Mid-Term Solutions

Geometry/Topology II

Spring 2009

Do four of the following problems. 25 points each.

1. Recall that a smooth n-manifold N has been defined to be orientable iff it admits a coordinate atlas for which every coordinate change

$$(x^1, \ldots, x^n) \mapsto (y^1, \ldots, y^n)$$

has positive Jacobian determinant:

$$\det \left[\frac{\partial y^j}{\partial x^k} \right] > 0.$$

Prove that N is orientable (by this definition) iff there exists a smooth n-form $\omega \in \Omega^n(N)$ such that $\omega \neq 0$ everywhere. Then show that this happens iff the rank-1 vector bundle $\Lambda^n \to N$ is trivial.

A non-zero n-form ω becomes

$$\omega = f \, dx^1 \wedge \cdots \wedge dx^n$$

in any coordinate chart for some $f \neq 0$; moreover, we can change the sign of f by, for instance, replacing x^1 with $-x^1$. Now if (y^1, \ldots, y^n) is another coordinate chart, and if

$$\omega = h \, dy^1 \wedge \cdots \wedge dy^n$$

then, on the overlap region,

$$\det \left[\frac{\partial y^j}{\partial x^k} \right] = \frac{f}{h}.$$
so any two charts in which \(\omega \) has positive coefficient function are orientation-compatible. The collection of all such charts is therefore an oriented atlas for \(M \).

Conversely, suppose that \(\{(x^1_\alpha, \ldots x^n_\alpha) : U_\alpha \to \mathbb{R}^n\} \) is an oriented smooth atlas for \(M \). Let \(\{f_\alpha\} \) be a smooth partition of unity subordinate to the cover \(U_\alpha \); thus, each smooth function \(f_\alpha : M \to \mathbb{R} \) is non-negative, is supported in \(U_\alpha \), and only finitely many \(f_\alpha \)'s are non-zero on some neighborhood of any point. We may therefore set

\[
\omega = \sum_\alpha f_\alpha dx^1_\alpha \wedge \cdots \wedge dx^n_\alpha.
\]

Because

\[
\det \left[\frac{\partial x^j_\alpha}{\partial x^k_\beta} \right] > 0 \ \forall \alpha, \beta,
\]

each summand is then non-negative in each chart of our oriented atlas, and since at least one summand is actually positive at any given point, we will then have \(\omega \neq 0 \) everywhere on \(M \).

On the other hand, a rank-1 vector bundle \(E \to M \) is trivial iff it has a nowhere-zero section. Indeed, if \(\sigma : M \to E \) is a non-zero section, then the map \(M \times \mathbb{R} \to E \) given by \((p, t) \mapsto t\sigma(p)\) is an isomorphism between the trivial bundle and \(E \); conversely, since \(p \mapsto (p, 1) \) is a non-zero section of the trivial bundle \(M \times \mathbb{R} \to M \), any bundle isomorphic to this trivial bundle has a non-zero section. Applying this the rank-1 bundle \(\Lambda^n \to M \) thus shows that \(\Lambda^n \) is trivial iff \(M \) carries a nowhere zero \(n \)-form; and the previous argument then shows that this is in turn equivalent to the orientability of the \(n \)-manifold \(M \).

2. Let \(f : \mathbb{R}^{n+1} \to \mathbb{R} \) be a smooth function, and let \(\Sigma := f^{-1}(0) \). If \(df \neq 0 \) at each point \(p \in \Sigma \), prove that \(\Sigma \) is a smooth orientable \(n \)-manifold.

To show that \(\Sigma \) is a smooth manifold, one uses the inverse function theorem. Namely, near any point \(p \in \Sigma \), there must some \(j \) such that \(\partial f / \partial x^j \neq 0 \). One then considers the map \(\mathbb{R}^{n+1} \to \mathbb{R}^{n+1} \) given by \((f, x^1, \ldots, \hat{x^j}, \ldots, x^{n+1})\), where the “hat” means “omit this entry.” The Jacobian determinant of this map is then \((-1)^{j+1} \partial f / \partial x^j \neq 0 \), so the inverse function theorem guarantees that this a local diffeomorphism near \(p \) in \(\mathbb{R}^{n+1} \), and sends a neighborhood of
p in Σ to a relatively open set in \(\{ 0 \} \times \mathbb{R}^n \). This provides the charts necessary to make Σ a smooth \(n \)-manifold.

It remains to show that Σ is orientable. While this can be done in various ways, a particularly nice method is to invoke Problem 1, and show that Σ admits an \(n \)-form which is everywhere non-zero. One such form can be gotten by considering the vector field

\[
X = \text{grad } f = \sum_{j=1}^{n+1} \frac{\partial f}{\partial x^j} \frac{\partial}{\partial x^j}
\]
on \(\mathbb{R}^{n+1} \), and then considering the \(n \)-form

\[
\omega = X \lrcorner \, dx^1 \wedge \cdots \wedge dx^{n+1} = \frac{\partial f}{\partial x^1} dx^2 \wedge \cdots \wedge dx^{n+1} + \cdots + (-1)^n \frac{\partial f}{\partial x^{n+1}} dx^1 \wedge \cdots \wedge dx^n
\]
on \(\mathbb{R}^{n+1} \). The pull-back of \(\omega \) to \(\Sigma \hookrightarrow \mathbb{R}^{n+1} \) is then non-zero everywhere, because, for example,

\[
df \wedge \omega = \left[\sum_{j=1}^{n+1} \left(\frac{\partial f}{\partial x^j} \right)^2 \right] dx^1 \wedge \cdots \wedge dx^{n+1}
\]
is non-zero in a neighborhood of Σ.

3. Suppose that \(\varpi : E \to M \) is a smooth rank-1 vector bundle over a manifold \(M \), and let \(0_M \subset E \) denote the image of the zero section of \(E \). If \(E \setminus 0_M \) is connected, prove that every section \(\sigma : M \to E \) must have a zero. Then use this to prove that the Möbius band is a non-orientable 2-manifold.

Suppose that \(\varpi : E \to M \) is a smooth rank-1 vector bundle. If there were a section \(\sigma : M \to E \) with \(\sigma \neq 0 \), we could define a smooth map \(F : M \times \mathbb{R} \to E \) by

\[
F(p, t) = t\sigma(x)
\]
and inspection then reveals that this map would be an isomorphism of vector bundles. In particular, \(E \setminus 0_M \approx M \times (\mathbb{R} \setminus \{0\}) \) could not be connected.

By contraposition, this shows that if \(E \setminus 0_M \) is connected, then any section \(\sigma \) of \(E \) must have a zero.
Now let us show the Möbius band B is not-orientable. If not, by Problem 1, there would be a non-zero 2-form on B. Thus, if $\Lambda^2 \to B$ is the bundle of 2-forms, and if $E \to S^1$ denotes its restriction to the middle S^1, then the rank-1 bundle $E \to S^1$ would have to admit a non-zero section, and $E - 0_{S^1}$ would have to be disconnected. But $E \to S^1$ is bundle-isomorphic to B itself, thought of as a bundle over the circle! (For example, contraction of 2-forms with the vector field $\partial/\partial \theta$ on S^1 identifies E with B^*, and B^* can then be identified with B by using the obvious inner product on fibers.) Thus, if B were orientable as a 2-manifold, removing the middle S^1 would have to disconnect B. But in fact $B - 0_{S^1}$ deform-retracts to a circle, and so in particular is connected. This contradiction proves that B is not orientable.

4. Consider the vector fields X and Y on \mathbb{R}^3 defined by

\[
X = x^1 \frac{\partial}{\partial x^1} + x^2 \frac{\partial}{\partial x^2} + x^3 \frac{\partial}{\partial x^3}, \\
Y = x^1 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial x^1}.
\]

(a) Explicitly find the flows generated by X and Y.

The flow generated by X is explicitly given by

\[
\phi_t(x^1, x^2, x^3) = (e^t x^1, e^t x^2, e^t x^3)
\]

while the flow of Y is given by

\[
\psi_t(x^1, x^2, x^3) = (x^1 \cos t - x^2 \sin t, x^1 \sin t + x^2 \cos t, x^3).
\]

(b) Compute $[X, Y]$.

\[
[X, Y] = XY - YX = X(x^1) \frac{\partial}{\partial x^2} - X(x^2) \frac{\partial}{\partial x^1} - \left[Y(x^1) \frac{\partial}{\partial x^1} + Y(x^2) \frac{\partial}{\partial x^2} + Y(x^3) \frac{\partial}{\partial x^3} \right]
\]

\[
= x^1 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial x^1} - \left[-x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2} \right]
\]

\[
= 0.
\]
(c) Explain why your answers to (a) and (b) are related, and consistent.

\[[X,Y] = 0 \iff \phi_t \text{ commutes with } \psi_s \ \forall s,t. \]

But indeed,

\[\psi_s \phi_t(x^1, x^2, x^3) = (e^t x^1 \cos s - e^t x^2 \sin s, e^t x^1 \sin s + e^t x^2 \cos s, e^t x^3) \]

while

\[\phi_t \psi_s(x^1, x^2, x^3) = (e^t(x^1 \cos s - x^2 \sin s), e^t(x^1 \sin s + x^2 \cos s), e^t x^3), \]

so they do commute, as predicted.

5. (a) Let \(\varphi \) be any smooth differential form on an open subset of \(\mathbb{R}^n \), and let \(Y \) denote the vector field \(\partial / \partial x^1 \). Working directly from the definition of the Lie derivative, show that

\[\mathcal{L}_Y \varphi = Y \lrcorner d\varphi + d(Y \lrcorner \varphi). \]

Any \(k \)-form \(\varphi \) on \(\mathbb{R}^n \) is a finite sum of terms

\[f(x^1, \ldots, x^n)dx^I \]

and terms

\[h(x^1, \ldots, x^n)dx^1 \wedge dx^I \]

where \(I \) and \(J \) are multi-indices with \(I, J \subset \{2, \ldots, n\}; |I| = n, |J| = n-1 \). Since both sides are linear in \(\varphi \), we merely need check (1) for forms of this simple type.

Now the flow of \(Y = \partial / \partial x^1 \) is explicitly given by

\[\psi_t(x^1, x^2, \ldots, x^n) = (x^1 + t, x^2, \ldots, x^n), \]

so

\[\mathcal{L}_Y(f dx^I) = \frac{\partial f}{\partial x^1} dx^1 \wedge dx^I, \]

whereas

\[Y \lrcorner d(fd^I) + d(Y \lrcorner fd^I) = Y \lrcorner \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x^i} dx^i \wedge dx^I \right) + d(0) \]

\[= \frac{\partial f}{\partial x^1} dx^1 \wedge dx^I, \]
so (1) holds for these cases. On the other hand,

$$\mathcal{L}_Y(h \, dx^1 \wedge dx^J) = \frac{\partial h}{\partial x^1} \, dx^1 \wedge dx^J,$$

while

$$Y \cdot d(h \, dx^1 \wedge dx^J) + d(Y \cdot h \, dx^1 \wedge dx^J)$$

$$= \frac{\partial}{\partial x^1} \cdot \left(\sum_{j=2}^{n} \frac{\partial h}{\partial x^j} \, dx^j \wedge dx^1 \wedge dx^J \right) + d(h \, dx^J)$$

$$= - \sum_{j=2}^{n} \frac{\partial h}{\partial x^j} \, dx^j \wedge dx^J + \sum_{i=1}^{n} \frac{\partial h}{\partial x^i} \, dx^i \wedge dx^J$$

$$= \frac{\partial h}{\partial x^1} \, dx^1 \wedge dx^J$$

and (1) therefore holds for terms of both types, as claimed.

(b) Show that (1) holds if $Y \equiv 0$ and φ any differential form.

If $Y \equiv 0$, then its flow is the identity, and $\mathcal{L}_Y \varphi = 0$ for any φ. But in this case, the right-hand side of (1) vanishes, too, and the formula therefore holds.

(c) If Y is any smooth vector field and φ is any smooth differential form on a smooth manifold M, use (a) and (b) to show that (1) holds on all of M by first showing that it holds on a dense open subset of M.

Let $U \subset M$ be the set where $Y \neq 0$, and let $V \subset M$ be the interior of the set where $Y = 0$. Thus $M = \overline{U} \cup V$. However, every point of U has a neighborhood on which we can find a coordinate system in which $Y = \partial / \partial x^1$; and every point of V has a neighborhood on which $Y \equiv 0$. Hence (1) holds on U by part (a), and (1) holds on V by part (b). Thus, the difference of the two sides of (1) vanishes on $U \cup V$. By continuity, it therefore also vanishes on $U \cup V = M$, and we have therefore shown that (1) holds everywhere.

6. Let Y be the vector field on \mathbb{R}^3 appearing in problem 5 (Misprint! Should have read problem 4!), and let

$$\varphi = x^1 dx^2 \wedge dx^3.$$
Compute the Lie derivative $L_Y \varphi$ in two ways:

(a) from the definition; and

Using the flow found in Problem 4,

$$\psi_t^* \varphi = (x^1 \cos t - x^2 \sin t)d(x^1 \sin t + x^2 \cos t) \wedge dx^3$$
$$= (x^1 \cos t - x^2 \sin t)(\sin tdx^1 + \cos tdx^2) \wedge dx^3$$
$$= \left(\frac{1}{2}x^1 \sin 2t - x^2 \sin^2 t \right)dx^1 \wedge dx^3 + (x^1 \cos^2 t - \frac{1}{2}x^2 \sin 2t)dx^2 \wedge dx^3$$

Thus

$$\frac{d}{dt}\psi_t^* \varphi = (x^1 \cos 2t - 2x^2 \sin t \cos t)dx^1 \wedge dx^3 - (2x^1 \cos t \sin t + x^2 \cos 2t)dx^2 \wedge dx^3$$

and hence

$$L_Y \varphi = \frac{d}{dt}\psi_t^* \varphi|_{t=0} = x^1 dx^1 \wedge dx^3 - x^2 dx^2 \wedge dx^3$$

(b) by means of (1).

$$L_Y \varphi = Y \lrcorner d\varphi + d(Y \lrcorner \varphi)$$
$$= \left(x^1 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial x^1} \right) \lrcorner dx^1 \wedge dx^2 \wedge dx^3 + d \left[\left(x^1 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial x^1} \right) \lrcorner x^1 dx^2 \wedge dx^3 \right]$$
$$= -x^1 dx^1 \wedge dx^3 - x^2 dx^2 \wedge dx^3 + d \left[(x^1)^2 dx^3 \right]$$
$$= -x^1 dx^1 \wedge dx^3 - x^2 dx^2 \wedge dx^3 + 2x^1 dx^1 \wedge dx^3$$
$$= x^1 dx^1 \wedge dx^3 - x^2 dx^2 \wedge dx^3$$

Then verify that your two answers agree.

My apologies for the confusion caused by the misprint!

7. Let M be a smooth n-manifold, and let $\omega \in \Omega^n(M)$ be a smooth n-form on M. Let $p \in M$ be any point such that $\omega \neq 0$ at p. Prove that there is a coordinate system (x^1, \ldots, x^n) on a neighborhood U of p in which

$$\omega = dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n.$$
In an arbitrary coordinate system in which \(p \) corresponds to the origin,

\[
\omega = f(y^1, y^2, \ldots, y^n)dy^1 \wedge dy^2 \wedge \cdots \wedge dy^n.
\]

Setting

\[
x^1 = \int_0^{y^1} f(t, y^2, \ldots, y^n)dt,
\]

we then have

\[
dx^1 = f \ dy^1 + \text{terms involving } dy^2, \ldots, dy^n
\]

and so

\[
\omega = dx^1 \wedge dy^2 \wedge \cdots \wedge dy^n.
\]

Setting \(y^j = x^j \) for \(j = 2, \ldots, n \), we thus have

\[
\omega = dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n.
\]

Moreover, the inverse function theorem then guarantees that \((x^1, \ldots, x^n) \) is a coordinates system in some neighborhood of \(p \), since

\[
\det \left[\frac{\partial x^j}{\partial y^k} \right] = f \neq 0
\]

at the origin.

8. Let \(\psi \in \Omega^{n-1}(M) \) be a smooth \((n-1)\)-form on a smooth \(n \)-manifold \(M \).

(a) Let \((y^1, \ldots, y^n) : U \to \mathbb{R}^n\) be any smooth coordinate system on \(M \). Prove that there is a unique smooth vector field \(X \) on \(U \) such that

\[
\psi = X \lrcorner (dy^1 \wedge \cdots \wedge dy^n).
\]

The general \((n-1)\)-form on \(U \) is given by

\[
\psi = \sum_{j=1}^n f_j \ dy^1 \wedge \cdots \wedge \widehat{dy^j} \wedge \cdots \wedge dy^n
\]

where the “hat” means “omit this term.” Demanding that

\[
X = \sum_j X^j \frac{\partial}{\partial y^j}
\]
satisfy
\[\psi = X \downarrow (dy^1 \wedge \cdots \wedge dy^n).\]
is thus equivalent to requiring that
\[X^j = (-1)^j f_j\]

(b) Then use this to prove that, near any \(p \in M\) where \(\psi \neq 0\), one can choose coordinates \((x^1, \ldots, x^n)\) for which
\[\psi = f \, dx^2 \wedge \cdots \wedge dx^n\]
for some smooth positive function \(f(x^1, \ldots, x^n)\).

At any such \(p\), and for any coordinate system about \(p\), one has \(X|_p \neq 0\). Now choose a new coordinate system about \(p\) in which \(X = \partial/\partial x^1\). Since
\[dy^1 \wedge \cdots \wedge dy^n = f \, dx^1 \wedge \cdots \wedge dx^n\]
in these coordinates, for some \(f \neq 0\) near \(p\), it therefore follows that
\[
\psi = X \downarrow (dy^1 \wedge \cdots \wedge dy^n)
= \frac{\partial}{\partial x^1} \downarrow (f \, dx^1 \wedge \cdots \wedge dx^n)
= f \, dx^2 \wedge \cdots \wedge dx^n,
\]
as claimed