Mid-Term Solutions

Geometry /Topology 11
Spring 2009

Do four of the following problems. 25 points each.

1. Recall that a smooth n-manifold N has been defined to be orientable iff
it admits a coordinate atlas for which every coordinate change

(:vl,...,x”)r—>(y1,...,y”)

has positive Jacobian determinant:

J
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Prove that NV is orientable (by this definition) iff there exists a smooth n-form
w € Q*(N) such that w # 0 everywhere. Then show that this happens iff
the rank-1 vector bundle A" — N is trivial.

A non-zero n-form w becomes
w=fdz* N Adz"
in any coordinate chart for some f # 0; moreover, we can change the sign
of f by, for instance, replacing z! with —x'. Now if (y!,...,y") is another
coordinate chart, and if

w=hdy' N ANdy"

then, on the overlap region,



so any two charts in which w has positive coefficient function are orientation-

compatible. The collection of all such charts is therefore an oriented atlas
for M.

Conversely, suppose that {(z!,...2"): U, — R"} is an oriented smooth
atlas for M. Let {f,} be a smooth partition of unity subordinate to the cover
U,; thus, each smooth function f, : M — is non-negative, is supported in
U,, and only finitely many f,’s are non-zero on some neighborhood of any
point. We may therefore set

w:Zfadxi/v--/\dx’;.

Because
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det [—Z‘] >0 Vo, pf,
Ox
each summand is then non-negative in each chart of our oriented atlas, and
since at least one summand is actually positive at any given point, we will
then have w # 0 everywhere on M.

On the other hand, a rank-1 vector bundle £ — M is trivial iff it has a
nowhere-zero section. Indeed, if 0 : M — FE is a non-zero section, then the
map M x R — E given by (p,t) — to(p) is an isomorphism between the
trivial bundle and F; conversely, since p — (p, 1) is a non-zero section of the
trivial bundle M x R — M, any bundle isomorphic to this trivial bundle has
a non-zero section. Applying this the rank-1 bundle A — M thus shows
that A™ is trivial iff M carries a nowhere zero n-form; and the previous
argument then shows that this is in turn equivalent to the orientability of
the n-manifold M.

2. Let f:R" — R be a smooth function, and let ¥ := f~1(0). If df # 0
at each point p € X, prove that ¥ is a smooth orientable n-manifold.

To show that ¥ is a smooth manifold, one uses the inverse function theo-
rem. Namely, near any point p € 3, there must some j such that 9f /027 # 0.
One then considers the map R"*! — R"™! given by (f,z!,... i, , o),
where the “hat” means “omit this entry.” The Jacobian determinant of this
map is then (—1)7T19f /27 +# 0, so the inverse function theorem guarantees
that this a local diffeomorphism near p in R**!, and sends a neighborhood of



pin ¥ to a relatively open set in {0} x R™. This provides the charts necessary
to make ¥ a smooth n-manifold.

It remains to show that 3 is orientable. While this can be done in various
ways, a particularly nice method is to invoke Problem 1, and show that X
admits an n-form which is everywhere non-zero. One such form can be gotten
by considering the vector field

n+1
af o
X=gd £ =2 5000
J:

on R™"! and then considering the n-form

w = X gdat A Ada Tt
af 2 n+1 n af 1 n
= %dx A ANdx™ 4 (1) 0$n+1d9§ A Ndx

on R"". The pull-back of w to ¥ «— R™"! is then non-zero everywhere,
because, for example,

df/\ B n+1 8f 2 ) -
w = Z E dr™ N\ -+ Ndx

j=1
is non-zero in a neighborhood of .

3. Suppose that @w : EF — M is a smooth rank-1 vector bundle over a
manifold M, and let 0); C E denote the image of the zero section of . If
E — 0,/ is connected, prove that every section M — FE must have a zero.
Then use this to prove that the Mobius band is a non-orientable 2-manifold.

Suppose that @w : F — M is a smooth rank-1 vector bundle. If there
were a section o : M — FE with ¢ # 0, we could define a smooth map
F:MxR— FE by

F(p,t) = to(x)

and inspection then reveals that this map would be an isomorphism of vector
bundles. In particular, £ — 0y = M x (R — {0}) could not be connected.

By contraposition, this shows that if £—0,, is connected, then any section
o of £ must have a zero.



Now let us show the Mobius band B is not-orientable. If not, by Problem
1, there would be a non-zero 2-form on B. Thus, if A2 — B is the bundle
of 2-forms, and if £ — S!' denotes its restriction to the middle S!, then
the rank-1 bundle £ — S' would have to admit a a non-zero section, and
E — 0g1 would have to be disconnected. But £ — S! is bundle-isomorphic
to B itself, thought of as a bundle over the circle! (For example, contraction
of 2-forms with the vector field /00 on S! identifies E with B*, and B*
can then be identified with B by using the obvious inner product on fibers.)
Thus, if B were orientable as a 2-manifold, removing the middle S' would
have to disconnect B. But in fact B — 041 deform-retracts to a circle, and so
in particular is connected. This contradiction proves that B is not orientable.

4. Consider the vector fields X and Y on R3 defined by

0 0 0
_ 1 2 3
X = ozl T 0x? v ox3
Y — 1 a 2 a

022 " ot

(a) Explicitly find the flows generated by X and Y.
The flow generated by X is explicitly given by
¢i(z', 2%, 2°) = (e'z’, e'a?, efa?)
while the flow of Y is given by

Yi(at, 2%, 2%) = (2! cost — x?sint, x' sint + 2° cost, 2°).

(b) Compute [X,Y].

X,Y] = XY -YX
_ n 9 2y 9 n_ 9 2y 9 3y_9
= X(:E)@.’EQ X(x)&r] {Y(x)ax]JrY(x)arQqLY(x)axS
0 0 0 9,
T Y2~ 2 Y 1 v
Y a2 dxt [ T T (9(1;2}
= 0.



(c) Explain why your answers to (a) and (b) are related, and consistent.
[X,Y] =0 <= ¢; commutes with 15 Vs,t. But indeed,

V(2 2%, 2%) = (e'z' cos s — e'z? sin s, e’z sin s + e'2? cos 5, e'z?)
while

b (at, 2*, 2%) = (€' (2! cos s — x?sin s), €' (a' sin s + 2% cos 5), e'z?),

so they do commute, as predicted.

5. (a) Let ¢ be any smooth differential form on an open subset of R", and
let Y denote the vector field 9/0z'. Working directly from the definition of
the Lie derivative, show that

Lyp=Y ade+dY 1). (1)

Any k-form ¢ on R” is a finite sum of terms
flt, ... 2™ da!
and terms
h(x!, ... a™)dz" A da’

where I and J are multi-indices with 7, J C {2,...,n}, [I| =n, |[J| =n— 1.
Since both sides are linear in ¢, we merely need check (1) for forms of this
simple type.

Now the flow of Y = 9/dz' is explicitly given by

Yolat, 2? . a™) = (2t +t, 2P 2",
SO 3
Ly (f dz') = a—g{;d:zzl A dxt,
whereas

Y sd(fde") +d(Y o fdz') = Y 4 (i %daf' A da:f> + d(0)
of

i=1
= Fdl‘l A dl’l,
X



o (1) holds for these cases. On the other hand,

oh
1 Ty _ 1 J
Ly(h dz” Ndx”) = axldw A dx?,

while

Y sd(hde* ANda?)+d(Y o b dat Ada?)

0 oh
- Y g J
3x1J< 8xdx A dz! /\dm>+d(hd:c)
= —Z dxj/\dx +Z—d$ A dx”
h
= aa—dac A dx”’
!

and (1) therefore holds for terms of both types, as claimed.
(b) Show that (1) holds if Y = 0 and ¢ any differential form.

If Y = 0, then its flow is the identity, and Ly = 0 for any . But in
this case, the right-hand side of (1) vanishes, too, and the formula therefore
holds.

(c¢) If Y is any smooth vector field and ¢ is any smooth differential form on
a smooth manifold M, use (a) and (b) to show that (1) holds on all of M by
first showing that it holds on a dense open subset of M.

Let U C M be the set where Y # 0, and let V' C M be the interior of
the set where Y = 0. Thus M = U U V. However, every point of U has a
neighborhood on which we can find a coordinate system in which Y = 9/9z";
and every point of V' has a neighborhood on which Y = 0. Hence (1) holds
on U by part (a), and (1) holds on V' by part (b). Thus, the difference of the
two sides of (1) vanishes on U U V. By continuity, it therefore also vanishes
on UUV = M, and we have therefore shown that (1) holds everywhere.

6. Let Y be the vector field on R? appearing in problem 5 (Misprint! Should
have read problem 4!), and let

© = x'dr® A da®.



Compute the Lie derivative Ly ¢ in two ways:

(a) from the definition; and

Using the flow found in Problem 4,

Vi = (x'cost — a?sint)d(x' sint + z%cost) A dz®

= (z'cost — x?sint)(sintdz' + costdr?) A da®
= (;xl sin 2t — a%sin t)da' A da® + (2! cos® t — ;xQ sin 2t)da® A da®
Thus
Ccliz/Jt*ap = (2! cos 2t—2z% sint cos t)dx' Adx®— (22" cost sin t+x? cos 2t)dr* Adx®
and hence

d
Ly = %"/J:Mt:O = z'da' A da® — 2?d2® A do?

(b) by means of (1).

Lyp = Y adp+dY 1)
= (xI% — x2%> Jdat Ada? ANda® +d [(ml% — xQ%) Jxtda? A dwg}
= —z'de' Nda? — 2Pda® Nda® + d (1) d2?)

—ztdat A da® — 22da® A da? + 22 dat A da?

= z'dz! Ada® — 22da? A da?

Then verify that your two answers agree.
My apologies for the confusion caused by the misprint!

7. Let M be a smooth n-manifold, and let w € Q*(M) be a smooth n-form
on M. Let p € M be any point such that w # 0 at p. Prove that there is a
coordinate system (z!,...,2") on a neighborhood U of p in which

w=dz' Ndx® A--- A da™.



In an arbitrary coordinate system in which p corresponds to the origin,
w=fly" vy dy Ady? A Ny

Setting

1

y
= / f(t,yQ, o y")dt,
0
we then have

dx' = f dy' + terms involving dy?, ..., dy"

and so
w=dz' Ndy* A A dy".
Setting 4/ = 27 for j = 2,...,n, we thus have
w=dr' Ndz* A --- Adz".
Moreover, the inverse function theorem then guarantees that (z!,...,z")
is a coordinates system in some neighborhood of p, since
O’
det | — | = 0
[Gy’“] 7

at the origin.

8. Let ¢ € Q" 1(M) be a smooth (n — 1)-form on a smooth n-manifold M.

(a) Let (y',...,y") : U — R" be any smooth coordinate system on M. Prove
that there is a unique smooth vector field X on U such that

V=X 3 (dy' Ao Ndy™).
The general (n — 1)-form on U is given by
¢:ifj Ay A ANdyd A A dy"
=1
where the “hat” meajns “omit this term.” Demanding that
X = zj: Xﬂ‘a%

8



satisfy
V=X J(dy* A ANdy™).

is thus equivalent to requiring that

X = (=1)f;

(b) Then use this to prove that, near any p € M where ¢ # 0, one can choose
coordinates (z!,...,z") for which

Y= fde* A ANdz"
for some smooth positive function f(x!,..., 2").

At any such p, and for any coordinate system about p, one has X|, # 0. Now
choose a new coordinate system about p in which X = 9/dz'. Since

dy' A~ ANdy" = f dat Ao Ada”

in these coordinates, for some f # 0 near p, it therefore follows that

Vv o= X J(dy* N Ady™)
9,

= %J(fdxl/\'/\dl'n)

= fda* Ao Ada",

as claimed



