 2|∇ω|2 +
(s
2
− 3α

)
|ω|2 = 2|∇ω|2 + (s− 6α)

everywhere. Because
√

2
3 |W+| ≥ α by (12), the claim therefore follows.
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On the other hand, notice that

⋆
〈
ω, (d+ d∗)2ω

〉
= ω ∧ (d+ d∗)2ω

= ω ∧ [d(− ⋆ d⋆) + (− ⋆ d⋆)d]ω

= −2ω ∧ [d ⋆ dω]

= ⋆2|dω|2 − 2 d[ω ∧ ⋆dω].

This allows us to rewrite the pointwise inequality (15) as

3 d[ω ∧ ⋆dω] ≥ ⋆
(1
2
|∇ω|2 + 3 |dω|2

)
. (16)

Integrating (16) on a precompact domain with smooth boundary, and then
applying Stokes’ Theorem, we therefore obtain the following result:

Proposition 2. Let (M,h) be a simply-connected oriented Riemannnian
4-manifold that satisfies δW+ = 0 and det(W+) > 0. Consider the confor-
mally rescaled metric g = f−2h defined by (7), and let ω be one of the two
self-dual 2-forms on M that satisfies (9). Then for any precompact domain
U ⊂ M with smooth boundary ∂U = U − U , we have

3

ˆ

∂U
ω ∧ ⋆dω ≥

ˆ

U

[1
2
|∇ω|2 + 3 |dω|2

]
dµg. (17)

This now allows us to deduce the following:

Proposition 3. Let (M,h) be an oriented, simply-connected Riemannian
4-manifold that satisfies δW+ = 0 and det(W+) > 0 everywhere. Suppose,
moreover, that M is a nested union M = ∪jUj of precompact domains
U1 ⋐ U2 ⋐ · · · ⋐ Uj ⋐ · · · with smooth boundary such that

lim
j→∞

ˆ

∂Uj

ω ∧ ⋆dω = 0,

where ω is the self-dual 2-form defined by (9) relative to the conformally
rescaled metric g = f−2h defined by (7). Then (M,g) is a Kähler manifold.

Proof. Applying (17) to each Uj yields

3

ˆ

∂Uj

ω ∧ ⋆dω ≥
ˆ

Uj

[1
2
|∇ω|2 + 3|dω|2

]
dµg ≥

1

2

ˆ

Uj

|∇ω|2dµg.

Since the right-hand side is non-negative, our hypothesis therefore implies
that limj→∞

´

Uj
|∇ω|2dµg = 0. But Uj ⊂ Uj+1, so the terms

´

Uj
|∇ω|2dµg

in this sequence are also non-decreasing in j. Thus
´

Uj
|∇ω|2dµg = 0 for

all j, and hence ∇ω ≡ on each Uj . But since M = ∪jUj , this implies that
∇ω ≡ 0 on all of M . It follows that (M,g) is a Kähler manifold.

10



3 Gravitational Instantons

In order to be able to invoke Proposition 3 in concrete circumstances, we
next show that the relevant boundary hypothesis will automatically hold if
certain geometric conditions are fulfilled.

Theorem 1. Let (M,h) be an oriented, simply-connected, Ricci-flat
4-manifold that satisfies det(W+) > 0 everywhere, and suppose that M is
expressed as a nested union M = ∪jUj of precompact domains

U1 ⋐ U2 ⋐ · · · ⋐ Uj ⋐ · · ·

with smooth boundary. Let g = f−2h be the conformally rescaled metric
defined by (7), and let dµ̌g denote the 3-dimensional volume measure on
each of these boundaries ∂Uj induced by the restriction of g. Also suppose
that the g-induced 3-dimensional volumes of these boundaries are uniformly
bounded, while the integrals of |W+

g | and sg on these boundaries tend to zero
with respect to this same 3-dimensional volume-measure:

ˆ

∂Uj

1 dµ̌g < C, (18)

lim
j→∞

ˆ

∂Uj

|W+
g | dµ̌g = 0, (19)

lim
j→∞

ˆ

∂Uj

|sg| dµ̌g = 0. (20)

Then (M,g) is a strictly extremal Kähler manifold, while the given Ricci-flat
4-manifold (M,h) is Hermitian, and carries a non-trivial Killing field.

Proof. Because ω is a self-dual 2-form of norm ≡
√
2, one has

|ω ∧ ⋆dω| = |δω| = |∇ · ω|

with respect to g, and it is therefore relatively easy to see that

2
√
2|∇ω| ≥ |ω ∧ ⋆dω| (21)

at every point of M . (Indeed, after detailed calculation, the constant 2
√
2

in (21) can actually be replaced by 1; but the gist of what follows merely
depends on the fact that there is some universal constant for which such an
inequality holds.) Now, Lemma 4 tells us that the inequality

(2
√
6|W+| − s) ≥ 2|∇ω|2

11



also holds at every point of M . Consequently, inequality (21) implies that

2
[
2
√
6|W+|+ |s|

]1/2
≥ |ω ∧ ⋆dω|

at every point of M , and we therefore deduce that

2

ˆ

∂Uj

[
2
√
6|W+|+ |s|

]1/2
dµ̌g ≥

∣∣∣∣∣

ˆ

∂Uj

ω ∧ ⋆dω

∣∣∣∣∣

holds for each j. The Cauchy-Schwarz inequality thus implies that

2

[
ˆ

∂Uj

1 dµ̌g

]1/2 [
2
√
6

ˆ

∂Uj

|W+| dµ̌g +

ˆ

∂Uj

|s| dµ̌g

]1/2

≥
∣∣∣∣∣

ˆ

∂Uj

ω ∧ ⋆dω

∣∣∣∣∣

for every j. Thus, our hypotheses (18), (19), and (20) now imply that

lim
j→∞

ˆ

∂Uj

ω ∧ ⋆dω = 0.

Since (M,h) also satisfies δW+ = 0 and det(W+) > 0, this means that
all the hypotheses of Proposition 3 are fulfilled, and it therefore follows that
g is a Kähler metric. In particular, the conformally related metric h = f2g
is Hermitian. However, since h is also Ricci-flat, and hence Bach-flat, the
conformal invariance of the latter condition guarantees that g is Bach-flat,
too. This forces [13, 23] the Kähler metric g to be extremal in the sense
of Calabi. However, since det(W+) > 0, the Kähler metric g also satisfies
s/6 = α = f−1 > 0. But h = f2g is scalar-flat, whereas g has positive
scalar curvature. The conformal factor f = 6s−1, and hence the scalar
curvature s of g, must therefore be non-constant. This shows that g must
be a strictly extremal Kähler metric. In particular, ξ := J∇s must be a non-
trivial Killing field — not only for g, but also for its ξ-invariant conformal
rescaling h = 36s−2g.

Our goal is now to apply Theorem 1 to asymptotically locally flat (ALF)
gravitational instantons, thereby putting the first two authors’ main classi-
fication result [7, Theorem 8.2] in a new and broader context.

Definition 1. Let (M,h) be a complete, Ricci-flat Riemannian 4-manifold
(M,h). Then (M,h) will be called an ALF gravitational instanton if

• there is a compact subset C ⊂ M such that M − C is diffeomorphic to
R+ × Σ, where Σ3 is oriented, and finitely covered by S2 × S1 or S3;

12



• Σ is equipped with a sign-ambiguous pair ±(T, η) of a vector field T
and a 1-form η which satisfy Ty η = 1 and Ty dη = 0 on, at worst, a
double cover of Σ;

• Σ is also equipped with a positive-semi-definite symmetric 2-tensor field
γ ∈ Γ(⊙2T ∗Σ) such that LTγ = 0 and ker γ = spanT , and which
moreover locally defines a Gauss-curvature +1 metric on the space of
leaves of the foliation tangent to T ; and

• after pulling back via a suitable diffeomorphism R+×Σ → M −C, the
metric h takes the form

h = d̺2 + ̺2γ + η2 +0,

where the standard coordinate ̺ on R+ and the tensor fields γ and η2

on Σ have been pulled back to R+ × Σ via the first- and second-factor
projections, and where the error term 0 satisfies the fall-off condition

D
j
0 = O(̺−1−j) (22)

for 0 ≤ j ≤ 3, where D denotes the Levi-Civita connection of the
background metric d̺2 + ̺2γ + η2 on R+ ×Σ.

For the gravitational instantons that will primarily concern us here, T and
η are both single-valued on Σ, without any need to pass to a double cover.
However, Definition 1 has been carefully worded to avoid excluding e.g. the
ALF hyper-Kähler gravitational instantons [10, 26] of type Dk. On the
other hand, because Definition 1 assumes from the outset that (M4, h) is
complete and Ricci-flat, we have simplified [7, Definition 1.1] by assuming
that M only has one end, since the Cheeger-Gromoll splitting theorem [9]
would otherwise lead to a contradiction, e.g. by forcing (M4, h) to be a flat
Riemannian product R× Σ, even though Σ cannot admit flat metrics.

Now, in the spirit of our fall-off hypothesis (22), and after choosing some
base-point p ∈ M , we will say that a Ck function or tensor field 0 on an
ALF gravitational instanton (M,h0) is of weighted class Ck

1 if

‖0‖Ck
1
:= sup

M

k∑

j=0

(1 + dist)j+1|∇j
0|h0

is finite, where ∇ denotes the Levi-Civita connection of h0. We will also say
that a second Ck metric h on M is within Ck

1 -distance ε of h0 if, in terms
of this weighted norm, ‖h− h0‖Ck

1
< ε. Having fixed these conventions, we

now formulate and prove a concrete implementation of Theorem 1:

13



Theorem A. Let (M,h0) be any toric, Hermitian, but non-Kähler ALF
gravitational instanton. If h is another Ricci-flat Riemannian metric on
M that is sufficiently C3

1 -close to h0, then (M,h) is also a Hermitian ALF
gravitational instanton, and carries a non-trivial Killing field ξ. Moreover,
h is conformally related to a complete, strictly extremal Kähler metric g.

Proof. By the main classification result [7, Theorem 8.2] of Biquard and
Gauduchon, the given gravitational instanton h0 must be a Kerr, Chen-Teo,
Taub-bolt, or (reverse-oriented) Taub-NUT metric. Because these are all
ALF gravitational instantons in the sense of Definition 1, their curvature
tensors R satisfy R = O(̺−3) and ∇R = O(̺−4). Moreover, each of these
metrics is conformal to a Kähler metric g0 = u−2h0, where the positive
function u is related to the scalar curvature of g0 by u−1 = ksg0 for some
constant k. It follows that u is proper, because sg0 → 0 at infinity [7, §2].
This then implies that sg0 > 0 everywhere2. Indeed, since h0 = u2g0 is
Ricci-flat, and hence scalar-flat, the Yamabe equation tells us that

0 = sh0
u3 = (6∆g0 + sg0)u,

where ∆ = d∗d = −∇ · ∇ is the geometric Laplacian of g0. But since u > 0
is proper, it must have some minimum p ∈ M , and at p we therefore have

sg0(p) = 6u−1(∇ · ∇u)|p = 6u−1(TraceHess u)|p ≥ 0.

Since sg0 is continuous and nowhere zero, this shows that sg0 > 0 everywhere,
as claimed. If we now choose the normalization k = 1/6, note that u then

becomes the function fg0 = α−1
g0 = α

−1/3
h0

assigned to h0 by (7).
It follows that g0 and h0 both satisfy det(W+) > 0, and indeed that

det(W+
h0
) = 1

4α
3
h0

= 1
3
√
6
|W+

h0
|3 > 0 everywhere. Meanwhile, the fall-off

condition (22) implies that the Riemann tensor of h0 satisfies

R = O(̺−3) and ∇R = O(̺−4),

so we also, for instance, have |W+
h0
| = O(̺−3) in the end region. But in fact,

|W+
h0
| =

√
3
2αh0

=
√

3
2α

3
g0 actually has precisely ̺−3 fall-off, because αg0 is

an affine defining function of the moment polygon’s “edge at infinity,” and
so is asymptotically greater [7, p. 394] than a constant times ̺−1.

Now suppose that h is a second Ricci-flat metric on M which is close to
h0 in the C3

1 sense. It then follows that h also satisfies the fall-off conditions

2The fact that g0 = gK has positive scalar curvature was never made explicit in [7],
but was, for example, implicit in the conclusion A > 0 of [7, Corollary 5.2].
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(22) relative to the model metric d̺2 + ̺2γ + η2. In particular, (M,h) is
itself an ALF gravitational instanton, and its curvature tensor also satisfies
R = O(̺−3) and ∇R = O(̺−4). Consequently, the self-dual Weyl curvature
of h satisfies the fall-off conditions

|W+
h | = O(̺−3), ∇|W+

h | = O(̺−4),

and
det(W+

h ) = O(̺−9), ∇ det(W+
h ) = O(̺−10).

Since these same fall-off rates apply to h0, and since 3
√
6 det(W+) = |W+

h0
|3

is bounded above and below by positive constant multiplies of (1 + dist)−9,
we will automatically have det(W+

h ) > 0 and 2|W+
h0
| > |W+

h | > 1
2 |W

+
h0
| if

‖h − h0‖C3
1
< ε for ε sufficiently small. Consequently, αh > |W+

h | > 1
2 |W

+
h0
|

is then also larger than a positive constant times ̺−3 when ̺ ≫ 0.
Now, after writing (5) as

(
α2 − 1

2
|W+|2

)
α = det(W+)

and then putting the first derivative of this equation in the form
(
3α2 − 1

2
|W+|2

)
∇α =

1

2
α∇|W+|2 +∇ det(W+)

the fact that

det(W+) > 0 =⇒ 2

3
|W+|2 ≥ α2 >

1

2
|W+|2 (23)

now yields a priori fall-off rates for αh:

αh = O(̺−3) and ∇αh = O(̺−4). (24)

The function αg := α
1/3
h consequently has fall-off

αg = O(̺−1), |∇αg|h = O(̺−2) (25)

and therefore belongs to C1
1 . Moreover, αg = α

1/3
h is also larger than a

positive constant times ̺−1 for all ̺ ≫ 0.
Using this, we will now show that the scalar curvature sg is an L1 function

on (M,g), or in other words that
ˆ

M
|sg| dµg < ∞.
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To see this, let us first observe that

|sg| = 2s+ − s,

where s+ = max(sg, 0) is the positive part of sg. For � ∈ R+, now let
M� ⊂ M be the compact 4-manifold-with-boundary that is the union of the
subset ̺−1((−∞,�]) of the end region and the compact complement C of
end. We then have

ˆ

M�

|sg| dµg ≤ 2

ˆ

M�

s+ dµg +

∣∣∣∣
ˆ

M�

sg dµg

∣∣∣∣ .

It will thus suffice to show that both
´

M�

s+dµg and |
´

M�

sgdµg| remain
uniformly bounded as � → ∞.

We begin by considering
´

sgdµg, which we will analyze by means of the
Yamabe equation

sg dµg = 6αg(∆hαg) dµh,

incorporating the facts that sh = 0, g = α2
gh, and dµg = α4

gdµh. Thus

ˆ

M�

sgdµg = 6

ˆ

M�

|∇αg|2h dµh − 6

ˆ

∂M�

αg(∇ναg) dµ̌h,

and hence
∣∣∣∣
ˆ

M�

sg dµg

∣∣∣∣ ≤ 6

ˆ

M�

|∇αg|2h dµh + 6

ˆ

∂M�

αg |∇αg|h dµ̌h,

where dµ̌h is the volume 3-form on ∂M� induced by the restriction of h, and
where ν denotes the outward-pointing unit normal of ∂M� with respect to
h. On the other hand, since (M,h) is an ALF gravitational instanton, in
the sense of Definition 1, the metric has the asymptotic form

h = d̺2 + ̺2γ + η2 +O(̺−1).

Thus, in the end region, our fall-off (25) on αg guarantees that

|∇αg|2h dµh ≤ B̺−2|dρ ∧Ω ∧ η|
αg|∇αg|h dµ̌h ≤ B̺−1 |Ω ∧ η|

for all ̺ ≫ 0, where Ω is the area form of γ, and B is a sufficiently large
constant. Thus |

´

M�

sgdµg| behaves like const + O(�−1) for � ≫ 0, and is
therefore uniformly bounded in �.
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On the other hand, since g = α2
gh, and since, after possibly increasing

the size of B, αg <
1
2B̺

−1 in the asymptotic region by (25), we also have

g < B2

[
γ +

d̺2 + η2

̺2

]
(26)

for all ̺ > ̺0, where the pointwise inequality is to be understood in the
sense of quadratic forms. In particular, the 4-dimensional volume measure
of g satisfies

dµg < B4̺−2|d̺ ∧Ω ∧ η|
for all ̺ > ̺0. On the other hand, Lemma 4 guarantees that

2
√
6 |W+

g | ≥ max(sg, 0) = s+

at every point. When combined with (23), this then implies that

4
√
3 αg ≥ s+

everywhere. Since αg <
1
2B̺

−1 in the asymptotic region, we therefore have

s+dµg ≤ 2
√
3 B5 ̺−3|d̺ ∧Ω ∧ η|

for all ̺ > ̺0. It follows that
´

M�

s+dµg behaves like const + O(�−2) for

� ≫ 0, and is therefore uniformly bounded in �. Since |
´

M�

sgdµg| has also
been shown to be uniformly bounded, we thus conclude that

´

M�

|sg| dµg is
uniformly bounded, too. Hence

ˆ

M
|sg| dµg = sup

�

ˆ

M�

|sg| dµg < ∞,

as claimed.
However, since we also know that αg > 2b ̺−1 when ̺ > ̺0, for some

positive constant b, we also have

g > b2
[
γ +

d̺2 + η2

̺2

]

for all ̺ > ̺0, so the 4-dimensional volume measure dµg and the 3-dimensional
volume measure dµ̌g of the ̺ = const hypersurfaces jointly satisfy

dµg > A̺−1|d̺ ∧ dµ̌g| = |dt ∧ dµ̌g|,
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for all ̺ > ̺0, where A = b4/B3, and where we have set t := A log ̺. For
each t, we now let Σt ≈ Σ be the level-set ̺ = et/A, and then define

̥(t) =

ˆ

Σt

|sg| dµ̌g.

Setting t0 = A log ̺0, we then have

ˆ ∞

t0

̥(t) dt <

ˆ

̺≥̺0

|sg| dµg <

ˆ

M
|sg| dµg < ∞.

Since ̥(t) is a continuous positive function, this means that there must
be an increasing sequence tj → ∞ with ̥(tj) → 0. Setting �j = etj/A and
defining Uj to be the interior of M�j

thus defines an exhaustion of M = ∪jUj

by nested pre-compact domains

U1 ⋐ U2 ⋐ · · · ⋐ Uj ⋐ · · ·

with smooth boundary such that condition (20) is satisfied:

lim
j→∞

ˆ

∂Uj

|sg| dµ̌g = 0.

On the other hand, since αg <
1
2B̺

−1, inequalities (23) and (26) tell us that

|dµ̌g| < B3̺−1|Ω ∧ η|
|W+

g | |dµ̌g| < B4̺−2|Ω ∧ η|

for all ̺ > ̺0, so there is a positive constant C such that

ˆ

∂Uj

1 dµ̌g <
C

�j
ˆ

∂Uj

|W+
g | dµ̌g <

C

�
2
j

for all j ≫ 0. Since limj→∞ �j = ∞, this shows that conditions (18) and
(19) are also satisfied by our exhaustion Uj of (M,g). Theorem 1 therefore
tells us that (M,g) is a strictly extremal Kähler manifold, and that the
ALF gravitational instanton (M,h) is consequently Hermitian, and carries
a non-trivial Killing field ξ, as claimed.
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4 Rigidity Results

We will now use Theorem A in conjunction with the Biquard-Gauduchon
classification [7, Theorem 8.2] to prove various rigidity results. To do this,
however, we will first need to check that these two machines actually mesh
correctly.

Lemma 5. For (M,h) as in Theorem A, the limit at infinity of the Killing
field ξ is a non-zero constant multiple of the vector field T on Σ. In partic-
ular, the action on Σ induced by ξ at infinity preserves the triple (T, η, γ).

Proof. By construction, the Killing field ξ is a given by

ξa = Jb
agbc∇csg = 6Jb

agbc∇cαg = 6Jb
af2hbc∇cf

−1 = −6Jb
ahbc∇cf,

where f = α−1
g . Our asymptotics for α guarantee that, for ̺ ≫ 0, αg

is bigger than a positive constant times ̺−1, and that |∇αg|h is less than
a constant times ̺−2, so it follows that |∇f |h = α−2

g |∇αg|h is uniformly
bounded. It therefore follows that |ξ| = 6|∇f |h is uniformly bounded, too.

On the other hand, since αg → 0 at infinity, f = α−1
g is a smooth proper

function on M , and therefore achieves its minimum at some p ∈ M . Since
|df |p = 0, it therefore follows that ξ = −6J∇f has a zero at p. The flow of
the Killing field ξ therefore preserves the distance to p, so it follows that ξ
is orthogonal to every geodesic passing through this base-point p.

However, because ξ is a Killing field, it automatically satisfies

∇a∇bξ
c = Rc

badξ
d (27)

on (M,h), primarily as a reflection of the fact that its restriction to any
geodesic is a Jacobi field. Since |ξ|h is uniformly bounded and |R|h =
O(̺−3), it therefore follows that ∇∇ξ = O(̺−3). On the other hand, the
asymptotic local model metric d̺2+̺2γ+η2 has a Riemannian submersion to
Euclidean R3 whose fibers are tangent to T . By restricting this equation to
geodesics and integrating, it therefore follows that, along any slice transverse
to T , the projection ξ mod T differs from an affine-linear function R3 → R3

by terms of order ̺−1; and since ξ mod T is uniformly bounded, it therefore
follows that ξ mod T actually tends to a constant (i.e. parallel) vector field
on Euclidean R3. But since ξ is orthogonal to every geodesic through p, and
since the tangent directions of such geodesics project to an open cone in R3,
this leads to an immediate contradiction unless this constant field is zero.
This shows that ξ = uT + 0 for some smooth bounded function u, where
the error term 0 satisfies 0 = O(̺−1) and ∇0 = O(̺−2). However, because
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T is a bounded Killing field for the model metric d̺2 + ̺2γ+ η2, our fall-off
hypothesis (22) guarantees that ∇(aTb) = O(̺−2) with respect to h. Hence

0 = ∇(aξb) = ∇(auTb) +O(̺−2) = T(a∇b)u+O(̺−2)

and we therefore must have u = const + O(̺−1). Moreover, the relevant
constant must be non-zero, because |ξ| = 6|∇f |, and (25) forces f = α−1 to
be asymptotically bigger than some positive constant times ̺. Thus, some
constant multiple ξ̂ of ξ satisfies ξ̂ = T + O(̺−1). In particular, the action
on Σ induced at infinity by ξ coincides, up to reparameterization, with the
action of T , and so preserves (T, η, γ), as claimed.

Corollary 1. Let (M,h) be as described by Theorem A, and suppose that
that there is an isometric action of the 2-torus T2 on (M,h), such that the
constructed Killing field ξ arises from some element of the Lie algebra t

2 of
T2. Then (M,h) is a non-Kähler toric Ricci-flat Hermitian ALF manifold,
in the precise technical sense required by Biquard and Gauduchon.

Proof. Lemma 5 guarantees that there is an element ξ̂ ∈ t
2 whose action at

infinity coincides with the flow of the vector field T on Σ, exactly as required
by [7, Definition 1.2].

With these basic facts in hand, we now prove our first rigidity result.

Theorem 2. Let (M,h) be as described by Theorem A, and suppose that the
constructed Killing field ξ is not periodic. Then (M,h) is one of the toric
ALF gravitational instantons classified by Biquard and Gauduchon [7].

Proof. The action of the identity component Iso0(M,h) of the isometry
group preserves the self-dual Weyl curvature W+

h , and hence its top eigen-

value αh : M → R+, and hence the smooth proper function f = α
−1/3
h . The

proof of Lemma 5 shows that |∇f | tends to a non-zero constant at infinity,
so the set X of critical points of f is therefore compact. However, this X is
the zero set of both the Killing field ξ = −6J∇f and the holomorphic vec-
tor field ξ1,0. Each connected component of the Iso0(M,h)-invariant subset
X ⊂ M is therefore either a point or a totally geodesic compact complex
curve. Since we also know that χ(X) = χ(M) > 0, it follows that some com-
ponent of X0 of X, and hence some orbit Y ⊂ X0, is either a point or a CP1.
Equivariance of the exponential map from the normal bundle of Y toM then
guarantees that this gives us a faithful representation Iso0(M,h) →֒ U(2)/Zℓ

of the isometry group into some finite quotient of U(2).
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Let us now consider the non-trivial Killing field ξ as an element of the
Lie algebra iso0(M,h), and examine the 1-parameter subgroup exp(Rξ) =
{exp(tξ) | t ∈ R} ⊂ Iso0(M,h) that it determines. The closure of this
subgroup is then compact, Abelian, and connected, and so is a torus T =
exp(Rξ) ⊂ Iso0(M,h) ⊂ U(2)/Zℓ. If ξ is periodic, this torus will just be a
circle. Otherwise, T must be a 2-torus, since U(2) has rank 2. In the latter
case, the ALF gravitational instanton (M,h) then becomes Hermitian, non-
Kähler, and toric, and so, by Corollary 1, falls within the purview of the
Biquard-Gauduchon classification [7, Theorem 8.2].

Corollary 2. Let (M,h0) be a toric Hermitian ALF gravitational instanton
for which the corresponding vector field T on Σ is not periodic. Then any
Ricci-flat metric h on M which is sufficiently C3

1 close to h0 must be one of
the toric ALF gravitational instantons classified by Biquard-Gauduchon.

Proof. The proof of Lemma 5 shows that the vector field T arising from h0 is
also the limit at infinity of a constant multiple the constructed Killing field
ξ of any C3

1 -close Ricci-flat metric h. If T is not periodic, it thus follows that
the constructed Killing field ξ of h cannot be periodic, either. The claim is
therefore an immediate consequence of Theorem 2.

A theorem of Aksteiner, Andersson, Dahl, Nilsson, and Simon [2] clas-
sifies those ALF gravitational instantons that carry an isometric S1-action
and are diffeomorphic to either a Kerr or a Taub-bolt space. Quoting their
result in conjunction with Theorem A would now allow us to prove a rigidity
result in these two cases. However, we will instead buttress the claims of [2]
by proving this rigidity theorem in a self-contained way, by building directly
on the results already obtained in this article.

Theorem B. Let (M,h0) be a Kerr or Taub-bolt gravitational instanton,
and let h be another Ricci-flat metric on M that is sufficiently C3

1 -close to
h0. Then (M,h) is once again a Kerr or Taub-bolt gravitational instanton.

Proof. If (M,h0) is Taub-bolt or belongs to the Kerr family, then both
(M,h0) and its reverse-oriented version (M,h0) are non-Kähler and Hermi-
tian toric ALF, and so, by Corollary 1, both fall under the purview of the
Biquard-Gauduchon classification. In particular, (M,h0) then satisfies both
det(W+) > 0 and det(W−) > 0, and one can therefore apply Theorem A
with respect to either orientation of M . If h is a Ricci-flat metric on M that
is sufficiently C3

1 close to h0, one therefore deduces that M admits a pair of
complex structures {J+, J−} that are respectively compatible with the two
different orientations of M , and a pair of extremal Kähler metrics {g+, g−}
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that are compatible with J±, respectively, where h = α−2
± g± with α± > 0

the top eigenvalues of W±
g± , respectively, which is to say that α3

± are the

top eigenvalues of W±
h . In the terminology of [4], the Riemannian manifold

(M,h) is therefore ambi-Kähler. By [4, Proposition 12], it therefore follows
that the Bach-flat manifold (M,h) is at least locally ambitoric, and what
follows is simply a verification that this conclusion actually follows globally
in our case.

Indeed, since the conformal class [h] is Bach-flat, both of the Kähler met-
rics g± must be extremal, and this then gives rise to two non-trivial Killing
fields J±∇g±α± on (M,h). If these Killing fields are linearly independent,
(M,h) is toric, and we are done. On the other hand, if they are linearly de-
pendent, one can produce a second Killing field using case (iii) of the proof
of [4, Proposition 11]. Indeed, let ξ = J+∇g+α+ be the Killing field asso-
ciated with g+. After multiplying g− by a suitable constant, and replacing
J− with −J− if necessary, we may then arrange to also have ξ = J−∇g−α−.
Now define S ∈ End(TM) by

S =
1

2

(
1

α2
+

+
1

α2
−

)
I +

1

α+α−
J+ ◦ J−.

It then follows from [4, Appendix B.5] that g(S ·, ·) is a Killing tensor, and
that S (ξ) is therefore a Killing field that commutes with ξ. If S (ξ) is
not the zero field, then (M,h) toric. Otherwise, by [4, Proposition 12],
(M,g, J+) is the product of two extremal Kähler curves, one of which has
constant curvature, and our asymptotics then guarantee that the latter curve
is moreover a round 2-sphere. In every possible case, (M,h) is therefore
toric, and, in light of Corollary 1, the Biquard-Gauduchon classification [7]
therefore applies. The diffeotype of M therefore forces (M,h) either to be
Taub-bolt, or to belong to the Kerr family.

Added note. Contemporaneously with the appearance of the first version
of this article on the arXiv, an e-print by Mingyang Li [25] announced a proof
that Hermitian ALF gravitational instantons are always toric. If we take
this result for granted, Theorem B can then be improved to just assume that
(M,h0) is a gravitational instanton appearing in the Biquard-Gauduchon
classification, and then conclude that (M,h) must also belong to the same
family. Of course, in light of Corollary 2, the gist of this improvement only
concerns the case when T is periodic. In this periodic case, Li’s proof begins
by compactifying (M,J) as an orbifold complex surface, and then proceeds
to deduce properties of the isometry group of (M,h) from properties of the
complex automorphism group of the compactification.
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Sorbonne Université & Université Paris Cité,
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