THERE ARE FIVE (5) PROBLEMS. THEY HAVE THE INDICATED VALUE.

SHOW YOUR WORK

DO NOT TEAR-OFF ANY PAGE

NO CALCULATORS NO CELLS ETC.

ON YOUR DESK: ONLY test, pen, pencil, eraser.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50pts</td>
</tr>
<tr>
<td>2</td>
<td>50pts</td>
</tr>
<tr>
<td>3</td>
<td>50pts</td>
</tr>
<tr>
<td>4</td>
<td>50pts</td>
</tr>
<tr>
<td>Total</td>
<td>200pts</td>
</tr>
</tbody>
</table>
1. Solve the linear system:

\[
\begin{align*}
2x + 4y + 6z &= 2 \\
x + 3y + 4z &= 3 \\
x + 4y + 5z &= 4
\end{align*}
\]
2.

Find the basis of kernel and image of the linear transformation given by the matrix:

\[A = \begin{pmatrix} 2 & 4 & 6 \\ 1 & 3 & 4 \\ 1 & 4 & 5 \end{pmatrix} \]

Is the vector (2, 3, 4) in the image of \(A \)?
3. Find the matrix representing each of the following linear transformations.
 (1) T_1: Rotation by 30° clockwise on the plane.
 (2) T_2: Reflection with respect to the line $y = 2x$.
 (3) The composition $T_2 \circ T_1$.
Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix}$

(1) Calculate AB and BA.
(2) Calculate $(AB)^{-1}$ and $(BA)^{-1}$ if they exist.
Scratch paper