
Mid-Term Solutions

Geometry/Topology II

Spring 2009

Do four of the following problems. 25 points each.

1. Recall that a smooth n-manifold N has been defined to be orientable iff
it admits a coordinate atlas for which every coordinate change

(x1, . . . , xn) 7−→ (y1, . . . , yn)

has positive Jacobian determinant:

det

[
∂yj

∂xk

]
> 0.

Prove that N is orientable (by this definition) iff there exists a smooth n-form
ω ∈ Ωn(N) such that ω 6= 0 everywhere. Then show that this happens iff
the rank-1 vector bundle Λn → N is trivial.

A non-zero n-form ω becomes

ω = f dx1 ∧ · · · ∧ dxn

in any coordinate chart for some f 6= 0; moreover, we can change the sign
of f by, for instance, replacing x1 with −x1. Now if (y1, . . . , yn) is another
coordinate chart, and if

ω = h dy1 ∧ · · · ∧ dyn

then, on the overlap region,

det

[
∂yj

∂xk

]
=
f

h
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so any two charts in which ω has positive coefficient function are orientation-
compatible. The collection of all such charts is therefore an oriented atlas
for M .

Conversely, suppose that {(x1
α, . . . x

n
α) : Uα → Rn} is an oriented smooth

atlas for M . Let {fα} be a smooth partition of unity subordinate to the cover
Uα; thus, each smooth function fα : M → is non-negative, is supported in
Uα, and only finitely many fα’s are non-zero on some neighborhood of any
point. We may therefore set

ω =
∑
α

fαdx
1
α ∧ · · · ∧ dxnα.

Because

det

[
∂xjα
∂xkβ

]
> 0 ∀α, β,

each summand is then non-negative in each chart of our oriented atlas, and
since at least one summand is actually positive at any given point, we will
then have ω 6= 0 everywhere on M .

On the other hand, a rank-1 vector bundle E → M is trivial iff it has a
nowhere-zero section. Indeed, if σ : M → E is a non-zero section, then the
map M × R → E given by (p, t) 7→ tσ(p) is an isomorphism between the
trivial bundle and E; conversely, since p 7→ (p, 1) is a non-zero section of the
trivial bundle M ×R→M , any bundle isomorphic to this trivial bundle has
a non-zero section. Applying this the rank-1 bundle Λn → M thus shows
that Λn is trivial iff M carries a nowhere zero n-form; and the previous
argument then shows that this is in turn equivalent to the orientability of
the n-manifold M .

2. Let f : Rn+1 → R be a smooth function, and let Σ := f−1(0). If df 6= 0
at each point p ∈ Σ, prove that Σ is a smooth orientable n-manifold.

To show that Σ is a smooth manifold, one uses the inverse function theo-
rem. Namely, near any point p ∈ Σ, there must some j such that ∂f/∂xj 6= 0.

One then considers the map Rn+1 → Rn+1 given by (f, x1, . . . , x̂j, . . . , xn+1),
where the “hat” means “omit this entry.” The Jacobian determinant of this
map is then (−1)j+1∂f/∂xj 6= 0, so the inverse function theorem guarantees
that this a local diffeomorphism near p in Rn+1, and sends a neighborhood of
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p in Σ to a relatively open set in {0}×Rn. This provides the charts necessary
to make Σ a smooth n-manifold.

It remains to show that Σ is orientable. While this can be done in various
ways, a particularly nice method is to invoke Problem 1, and show that Σ
admits an n-form which is everywhere non-zero. One such form can be gotten
by considering the vector field

X = grad f =
n+1∑
j=1

∂f

∂xj
∂

∂xj

on Rn+1, and then considering the n-form

ω = X y dx1 ∧ · · · ∧ dxn+1

=
∂f

∂x1
dx2 ∧ · · · ∧ dxn+1 + · · ·+ (−1)n

∂f

∂xn+1
dx1 ∧ · · · ∧ dxn

on Rn+1. The pull-back of ω to Σ ↪→ Rn+1 is then non-zero everywhere,
because, for example,

df ∧ ω =

[
n+1∑
j=1

(
∂f

∂xj

)2
]
dx1 ∧ · · · ∧ dxn+1

is non-zero in a neighborhood of Σ.

3. Suppose that $ : E → M is a smooth rank-1 vector bundle over a
manifold M , and let 0M ⊂ E denote the image of the zero section of E. If
E − 0M is connected, prove that every section M → E must have a zero.
Then use this to prove that the Möbius band is a non-orientable 2-manifold.

Suppose that $ : E → M is a smooth rank-1 vector bundle. If there
were a section σ : M → E with σ 6= 0, we could define a smooth map
F : M × R→ E by

F (p, t) = tσ(x)

and inspection then reveals that this map would be an isomorphism of vector
bundles. In particular, E − 0M ≈M × (R− {0}) could not be connected.

By contraposition, this shows that if E−0M is connected, then any section
σ of E must have a zero.
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Now let us show the Möbius band B is not-orientable. If not, by Problem
1, there would be a non-zero 2-form on B. Thus, if Λ2 → B is the bundle
of 2-forms, and if E → S1 denotes its restriction to the middle S1, then
the rank-1 bundle E → S1 would have to admit a a non-zero section, and
E − 0S1 would have to be disconnected. But E → S1 is bundle-isomorphic
to B itself, thought of as a bundle over the circle! (For example, contraction
of 2-forms with the vector field ∂/∂θ on S1 identifies E with B∗, and B∗

can then be identified with B by using the obvious inner product on fibers.)
Thus, if B were orientable as a 2-manifold, removing the middle S1 would
have to disconnect B. But in fact B−0S1 deform-retracts to a circle, and so
in particular is connected. This contradiction proves that B is not orientable.

4. Consider the vector fields X and Y on R3 defined by

X = x1 ∂

∂x1
+ x2 ∂

∂x2
+ x3 ∂

∂x3

Y = x1 ∂

∂x2
− x2 ∂

∂x1

(a) Explicitly find the flows generated by X and Y .

The flow generated by X is explicitly given by

φt(x
1, x2, x3) = (etx1, etx2, etx3)

while the flow of Y is given by

ψt(x
1, x2, x3) = (x1 cos t− x2 sin t, x1 sin t+ x2 cos t, x3).

(b) Compute [X, Y ].

[X, Y ] = XY − Y X

= X(x1)
∂

∂x2
−X(x2)

∂

∂x1
−
[
Y (x1)

∂

∂x1
+ Y (x2)

∂

∂x2
+ Y (x3)

∂

∂x3

]
= x1 ∂

∂x2
− x2 ∂

∂x1
−
[
−x2 ∂

∂x1
+ x1 ∂

∂x2

]
= 0.
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(c) Explain why your answers to (a) and (b) are related, and consistent.

[X, Y ] = 0 ⇐⇒ φt commutes with ψs ∀s, t. But indeed,

ψsφt(x
1, x2, x3) = (etx1 cos s− etx2 sin s, etx1 sin s+ etx2 cos s, etx3)

while

φtψs(x
1, x2, x3) = (et(x1 cos s− x2 sin s), et(x1 sin s+ x2 cos s), etx3),

so they do commute, as predicted.

5. (a) Let ϕ be any smooth differential form on an open subset of Rn, and
let Y denote the vector field ∂/∂x1. Working directly from the definition of
the Lie derivative, show that

LY ϕ = Y y dϕ+ d(Y y ϕ). (1)

Any k-form ϕ on Rn is a finite sum of terms

f(x1, . . . , xn)dxI

and terms
h(x1, . . . , xn)dx1 ∧ dxJ

where I and J are multi-indices with I, J ⊂ {2, . . . , n}, |I| = n, |J | = n− 1.
Since both sides are linear in ϕ, we merely need check (1) for forms of this
simple type.

Now the flow of Y = ∂/∂x1 is explicitly given by

ψt(x
1, x2, . . . , xn) = (x1 + t, x2, . . . , xn),

so

LY (f dxI) =
∂f

∂x1
dx1 ∧ dxI ,

whereas

Y y d(fdxI) + d(Y y fdxI) = Y y

(
n∑
i=1

∂f

∂xi
dxi ∧ dxI

)
+ d(0)

=
∂f

∂x1
dx1 ∧ dxI ,
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so (1) holds for these cases. On the other hand,

LY (h dx1 ∧ dxJ) =
∂h

∂x1
dx1 ∧ dxJ ,

while

Y y d(h dx1 ∧ dxJ) + d(Y y h dx1 ∧ dxJ)

=
∂

∂x1
y

(
n∑
j=2

∂h

∂xi
dxj ∧ dx1 ∧ dxJ

)
+ d(h dxJ)

= −
n∑
j=2

∂h

∂xj
dxj ∧ dxJ +

n∑
i=1

∂h

∂xi
dxi ∧ dxJ

=
∂h

∂x1
dx1 ∧ dxJ

and (1) therefore holds for terms of both types, as claimed.

(b) Show that (1) holds if Y ≡ 0 and ϕ any differential form.

If Y ≡ 0, then its flow is the identity, and LY ϕ = 0 for any ϕ. But in
this case, the right-hand side of (1) vanishes, too, and the formula therefore
holds.

(c) If Y is any smooth vector field and ϕ is any smooth differential form on
a smooth manifold M , use (a) and (b) to show that (1) holds on all of M by
first showing that it holds on a dense open subset of M .

Let U ⊂ M be the set where Y 6= 0, and let V ⊂ M be the interior of
the set where Y = 0. Thus M = U ∪ V . However, every point of U has a
neighborhood on which we can find a coordinate system in which Y = ∂/∂x1;
and every point of V has a neighborhood on which Y ≡ 0. Hence (1) holds
on U by part (a), and (1) holds on V by part (b). Thus, the difference of the
two sides of (1) vanishes on U ∪ V . By continuity, it therefore also vanishes
on U ∪ V = M , and we have therefore shown that (1) holds everywhere.

6. Let Y be the vector field on R3 appearing in problem 5 (Misprint! Should
have read problem 4!), and let

ϕ = x1dx2 ∧ dx3.
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Compute the Lie derivative LY ϕ in two ways:

(a) from the definition; and

Using the flow found in Problem 4,

ψ∗tϕ = (x1 cos t− x2 sin t)d(x1 sin t+ x2 cos t) ∧ dx3

= (x1 cos t− x2 sin t)(sin tdx1 + cos tdx2) ∧ dx3

= (
1

2
x1 sin 2t− x2 sin2 t)dx1 ∧ dx3 + (x1 cos2 t− 1

2
x2 sin 2t)dx2 ∧ dx3

Thus

d

dt
ψ∗tϕ = (x1 cos 2t−2x2 sin t cos t)dx1∧dx3−(2x1 cos t sin t+x2 cos 2t)dx2∧dx3

and hence

LY ϕ =
d

dt
ψ∗tϕ|t=0 = x1dx1 ∧ dx3 − x2dx2 ∧ dx3

(b) by means of (1).

LY ϕ = Y y dϕ+ d(Y y ϕ)

=

(
x1 ∂

∂x2
− x2 ∂

∂x1

)
y dx1 ∧ dx2 ∧ dx3 + d

[(
x1 ∂

∂x2
− x2 ∂

∂x1

)
y x1dx2 ∧ dx3

]
= −x1dx1 ∧ dx3 − x2dx2 ∧ dx3 + d

[
(x1)2dx3

]
= −x1dx1 ∧ dx3 − x2dx2 ∧ dx3 + 2x1dx1 ∧ dx3

= x1dx1 ∧ dx3 − x2dx2 ∧ dx3

Then verify that your two answers agree.

My apologies for the confusion caused by the misprint!

7. Let M be a smooth n-manifold, and let ω ∈ Ωn(M) be a smooth n-form
on M . Let p ∈ M be any point such that ω 6= 0 at p. Prove that there is a
coordinate system (x1, . . . , xn) on a neighborhood U of p in which

ω = dx1 ∧ dx2 ∧ · · · ∧ dxn.
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In an arbitrary coordinate system in which p corresponds to the origin,

ω = f(y1, y2, . . . , yn)dy1 ∧ dy2 ∧ · · · ∧ dyn.

Setting

x1 =

∫ y1

0

f(t, y2, . . . , yn)dt,

we then have

dx1 = f dy1 + terms involving dy2, . . . , dyn

and so
ω = dx1 ∧ dy2 ∧ · · · ∧ dyn.

Setting yj = xj for j = 2, . . . , n, we thus have

ω = dx1 ∧ dx2 ∧ · · · ∧ dxn.
Moreover, the inverse function theorem then guarantees that (x1, . . . , xn)
is a coordinates system in some neighborhood of p, since

det

[
∂xj

∂yk

]
= f 6= 0

at the origin.

8. Let ψ ∈ Ωn−1(M) be a smooth (n− 1)-form on a smooth n-manifold M .

(a) Let (y1, . . . , yn) : U → Rn be any smooth coordinate system on M . Prove
that there is a unique smooth vector field X on U such that

ψ = X y (dy1 ∧ · · · ∧ dyn).

The general (n− 1)-form on U is given by

ψ =
n∑
j=1

fj dy
1 ∧ · · · ∧ d̂yj ∧ · · · ∧ dyn

where the “hat” means “omit this term.” Demanding that

X =
∑
j

Xj ∂

∂yj
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satisfy

ψ = X y (dy1 ∧ · · · ∧ dyn).

is thus equivalent to requiring that

Xj = (−1)jfj

(b) Then use this to prove that, near any p ∈M where ψ 6= 0, one can choose
coordinates (x1, . . . , xn) for which

ψ = f dx2 ∧ · · · ∧ dxn

for some smooth positive function f(x1, . . . , xn).

At any such p, and for any coordinate system about p, one has X|p 6= 0. Now
choose a new coordinate system about p in which X = ∂/∂x1. Since

dy1 ∧ · · · ∧ dyn = f dx1 ∧ · · · ∧ dxn

in these coordinates, for some f 6= 0 near p, it therefore follows that

ψ = X y (dy1 ∧ · · · ∧ dyn)

=
∂

∂x1
y (f dx1 ∧ · · · ∧ dxn)

= f dx2 ∧ · · · ∧ dxn,

as claimed
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