
Final Exam Solution Guide
MAT 200

There are seven questions, of varying point-value.
Each question is worth the indicated number of points.

1. (15 points) If X is uncountable and A ⊆ X is countable, prove that
X −A is uncountable. What does this tell us about the set of irrational real
numbers?

A set is called countable if it is either finite or denumerable. A set Y is
countable if and only if there exists an injection f : Y → Z+.

Our hypotheses say that A is countable and that X is uncountable. We
now proceed via proof by contradiction. If X−A were countable, there would
be an injection f : (X −A)→ Z+. Since A is countable by hypothesis, there
is certainly an injection g : A→ Z+. The function h : X → Z+ defined by

h(x) =

{
2g(x), if x ∈ A

2f(x) + 1, if x ∈ (X − A)

would then be injective, sending distinct elements of A to distinct even inte-
gers and distinct elements of X −A to distinct odd integers. Thus X would
be countable, in contradiction to our hypothesis. This shows that X − A
must be uncountable.

As an application, we now consider the example given by X = R and
A = Q. Since Cantor proved that the set R of real numbers is uncountable,
and since the set Q of rational number is countable, it follows that the set
R−Q of irrational real numbers is uncountable.
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2. (15 points) Prove by induction that

n∑
k=1

k3 =
(n+ 1)2n2

4

for every positive integer n.

For any n ∈ Z+, let P (n) be the statement that

n∑
k=1

k3 =
(n+ 1)2n2

4
.

The base case P (1) then says that

13 =
22 · 1

4
,

which is certainly true.
We now need to prove that P (m) =⇒ P (m + 1) for any positive integer

m. Thus, suppose that

m∑
k=1

k3 =
(m+ 1)2m2

4

holds for some positive integer m. It then follows that

m+1∑
k=1

k3 =

(
m∑

k=1

k3

)
+ (m+ 1)3

=
(m+ 1)2m2

4
+ (m+ 1)3

=
m2(m+ 1)2 + 4(m+ 1)(m+ 1)2

4

=
(m2 + 4m+ 4)(m+ 1)2

4

=
(m+ 2)2(m+ 1)2

4

so we have shown that the statment P (m+ 1) is a logical conseqence of the
statement P (m).

By the principle of induction, P (n) therefore holds for all n ∈ Z+.
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3. (15 points) Let X and Y be finite sets, with |X| = n ≥ 3 and |Y | = 3.
Compute ∣∣∣{f : X → Y

∣∣∣ f surjective
}∣∣∣.

Hint: How many f aren’t surjective? Use the inclusion/exclusion principle.

Let yj, j = 1, 2, 3, denote the three elements of Y , so that

Y = {y1, y2, y3}.

For j = 1, 2, 3, let Aj be the set of all functions f : X → Y − {yj}. Thus

Aj = {f : X → Y | yj 6∈ ~f(X)}.

We then have

A1 ∪ A2 ∪ A3 = {f : X → Y | f is not surjective}.

Now
|Aj| = |Y − {yj}||X| = 2n

for each j. Similarly
|Aj ∩ Ak| = 1

for each j 6= k, and
A1 ∩ A2 ∩ A3 = ∅.

The inclusion/exclusion principle therefore implies that

|A1 ∪ A2 ∪ A3| =
∑

j

|Aj| −
∑
j<k

|Aj ∩ Ak|+ |A1 ∩ A2 ∩ A3|

= 3 · 2n − 3

Since
|{f : X → Y }| = |Y ||X| = 3n

we therefore have∣∣∣{f : X → Y
∣∣∣ f surjective

}∣∣∣ = 3n − (3 · 2n − 3) = 3(3n−1 − 2n + 1).
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4. (15 points) Let A and B be distinct points in the plane. Assuming the
axioms of Euclidean geometry, prove that the set

L =
{

C ∈ Plane
∣∣∣ |AC| = |BC|

}
is a line.

Hint: First show that there is a unique line ` through the mid-point of AB

which meets
←→
AB in a right angle. Then show that L = `.

By the ruler axiom, the segment AB has a mid-point, which is the unique

M ∈
←→
AB with |AM| = |MB|. Choose a side of

←→
AB, which we treat as the

interior of the straight angle ∠AMB. The protractor axiom then says that we

can find a unique ray
−→
MD on the chosen side of

←→
AB such that m∠AMD = π/2.

If D′ ∈
←→
MD is on the opposite side of

←→
AB from D, we have m∠AMD =

m∠AMD′ = m∠BMD = m∠BMD′ = π/2 by vertical and supplementary

angles, so we would have therefore constructed exactly the same line
←→
MD if

we had instead chosen the opposite side of
←→
AB, or had interchanged A and

B. The line ` =
←→
MD is therefore uniquely defined; it is usually called the

perpendicular bisector of AB.
Let us next show that L ⊆ `. If C ∈ L, then |AC| = |BC|, by the definition

of L. If C ∈
←→
AB, we then have C = M, so C ∈ ` =

←→
MD, as claimed. Otherwise,

the triangles 4AMC and 4BMC are well defined, as in each case the given
vertices are not collinear. However, |AC| = |BC|, |AM| = |BM| and |MC| =
|MC|. Hence 4AMC ∼= 4BMC by the SSS congruence theorem. Therefore
m∠AMC = m∠BMC. Since these angles are supplementary, we therefore

have m∠AMC = π/2. Hence
←→
MC= `, and C ∈ `. Thus (C ∈ L) =⇒ (C ∈ `),

and L ⊆ `, as claimed.
We now show that ` ⊆ L. If C ∈ `, either C = M, and hence C ∈

L, or else C 6∈
←→
AB. In the latter case, 4AMC and 4BMC are then well

defined. Moreover, m∠AMC = m∠BMC = π/2, since ` is perpendicular to
←→
AB. Moreover, |AM| = |BM| and |MC| = |MC|. Consequently, 4AMC ∼=
4BMC by the SAS congruence axiom. Hence |AC| = |BC|, and so C ∈ L.
That is, (C ∈ `) =⇒ (C ∈ L), and ` ⊆ L.

Since L ⊆ ` and ` ⊆ L, L = `. In particular, L is a line, as claimed.
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5. (10 points) Let n ≥ 2 be an integer. Use modular arithmetic to show that(
n

2

)
=
n(n− 1)

2

is always an integer, and is even if and only if n ≡ 0 or 1 mod 4.

The question is equivalent to showing that

n(n− 1) ≡ 0 or 2 mod 4

for any integer n, and that

n(n− 1) ≡ 0 mod 4

iff n ≡ 0 or 1 mod 4.
Modulo 4, any integer n is congruent to 0, 1, 2, or 3. Let us tabulate the

relevant products of remainders mod 4:

n n− 1 n(n− 1)
0 3 0
1 0 0
2 1 2
3 2 2

Thus n(n − 1) ≡ 0 or 2 mod 4 for any n, and is ≡ 0 mod 4 if and only if
n ≡ 0 or 1 mod 4, exactly as claimed.
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6. (20 points) (a) Use modular arithmetic to prove the following:

If n is an integer, and if n2 is divisible by 5, then n is divisible by 5.

Hint: What is the contrapositive, in terms of congruence mod 5?

We must show that (n 6≡ 0 mod 5) =⇒ (n2 6≡ 0 mod 5). Since any integer
is congruent mod 5 to 0, 1, 2, 3, or 4, we merely need to make a table of
squares, modulo 5:

n n2

0 0
1 1
2 4
3 4
4 1

By direct inspection, we conclude that n2 6≡ 0 mod 5 whenever n 6≡ 0 mod 5,
as claimed.

(b) Use part (a) to prove that there is no rational number q with q2 = 5.
Conclude that

√
5 /∈ Q.

Hint: If there were such a q, first argue that it could be expressed as a/b,
where at least one of the integers a, b isn’t divisible by 5.

Any rational number q may be expressed as a quotient a/b, where a ∈ Z,
b ∈ Z+, and by repeatedly cancelling common factors of 5, we may assume
that at most one of a, b is divisible by 5. Now, having done this, let us assume
our rational number q satisfies q2 = 5. We then have a2

b2
= 5, so that a2 = 5b2

and a2 ≡ 0 mod 5. But, by part (a), this implies that a ≡ 0 mod 5. Hence
a = 5n for some n ∈ Z, and

25n2

b2
=
a2

b2
= 5

and hence b2 = 5n2. Thus b2 ≡ 0 mod 5. and part (a), this implies that
b ≡ 0 mod 5. That is, both a and b are divisible by 5, contradicting our
assumption. Hence no such q exists; that is,

√
5 cannot be a rational number.
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7. (10 points) Let X and Y be sets, and let f : X → Y be a function. For
a, b ∈ X, define the expression

a ' b

to mean that
f(a) = f(b).

Prove that ' is an equivalence relation on X.

We need to verify that ' is

(R) reflexive:

(S) symmetric; and

(T) transitive.

Reflexive: Since f(a) = f(a) for any a ∈ X, we always have a ' a. Thus '
is reflexive.

Symmetric: If f(a) = f(b), it follows that f(b) = f(a). Thus (a ' b) =⇒
(b ' a), and ' is therefore symmetric.

Transitive: If f(a) = f(b) and f(b) = f(c), it follows that f(a) = f(c). Thus
(a ' b and b ' c) =⇒ (a ' c), and ' is therefore transitive.

Since the relation ' on X is reflexive, symmetric, and transitive, it follows
that ' is an equivalence relation.
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