MAT 203 **FALL 2013** **Practice MIDTERM I**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40pts</td>
</tr>
<tr>
<td>2</td>
<td>50pts</td>
</tr>
<tr>
<td>3</td>
<td>45pts</td>
</tr>
<tr>
<td>4</td>
<td>40pts</td>
</tr>
<tr>
<td>5</td>
<td>45pts</td>
</tr>
<tr>
<td>6</td>
<td>40pts</td>
</tr>
</tbody>
</table>

Total **260pts**
1. (40pts)

(a): Find the area of parallelogram on the plane with the following vertices
A(0, 0), B(7, 3), C(9, 8), D(2, 5).

(b): Calculate the cosines of the angles of the parallelogram.
2. (50pts) (a): Classify each of the following surfaces. Sketch the surface if possible.

(1) \(x^2 + y^2 - 2x + 4y = 0. \)
(2) \(y^2 + z^2 = 4. \)
(3) \(x^2 - z^2 - y^2 = 1. \)

(b): A quadric surface is a revolution surface obtained by rotating the curve \(x = -y^2 \) around the \(x \)-axis. Write down the equation for this surface and classify it.
3. (45pts)

Consider a point and a plane given by
\[P = (1, 0, -1); \quad H : -4x + y + z = 4. \]

(a): Find the equation of the line passing through \(P \) and perpendicular to the plane \(H \).

(b): Find the intersection point of \(L \) with \(H \).

(c): Find the distance between the point and the plane.
4. (40pts)

Assume we have a vector valued function satisfying
\[\vec{r}''(t) = -32\vec{j}, \quad r(0) = 8\vec{j} + 8\vec{k}, \quad \vec{r}'(0) = 8\vec{i} + 8\vec{j}. \]

(a): Find the expression for \(\vec{r}(t) \).

(b): Assume the curve \(C \) is described by the vector-valued function \(\vec{r}(t) \). Find the intersection points of \(C \) with the \(xz \)-plane.
5. (45pts)

Consider a motion is described by the smooth plane curve
\[\vec{r}(t) = (2 \cos t)\hat{i} + (\sin t)\hat{j}. \]

(a): Sketch this curve. Calculate \(\vec{v}(t)\) and \(\vec{a}(t)\) for any \(t\).

(b): Find the unit tangent vector for any \(t\). Calculate the component of acceleration in the direction of \(\vec{T}\): \(a_T = \vec{a} \cdot \vec{T}\).

(c): Find the principal normal vector \(\vec{N}(2\pi/3)\) when \(t = \frac{2\pi}{3}\).
6. (40pts)

Calculate the length of the curve within the given interval
\[\vec{r}(t) = (\cos^3 t) \hat{j} + (\sin^3 t) \hat{k}, \quad 0 \leq t \leq \pi/2. \]