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Nice to be back at SUNY. I was here 10 years ago

when I had some very preliminary results to talk about1.

There was an inspiring conversation with Sullivan who

explained how he and Thurston had developed a QC

mapping theorem for the domains in RRR3 which are

“inscribed by balls”( in analogy to their work in RRR2, also

described in this conference).

This work has been developed over 10 years, prelimi-

nary versions were given at the Hayman fest in London

(2002) and Purdue. Final version was announced at UM

colloquium. First time before international QC experts

was the conference in Israel (2006). I will be describing

5 long papers. Forgive me if it sounds all conceptual I

emphaisize there was a myraid of technical problems were

solved.

On www.quasiconformal.com you’ll find links to pa-

pers. At the moment it has the original annoucement on

the ARKIV but shortly this will be will be updated.

1Reifenberg conditions on a surface were equivalent to a bilip reflection, at least for
small constants

1



The problem of finding good co-ordinates is one of

the oldest in mathematics. As the earth is not perfect

sphere Gauss raised the question of finding orthogonal

co-ordinate systems on arbitrary surfaces.

This question was finally completely solved by Ahlfors

and Bers (Annals, 1960).

“Measurable Riemann Mapping”

The analytic case is the Uniformization Theorem:

Hilbert’s XXII problem(1900 ICM). 2

Proof by Paul Koebe (1907)

(Riemann Mapping Theorem )

Any simply connected domain ( 6= RRR2) is conformally

equivalent to BBB2

We tend to forgot about the requirement of

“non-empty boundary”. However in higher dimensions

we find that the boundary properties are crucial.

2Hilbert asked about higher dimensions too, but only for several complex variables!
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Now by Liouville the only conformal mappings of

domains of RRR3 are elementary: rotations, inversions etc.

Instead we consider K-quasiconformal mappings

F : D → R

homeomorphisms mapping small balls onto ellipsoids of

bounded eccentricity. (e.g. PL maps, diffeomorphisms)

In general we consider Quasisymmetric (QS) mappings:

F : RRRm → S ⊂ RRRn

here n ≥ m. Now for any conformal mapping

L : RRRm → RRRm

the renormalization is

F̃ = {F ◦ L− F ◦ L(0)} /t

where normalizing factor t = ||F ◦ L(i)− F ◦ L(0)||.

F is quasisymmetric (QS) iff the renormalizations are

precompact in space of homeomorphisms. 3

3The idea is familar from calculus where one definition of derivative says the “blowups”
converge to linear functions.
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Some facts about QS:

1. n=m ⇒ QS = QC.

2. Any QS map F : RRRm → RRRm extends to a QC

mapping of RRRm+1 (see versions by Ahlfors, Carleson

as well as Väisälä ,Tukia, Douady and Earle)

Väisälä and Gehring (Acta, 1964) produced many

necessary and different sufficient conditions for a domain

to be a QC image of BBB3, i.e. a QC -ball.

Ahlfors (1964) to asked:

Characterize QC-balls.

This question was repeated by Ahlfors in 1978 ICM

plenary talk and Gehring in his 1986 ICM plenary talk.
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THE FOLLOWING ARE QC-BALLS:

1. Smooth topological balls

2. Half spaces

3. Cylinders

4. Smooth WITH outward cusp.

BUT THESE ARE NOT:

1. Space between parallel planes

2. Smooth WITH inward cusp.

More sophisticated examples of QC-balls come from

the Suliivan-Thurston method of inscribed balls, i.e. soap

bubble domains. You begin with a ball. Then take a

circle packing of its boundary. Each circle is now

extended to a full ball. Then you take a circle packing

of the exposed boundaries of the new balls... obviously

you have to be careful to have new balls always disjoint

but otherwise iterating this process always gives you a

QC-ball in the limit.
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A Sullivan-Thurston Domain :
i.e a tree of  inscribed   balls
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Global Problem

Consider a so called QC mapping, i.e.

F : RRRn → RRRn

The unit sphere SSSn−1 is transformed to a “quasisphere”.

For n = 2 Ahlfors (Acta, 1964):

T is a “ quasicircle” iff there is a constant k so that

|z1 − z2| + |z2 − z3|
|z1 − z3|

≤ k

for all ordered z1, z2, z3 ∈ T.

Equivalently, the renormalized T are precompact in

the space of Jordan curves on the sphere. It is easy to

see that this is also equivalent to T being the QS image

of SSS1, i.e. a quasisymmetric circle.

In his 1978 plenary talk at the ICM Ahlfors asked

“which domains are QC equivalent to the unit ball”

i.e. characterize quasispheres.

This question was discussed in depth by Gehring in his

talk at the 1986 ICM.
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The obvious generalization, i.e. that a quasisphere is

the QS image of SSS2 is necessary but not sufficient. This

is because of the phenomena of “wild spheres”:

There are topological spheres

T ⊂ R̂RR
3

whose complementary domains are NOT simply connected.

The standard example is the Alexander Horned Sphere

but if you try harder the example can be a QS sphere.

A tame sphere has simply connected complementary

domains.
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Our insight comes from studying reflections

F : RRR3 → RRR3

1. sense reversing homeomorphisms

2. idempotent : F ◦ F = I

e.g. F (x1, x2, x3) = (x1, x2,−x3) has fixed set

T = {X : F (X) = X} = {(x1, x2, 0)}

By Smith (1941) any reflection of RRR3 has fixed set

T = topological sphere with two complementary domains.

Smith conjectured that T is tame.

Disproved by Bing (Annals, 1952) by constructing a

“wild reflection”, he asked for an explicit example.

Then next few pages illustrate our explicit example:
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At the first step we cut a bagle in half. There is a
reflection of its outside into the inside.

S1 T1

E1 E 2

Then we introduce two hooked guide tubes

S
1

Ti, j
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We drill down the tubes to opposing faces

i,j

E1,1
E1,2

E2,1
E2,2

S
2

Ti, j

Erect new guide tubes and change the reflection so it
fixes the new inner surface, same as old reflection outside
previous set of guide tubes

S
2

T
i, j
*
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From the faces we extend new hooked tubes

New tubes

This is continued iteratively with generic step which
looks like

old tube  T

new tubes T j 

By roughly halving the length each time we find a
sequence of reflections converging to a reflection.
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This shows how the loops are folded up

Ti, j T
i+1, j

Ti+2, j 
Ti+2, j 

The outside looks like sea cucumber
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Heinonen, Semmes conjectured that there exist wild

K-quasiconformal reflections, indeed everyone I asked

(Tukia, Sullivan) were sure they existed. After all can’t

all homeomorphisms be approximated by QC mappings?

In fact Sullivan made suggestions which morphed into

my explicit example. Although the example can be shown

to be bihölder, it cannot be a QC reflection.

This is because we see long thin tubes. Renormalizing

would yield a bilip reflection fixing an infinite cylinder!

As it turns out any wild reflection has long thin tubes.

THEOREM 1 (Hamilton) QC reflections are tame.

Step 1:( Väisälä,Tukia) may assume wild reflection

is bilip.

Step 2: (Heinonen, Yang) D,D∗ are “uniform” ⇒
fixed set T approximated by “uniform handle-bodies”

made up of Whitney type cubes. The scale factor r is

called the resolution.
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Step 3: T is linearly locally connected (LLC)

∃k so that ∀X, Y ∈ T there is continuium E ⊂ T:

dia(E) ≤ k||X − Y ||

from this we prove “No long handles”:

Length(Handle) ≤ Cr

where r is the resolution, i.e. size of cubes.

Step 4: Now we come to the main idea of the proof:

measure the handle-bodies approximating the fixed set.

Remember we have a reflection so there are approximat-

ing handle-bodies on each side of T. Furthermore handles

occur in pairs. One could run a loop so it transverses a

pair of handles.

It turns out that length is not the best way to measure

the inside of a torus. Now length is measured by the

min length of loops transversing the inside of the torus.

More generally use chains of loops. Consider all isometric

deformations of these chains. The extremal case is when

the deformed chain has max diameter. The span of the

chain is the twice this extremal diameter. The span of the

torus is then the infinium of the span of these transversing

chains. For technical details see the appendix.
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The idea of span:

LOOP

TORUS

Stretch  out

half span

CHAIN

TORUS

Stretch  out

half span

T

T

represents  section of fixed set T
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DEFINITION 1 We say that a flat sphere T is

uniform if its family of “renormalizations” T̃ is

precompact in the space of flat spheres wrt the haus-

dorff metric between compact sets

Equivalently, at all scales T can be squeezed between

“uniform” polyhedra from the complementary domains.

From Theorem 1 we see that the fixed set of a QC

reflection is a uniform sphere.

The converse is the characterization:

THEOREM 2 (Hamilton)

T is the fixed set of a QC reflection iff it is a uniform

sphere.

This also characterizes the fixed set of bilip reflections,

Poincaré (1898), Jones (Acta 1981) who asked about this.

Example: The product RRR1×Γ for any two dimensional

quasicircle Γ through ∞ gives the fixed set of a bilip

reflection of RRR3.
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Sets vs Functions:

A uniform sphere T has blowups giving only topolog-

ical spheres in the limit. Consider parametrizations

H : SSS2 → T

However there are uniform spheres so any

parametrization has NON precompact blowups.

On the other hand QS⇒ precompact renormalizations

but not geometric uniformity.

Quasispheres

These methods solve the Ahlfors-Gehring problem of

charactering F (SSS2) for QC maps of R̂RR
3
:

THEOREM 3 (Hamilton) T is quasisphere iff:

T is a uniform AND QS sphere.

This generalizes the Ahlfors problem of extending a

quasisymmetric mapping F : SSS2 → SSS2. i.e. if we have a

QS mapping from the sphere onto a uniform sphere then

it extends to a QC mapping.
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The QC Riemann Mapping Theorem is a one sided

version of this. We characterize quasiconformal images

of the unit ball, i.e. QC-balls.

For RRR2 only need simply connectedness (with non empty

boundary). One difference between RRR2 & RRR3 is that any

topological 2-ball in R̂RR
2

is “uniformly simply connected ”

(USC): its renormalizations are precompact in the space

of disks.

However in RRR3 renormalizations of a topological ball

could converge to a torus. It is standard to show that a

QC-ball is USC.

However we expect conditions on the boundary.

Gehring (1986) showed that if D is a QC-ball

R̂RR
3
−D

is “linearly locally connected” (LLC).

We find that a USC + LLC domain has boundary

parametrized by a homeomorphism H : SSS2 → ∂D 4

4i.e. the prime-end boundary ∂D̂ is a topological sphere. (Zorich)
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One case known: Väisälä (Acta, 1988) a cylinder

D = A×RRR1

is QC-ball iff boundary is parametrized by:

H : SSS2 → ∂D

QS wrt to the inner distance metric. (Least diameter of

inside arcs joining points X, Y)

A general concept of quasisymmetry is required.

On a USC + LLC domain there is a Gromov metric on

D which extends to the prime-end boundary. 5 This is

obtained by showing that D is Gromov uniform tree, i.e.

we approximate D from the inside by disjoint uniform

polyhedra connected as a tree. This happens uniformly

at all scales. So under higher resolutions we have layers

of these trees.

The Gromov metric is obtained by fixing ∞ and its

containing polyhedra, and weighting every other

polyhedra by c−n where n is the number of steps or layers

in the tree to get to ∞, and c < 1 is a constant which

actually depends on the USC+ LLC bounds.
5Similar to Gromov’s theory of Hyperbolic Trees (discrete groups)

20



The distance between X, Y will then be approximately

c−n where this is the weight of the last uniform polyhedra

to cut off X, Y from ∞.

The following is one of several versions of the mapping

theorem:

THEOREM 4 (Hamilton) D is the QC-ball iff

D is a USC + LLC domain with boundary

a (Gromov) QS sphere.

Of course one hoped for a natural metric instead of

something depending on the USC+LLC bounds.

However being simply connected is not a very strong

notion in R̂RR
3
. A simply connected domain domain can

“look” like it is non-simply connected for arbitrary long

stretches. The point of USC+ LLC is to bound this.

In the Sullivan Thurston construction of domains

inscribed by balls we also get a tree structure. But these

balls are the “0-constant ” case. This means they give a

K−QC map with K independent of the domain. In this

case you do not even need QS mapping of the boundary.
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e.g. 1: Our theorem generalizes Väisälä cylinder result:

COROLLARY 1 A USC domain is a QC ball if its

boundary is a QS sphere wrt inner distance.

Notice that a cylinder domain is automatically USC 6.

e.g. 2: “Manhattan” domain

QC-balls which cannot be inscribed by round balls:

consider a packing of RRR2 by rectangles Aj of bounded

eccentricity. We form D by adjoining the skyscrappers

Aj × {0 ≤ x3 < hj}

to the the half-space x3 < 0. This is a K-QC ball. Now

D (in general) cannot be inscribed by balls but neither

can it be QC transformed into a Sullivan -Thurston

domain by a QC mapping of RRR3 (for then a packing by

squares would be equivalent to packing by circles).

6A QS sphere need not bound a simply connected domain let alone one which is USC
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A Manhattan Domain: note that all the vertical sides

of the skyscrapers are part of the boundary of the domain.

Just their rectangular bases are open.

If you can do it to New York, you can do it  anywhere
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Appendix: Technical details of Theorem 1:

Although the idea of span is simple it is easier to work

with a less natural definition. Given a handle-body Σ

linked with an unknotted loop α in its exterior we

consider the chains of loops inside Σ which link with α.

In our situation there is symmetry so there α and its

reflection α∗.

To measure the linking we consider chains of loops

inside Σ. A loop consists of an arc beginning and ending

on T together with the reflection. A chain γ is the union

of a finite number of loops and is admissible if it links

through α, e.g. for a torus the admissible chains would

be a loop going all the way around, or chains built up

from loops.

Now we define the span. On the chain we define a

metric ρ ≥ 0 which is constant on each loop and has the

property that for any topological disk S with ∂S = α∑
ρ ≥ 1

where the sum is taken over all points Z where γ inter-

sects S. The idea is that the total flow through α is at

least 1.
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The ρ-length of γ is ∫
ρ|dZ| ,

i.e the sum of the lengths of loops weighted by its the

values of ρ. The span λ(Σ, α) is the infinium of such

ρ-lengths, taken over all admissible chains γ and

metrics. For uniform handle-body one sees that λ is a

positive number that scales like ordinary length. The

infinium is achieved by some chain, i.e. the loops don’t

get smaller and smaller. However this minimizing chain

may intersect ∂Σ.

For a regular torus the span is in fact exactly equal to

the length. But even for a twisted torus the span can be

strictly less than length.

Next one finds that the minimizing chains γ may be

taken to have minimal topological configuration, i.e. no

subchain of γ links through α. From this we prove the

bifurcation property: that a minimal configuration is built

up of subchains which are themselves minimal configura-

tions.

We want our handles breaking to give higher resolution

linked handles. This this does not happen if for example
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there is a is a knot (which can actually occur for bilip

images of a sphere). It is surprising but this cannot

happen for QC reflections.

This leads to the fundamental property of span:

LEMMA 1 Suppose that we have a minimal config-

uration containing two admissible chains γL and γR

linked through the left and right of an unknotted closed

curve α. Then γL and γR are linked through some

unknotted closed curves αj and

max{λ(γL, α1), λ(γR, α2)} ≥ λ(γL + γR, α)

Example: Consider a chain made up of two linked

loops. The span of one loop is always at least the span

of the chain.

So we now complete the proof of the Theorem 1.

Assume that the components are not simply connected.

Then there is a nested sequence of linked handlebodies

Σ obtained by using higher and higher resolutions. The

fundamental lemma is now applied inductively. So we

find a handle with at least the span of the original

handlebody. But these have small diameter, contradict-

ing “no long handles”.
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