THERE ARE EIGHT (8) PROBLEMS. THEY HAVE THE INDICATED VALUE.

SHOW YOUR WORK

DO NOT TEAR-OFF ANY PAGE

NO CALCULATORS NO CELLS ETC.

ON YOUR DESK: ONLY test, pen, pencil, eraser.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50pts</td>
</tr>
<tr>
<td>2</td>
<td>50pts</td>
</tr>
<tr>
<td>3</td>
<td>50pts</td>
</tr>
<tr>
<td>4</td>
<td>50pts</td>
</tr>
<tr>
<td>5</td>
<td>50pts</td>
</tr>
<tr>
<td>6</td>
<td>50pts</td>
</tr>
<tr>
<td>7</td>
<td>50pts</td>
</tr>
<tr>
<td>8</td>
<td>50pts</td>
</tr>
<tr>
<td>Total</td>
<td>400pts</td>
</tr>
</tbody>
</table>
1. (50pts) Linear system/Gauss-Jordan

Solve the linear system:

\[
\begin{align*}
 x_1 + x_2 + x_3 + x_4 &= 1 \\
 x_1 + x_2 + 2x_3 + 4x_4 &= 4 \\
 -2x_1 - 2x_2 - x_3 + x_4 &= 1
\end{align*}
\]
2. (50pts) Matrix operation: transpose/product/inverse

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 2 & 1 & 2 \end{pmatrix}. \]

(a.) Calculate \(A^T A \).

(b.) Find the \(A^{-1} \). Express the inverse of matrices in part (a) using \(A^{-1} \). You don’t need to calculate.
3. (50pts) Basis/orthonormal basis/orthogonal complement
Consider the plane in \(\mathbb{R}^3 \) defined by:
\[
V : x - 2y + 2z = 0.
\]
(a.) Find a basis \(B_1 \) of \(V \).
(b.) Use Gram-Schmidt process to get an orthonormal basis \(B_2 \) of \(V \).
(c.) Find another vector \(\vec{v}_3 \in \mathbb{R}^3 \) such that \(B_2 \cup \{ \vec{v}_3 \} \) is an orthonormal basis of \(\mathbb{R}^3 \).
4. (50pts) Linear transformation/Linear isomorphism
Consider the transformation $T : P_2 \rightarrow P_2$. $T(f) = x^2 f'' - xf' + f$.

(a.) Is T linear? Why?
(b.) Is T an isomorphism?
5: Orthogonal matrices/Properties of orthogonal matrices

(a.) Find the matrix A representing the rotation around $\vec{e}_3 -$axis by 30°, counterclockwise as viewed from positive \vec{e}_3-axis.

(b.) Find the matrix B representing the rotation around $\vec{e}_1 -$axis by 90°, counterclockwise as viewed from positive \vec{e}_1-axis.

(c.) Calculate AB. Is it an orthogonal matrix? Why?
6. (50pts) Determinant/Adjoint matrices and its relation with inverses

Let

\[A = \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 0 & 2 & 4 \\
3 & 0 & 2 & 0 \\
2 & 0 & 0 & 0
\end{pmatrix}. \]

(a.) Calculate the determinant of \(A \)

(b.) Calculate the (23)-entry of \(\text{adj}(A) \).
7. (50pts) Matrices of orthogonal projections/Diagonalizability

Consider the line $L = \text{Span}\{(2, 4, 5)\}$ in \mathbb{R}^3 passing through the origin.

(a.) Find the matrix representing the projection to L in \mathbb{R}^3.

(b.) Is the above obtained matrix diagonalizable? If it is, what is the corresponding diagonal matrix?
8. (50pts) Eigenvalue/Eigenvector/Eigenspaces

Let

\[A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}. \]

(a.) Find eigenvalues of \(A \).
(b.) Determine eigenspaces of \(A \).
(c.) Is \(A \) diagonalizable? If it is, then what’s the corresponding diagonal matrix?
Scratch paper