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Variational Approach

If M smooth compact n-manifold, n > 3,
Gy = { smooth metrics g on M}

then Einstein metrics = critical points of normal-
ized Finstein-Hilbert action functional

éa:QM%]R{

g —s V(2 / sodjig
M

where V' = Vol(M, ¢) inserted to make scale-invariant.
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Yamabe:

2
Set p = 5.

Conformal rescaling:

g = uP~2¢ then has dy = uPdy

and 1ts scalar curvature satisfies

suPt=[(p+2)A+ sl u
where A = —V - V. Hence

_ I (su2 + (p + 2)|Vu]2) du
[y updp]

Difficulty: L% — LP bounded, but not compact.

&(9)
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3 metric g € v which mimimizes &|.
Has s = constant.

Unique up to scale when s < 0.
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Y(M,~) = inf fM °g THy

g€y n—2’
(s dig)
If g has s of fixed sign, agrees with sign of Y (M, |g]).

Aubin:
Y(M,~) < &9", ground>

Schoen:
= only for round sphere.
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o Jusg diyg
(M) =supY (M,~)=sup inf —.

! T IS (fM dﬂg)T

Theorem (Gromov-Lawson /Stolz/Petean /Perelman).

Let M be a compact simply connected n-manifold,
n # 4. Then

(M) > 0.

Theorem (L. '96). There exist compact simply
connected 4-manifolds M ; with % (M ;) — —oo.

Moreover, can choose M j such that each %/ (M ;)
18 realized by an Finstein metric g;.
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Method of proof: Seiberg-Witten theory:.
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Theorem (L 97). If (M*, g, J) is a compact Kihler-
Einstein manifold of complex dimension 2 with
Eiwnstein constant

A >0,
then g achieves % (M) if and only if
M = CPy,

in which case g 1s the usual Fubini-Study metric.

Second proof: Gursky-L 98,
Uses spin® Dirac operator in a simpler way:.

Shows certain other 4-mfds have %' (M) < % (54),
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All admit K-E metrics g compatible with given .J.

Yau, Aubin, Siu, et al.
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n M sign \ achieves %/ (M)?
1 CIP9 Yes

2 CPy x CPPy + No

3 | CPy#6CPs No

4 K3 0 Yes
> 5| “general type’ | — Yes
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Example. Let M C CP3 a smooth hypersurface
of degree n. For concreteness:

2"yt + 2w =0

These examples are simply connected and have

Y (M) = —4my[26:2(M, J) = ~4m(n—4)V2n Vn > 4

These examples also show that the diffeomorphism
invariant 2 (M) is not simply a homeomorphism
invariant — can detect “exotic” smooth structures.
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wo = 0 woy # 0
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Example. Let M C CP3 a smooth hypersurface
of degree n. For concreteness:

"yt + 2N+ w" =0

When n = 2m is even, these are spin,
so comparison of y and 7 shows homeomorphic to

k(K 3)40(5% x 52)

where

—

k= Gm(m2 — 1)
¢ = L(m —2)(13m? — 22m + 3)
But @ [k(K3)#6(S% x 5%)] = 0 by Petean!

So %7 detects “exotic” smooth structure if m > 3.

Also notice 2 [k(K3)#£(S? x S?)] unachievable!

N
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What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At oA~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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M

where P(R) is SO(4)-invariant polynomial
function of curvature.

Scale invariance = P quadratic.

Any such P(R) is linear combinations of
2 0 |2 2 2
SR U P LS8 e L

Integrals give four scale-invariant functionals.
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For example,
2
g —> / s“dpg
M
is a natural functional to consider.

When restricted to any conformal class -,
it is exactly minimized by the Yamabe minimizers:

inf 2diig = [V (M, )%
;gW/MS pg = [Y (M, )]

S0 on the space G of all Riemannian metrics,

, 9 0 if /(M) >0,
inf s“dpg = 5 .
9 Jm |/ (M)|= it &/ (M) <O0.

Simplifies computation of % (M) in negative case!
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QM —s R

( 2
fMS gy
fMW2dﬂg
JurIW g PPpg

\ fM‘W—‘Qdﬂg

g —r <

But only two of these are genuinely independent!
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Euler characteristic

o= | I
X =gz [l T -7

Signature

w0 =5 [ (W= 1)

1272
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Here 7(M) = by (M) — b_(M) defined in terms of
itersection pairing

H*(M,R) x H*(M,R) — R
(1 1) [ e
M

Diagonalize:
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H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} dH,,

where

Hy ={p € I(A\") | dp = 0}

self-dual & anti-self-dual harmonic forms. Then

b+ (M) = dimH.
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Spin© structures:

wo(TM?Y) € H* (M, Zs)
in image of
H?(M,Z) — H*(M,Zs)
—> d Hermitian line bundles
L — M

with
c1(L) = wo(TM) mod 2.

Given g on M, — drank-2 Hermitian vector bun-
dles V4 — M which formally satisfy

Ve =S4+ ® Ll/Q,

where S+ are the (locally defined) left- and right-
handed spinor bundles of (M, g).



Key Example

Let J be any almost complex structure on M.



Key Example
Let J be any almost complex structure on M.

Let L = AY%2 be its anti-canonical line bundle.



Key Example
Let J be any almost complex structure on M.

Let L = AY%2 be its anti-canonical line bundle.

Vg on M, the bundles

V_|_ _ AO’O EBAO,Z
Vo =A%



Key Example
Let J be any almost complex structure on M.

Let L = AY%2 be its anti-canonical line bundle.

Vg on M, the bundles

V_|_ _ AO’O EBAO,Z
Vo =A%

can formally be written as

V:l: — S:|: 024 L1/27



Key Example
Let J be any almost complex structure on M.

Let L = AY%2 be its anti-canonical line bundle.

Vg on M, the bundles

V_|_ _ AO’O @/\072
Vo =A%

can formally be written as
Vie=05+® LY/ 2,
where St are left & right-handed spinor bundles.



Key Example
Let J be any almost complex structure on M.

Let L = AY%2 be its anti-canonical line bundle.

Vg on M, the bundles

V_|_ _ AO’O @/\072
Vo =A%

can formally be written as
Vie=05+® LY/ 2,
where St are left & right-handed spinor bundles.

A spin€ structure arises from some .J <=

(L) = (2x +37)(M) .
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Every unitary connection 6 on L induces
spin® Dirac operator

DQ ) F<V+> — F(V_>
generalizing 0 + 0*.

Weitzenbock formula: VO € I'(V4),

1 S 9
(@, Dy* Dg) = S22 + [Vl + o)
+2<_iF9+7 O‘((I)»

where g™ = self-dual part curvature of 6, and
oc: Vi —=ATisa natural real-quadratic map,

()] = —=|5[2

22
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Witten:

consider both ¢ and 6 as unknowns,

subject to Seiberg- Witten equations
Dgd =0
FJ =io(®).

Non-linear, but elliptic once ‘gauge-fixing’
d*(0 —0y) =0

imposed to eliminate automorphisms of L — M.
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Compactness: Implies CV bound on ®:

At maximum of &, A|®[? > 0, so

0> s|d|” + |D*

and hence |P|? < —s, unless ® = 0. Hence

9] < y/max [5_|

everywhere!

Bootstrapping with gauge-fixed equations, one gets
Lg bounds for (&, 0) for all &, p.
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Dimension: Index of gauge-fixed system is

c1(L) — (2x + 37)(M)
4

For a given spin® structure and fixed metric ¢, this
is the dimension of pre-image of any regular value
of map defined by gauge-fixed S\ equations.

Spin© structure arises from some J <—

c%(L) = 2x + 37 <= Fredholm index is zero.

SW invariant € Zo means mod-2 mapping degree.
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0 = 2A|D|? 4 4|V0 | + 5|02 + |0

— moduli space compact, finite-dimensional. . .

I[f b (M) > 2, then, as metric varies, moduli spaces
are cobordant, so can construct invariants that some-
times predict existence of solutions.

Specifically, if spin© structure comes from some ./,
Fredholm index is 0, and moduli spaces generically
discrete. Counting solutions mod 2 gives Zo-valued
invariant.

This invariant is non-zero if .J is compatible with a
symplectic form w. (Taubes)

Implies non-existence of metrics ¢ for which s > 0.
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Weitzenbock formula becomes

0 = 2A|D|? 4 4|V0 | + 5|02 + |0

— moduli space compact, finite-dimensional. . .
When by (M) = 1, theory is more complicated.

Works exactly the same way it

o ci(L) > 0; or

o ci(L)=0,but c;(L) #0 € H*(M,R).

[f J compatible with w, invariant # 0 if ¢; e|w] < 0.

But more generally, invariant acquires “chambered”
structure.

Basic strategy becomes: play several spin® struc-
tures off against one another.
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If ST equations have solution Vg € [g],
—> curvature estimates

[ sy = el (1)
M 2
[ (5= VBIWA1) dg > T2mles (1)
M
where ¢ (L)" € H is self-dual part of

ci(L) € HA(M,R)=H} & H,

Moreover, when
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First Estimate:

Integrate Weitzenbock:
0= /[4|vq>\2 T s @2 + [0 Y.

[owpanz [t

Cauchy-Schwarz:

1/2 1/2
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Integrate Weitzenbock:
0= /[4|vq>\2 T s @2 + [0 Y.

[owpanz [t

Cauchy-Schwarz:

1/2 1/2
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/Szdﬂ /\¢I4du
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When does equality occur?

0 /[4yv9q>\2 T 5@ + D]

/(—s)@!zduz /|<1>\4dﬂ.

Equality =
Vod =0, s = const < ()
Hence Vo (P) = 0, and ¢ is Kahler.
So metric is CSCK.
Moreover, @ is Chern connection on L = K 1,

Just one solution, so must have S # 0. More
robust version works for Kéhler with ¢ - [w] < 0.



Second Estimate:



Second Estimate: more subtle!



5 = 5s—/6|W | is a generalized scalar curvature.



5 = 5s—/6|W | is a generalized scalar curvature.

Rescales exactly like standard scalar curvature:



5 = 5s—/6|W | is a generalized scalar curvature.

Rescales exactly like standard scalar curvature:

for § = u?g, one has



5 = 5s—/6|W | is a generalized scalar curvature.

Rescales exactly like standard scalar curvature:

for § = u?g, one has

su° = [6A + s]u



5 = 5s—/6|W | is a generalized scalar curvature.

Rescales exactly like standard scalar curvature:

for § = u?g, one has

su° = [6A + s]u

This played an important role in the original proof,
but is used only mildly in what follows.
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By conformal invariance of Dirac, 5\W equations
with respect to f2g <= new system

Dpd =0
Fy =ifo(d).

with new Weitzenbock formula

0 = 27D + 4|Vd|* + s|D) + f|D|*
Multiply by |®|? and integrate:

0> / 4101740 + slof* + £1[°) dp

so self-dual 2-form ¥ = 2v/20(P) satisfies
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But any self-dual 2-form satisfies

2
/ V[ dp > — / <§+2\/§W+|> ] dy

by Weitzenbock for (d + d*)?. Hence

0> / [(s—%\w) |¢!2+§f|w|3] s

Holder inequality =
o\ S L
(/f du> (/ s—mw\ f du) /f\w dy

4
Take sequence f; N\ \/

> 7212 TP
2
[ (5= VoW dp = 2P
M

[V

S — \/6|W+]’ [n limit:
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A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number
of times:

M =~ X#kCP;
One says that X is minimal model of M.

Complex surface M of general type if X satisfies
2(X) >0, ¢ efw <0
for some Kaher form w.

In this setting, minimal model X is unique.



Theorem. Let X be a minimal surface of gen-
eral type, and let

M = X#kCP,.



Theorem. Let X be a minimal surface of gen-
eral type, and let

M = X#kCP,.
Then
Y (M) = H(X) = —4my/2¢2(X)




Theorem. Let X be a minimal surface of gen-
eral type, and let

M = X#kCP,.
Then

Y (M) = H(X) = —4my/2¢2(X)

Key ingredient: First Curvature estimate.



Theorem. Let X be a minimal surface of gen-
eral type, and let

M = X#kCP,.
Then

Y (M) = H(X) = —4my/2¢2(X)

Key ingredient: First Curvature estimate.

Next: how to use Second Curvature estimate.
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.. Second curvature estimate implies

: S2+2\W 2 dpy > 2e,2(X)
— — —C
a2 o \ 22 ) e~ 30

Equality forbidden, because would imply Kahler,
but with wrong ratio of s% and |IWW ¢|?.
Here one first shows generalized scalar curvature

5 =5 — V6|

would have to be constant if equality held.
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Theorem. Let X be a minimal surface of gen-
eral type, and let

M = X#kCP,.
Then M cannot admit an Einstein metric if

k> c?(M)/3.

(Better than Hitchin-Thorpe by a factor of 3.)

So being “very’ non-minimal is an obstruction.
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Theorem (Aubin/Yau). Compact complexr man-
ifold (M?™, J) admits compatible Kdhler-Einstein
metric with s < 0 <= c¢; < 0.
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Theorem. Let X be a minimal surface of gen-
eral type, and let

M = X#kCP,.
Then M cannot admit an Einstein metric if

k> c?(M)/3.

In example:

¢2(X) =3
k=1



X is triple cover CIP9 ramified at sextic

b

T~ C<

CP,

M = X#CP».

Theorem =— no Einstein metric on M.
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