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The crowding phenomenon

Outline

@ The crowding phenomenon
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The crowding phenomenon
®00

Conformal mapping of polygons

Schwarz-Christoffel formula

7

Wk

f(z)=A+ C/Z H(( — 7)™ ldc.
k=1

@ wjy - vertices; z; = exp(if) - prevertices.
e Find A, C,z1,2,..., 2z - the parameter problem.

@ Three free real parameters - e.g. z1 = 1,7z, 1 = —1,z, = —i.
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The crowding phenomenon
o] Yo}

Conformal mapping of polygons

Conformal map to a rectangle

ratio = 1

f(z)=C / (€ 1)V (¢ — ) V(¢ 1)V (¢ i) Rd 4 A

Z2:0+i
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The crowding phenomenon
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Conformal mapping of polygons

Conformal map to a rectangle

ratio = 1.5

= ¢ [T A ) VA ) )R+ A

zp = 0.953317517854098 + 0.301969717277250/
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The crowding phenomenon
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Conformal mapping of polygons

Conformal map to a rectangle

ratio = 2
f
—_—
C/ 1/2 )_1/2(C+1)_1/2(C+i)_1/2dC+A-

7z = 0.998161862707872 + 0.060604420924140/
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The crowding phenomenon
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Conformal mapping of polygons

Conformal map to a rectangle

ratio= 2.5
f
—
C/ 1/2 )_1/2(C+1)_1/2(C+i)_1/2dC+A-

7z = 0.999922362701654 + 0.012460680926077/
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The crowding phenomenon
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Conformal mapping of polygons

Conformal map to a rectangle

ratio= 3
f
—_—
C/ 1/2 )_1/2(C+1)_1/2(C+i)_1/2dC+A-

75 = 0.999996661341993 + 0.002584048154957/
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The crowding phenomenon
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Conformal mapping of polygons

Conformal map to a rectangle

ratio = 6

= ¢ [T A ) VA ) )R+ A

2> = 0.999999999999978 +- 0.000000208397196/
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The crowding phenomenon
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Conformal mapping of polygons

Conformal map to a rectangle

ratio = 9

= ¢ [T A ) VA ) )R+ A

z; = 1.000000000000000 + 0.000000000016818/
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The crowding phenomenon
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Conformal mapping of polygons

Conformal map to a rectangle

ratio = 12

= ¢ [T A ) VA ) )R+ A

z; = 1.000000000000000 + 0.000000000000001/
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The crowding phenomenon
o] Yo}

Conformal mapping of polygons

Conformal map to a rectangle

ratio = 12

f(z) = C/Z(C—1)_1/2((C—1)—(22—1))_1/2(C+1)_1/2(C+i)_1/2dC+A-

arg(z) — arg(1) = 1.357168333126092 x 10~1°
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The crowding phenomenon
o] Yo}

Conformal mapping of polygons

Conformal map to a rectangle

ratio = 12

/ —21 (Zk —21))71/2dC+A.

arg(z,) — arg(1) = 1.357168333126092 x 10~15
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The crowding phenomenon
ooe

Conformal mapping of polygons

Spotting crowding in general domains

I

b

Let z1, z» be mapped to the corners of the highlighted edge.

e For f(0)=a, |z1 —z| < 1, and for f(0) = b, |21 — 22| ~ 1,
therefore region of crowding depends on the normalization.
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The crowding phenomenon
ooe

Conformal mapping of polygons

Spotting crowding in general domains

b

b

Let z1, z» be mapped to the corners of the highlighted edge.
e For f(0)=a, |z1 —z| < 1, and for f(0) = b, |21 — 22| ~ 1,
therefore region of crowding depends on the normalization.

@ This observation used by the Cross Ratio Delaunay
Triangulation algorithm of Driscoll and Vavasis (1998).
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The crowding phenomenon
ooe

Conformal mapping of polygons

Spotting crowding in general domains

Let z1, z»p be mapped to the corners of the highlighted edge.

e For f(0) =a, |z1 — 2| < 1, and for f(0) = b, |z1 — 2| ~ 1,
therefore region of crowding depends on the normalization.

@ This observation used by the Cross Ratio Delaunay
Triangulation algorithm of Driscoll and Vavasis (1998).

@ Our plan: Consider each step of Trefethen's (1980) algorithm
and modify for numerical stability

@ The starting point: The SC Toolbox of Driscoll (1996,2005).
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The crowding phenomenon
0000

Stable computation of Schwarz-Christoffel integrals

Floating point arithmetic

If x € R lies in the range of R then 45 € R s.t.
fi(x) =x(1+6), [0 <u, (1)

where u is the unit roundoff.

Model of arithmetic

fi(xop y) = (xopy)(1+9), 0] <u,

op =+, —,*, /, log, exp, sin, cos, . ..

where x,y € C =R + iR.
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The crowding phenomenon
0000

Stable computation of Schwarz-Christoffel integrals

Computing the integrand accurately

Let
e z and z, be such that |z —z| < Gi|z—z|, j=1,2,...,N,
o ij=(z— z)(1+ 61), with |§;] < Cu,
o & = fl(zj — z), and f; = fI(B)).

Then

N ) N

1| 16— | = [1( - 2)%(1+ No) + 0w,

Jj=1 Jj=1

6] < (8 +3C1(C+1) + 3max‘ log |z — zjy‘)u.
J
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The crowding phenomenon
0000

Stable computation of Schwarz-Christoffel integrals

Quadrature and the “one-half rule”

Gauss-Jacobi quadrature perfect
for the singular integrals:

/0 (¢ - 2)*FO)C,

F(¢) analytic in a neighbourhood of [0, z].
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The crowding phenomenon
0000

Stable computation of Schwarz-Christoffel integrals

Quadrature and the “one-half rule”

Gauss-Jacobi quadrature perfect
for the singular integrals:

SRS
F(¢) analytic in a neighbourhood of [0, z].

A prevertex close to the integration path = loss of accuracy.
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The crowding phenomenon
0000

Stable computation of Schwarz-Christoffel integrals

Quadrature and the “one-half rule”

Gauss-Jacobi quadrature perfect
for the singular integrals:

Z
/ (¢ = 2)*F(Q)dc,
0
F(¢) analytic in a neighbourhood of [0, z].
A prevertex close to the integration path = loss of accuracy.

The one-half rule (Trefethen 1980): No singularity may lie
closer to an integration subinterval than one-half the length of that
subinterval.
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The crowding phenomenon
oooe

Stable computation of Schwarz-Christoffel integrals

Implications of the one-half rule

Let [a, b] be an integration interval. Then the one-half rule implies

o (]

2_|b boa for all ¢ € [a, b] and z; ¢ {a, b}.

Since no need to subdivide the interval unless a singularity is in the
vicinity of the interval

¢ —

There exists k, such that b ‘

2 <1, forall ¢ € la,b.

These assumptions now give us a bound on the constant (3
I —zk| < |b—a| <2/ —zl, forall(e€la, b]andz ¢{a,b}.

With these assumptions numerical stability of quadrature is proved.
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The crowding phenomenon
€000

The parameter problem

Parameter problem

As primitive variables use differences of arguments of consecutive
prevertices (zyy1 := z1):

Ok = argzxi1 —argzy, k=1,2,... N.
The initially proposed normalization translates to

=1 ony_1=0¢n=T/2.
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The crowding phenomenon
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The parameter problem

Parameter problem

As primitive variables use differences of arguments of consecutive
prevertices (zyy1 := z1):

Ok = argzxi1 —argzy, k=1,2,... N.
The initially proposed normalization translates to

=1 ony_1=0¢n=T/2.
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The crowding phenomenon
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The parameter problem

Sufficient and necessary condition:

Zj11 o ﬁ
A Hkl ) de\ bl
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The crowding phenomenon
0®00

The parameter problem

Sufficient and necessary condition:

Zj11 o ﬁ
A Hkl ) de\ bl

Change of variables to obtain an unconstrained system:

wk:|0g<¢k+1>, k=1,...,n—3.

®1

The variables ¢, can be recovered by the formulas

™

— — o¥k-1 —
(]51— ,gbk—e (]51,/(—2,...,[7 2.
n—i D 1
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The crowding phenomenon
foleY Yo)

The parameter problem

The CRDT (Driscoll, Vavasis 1998)

(a) Find N — 3 quadrilaterals Q; with vertices

Wj, , Wiy, Wj;, Wj, so that a conformal map is well-conditioned near
the four vertices

(b) For this to be possible vertices may have to be added

(c) As primitive variables use the the cross ratios:

(wi, — wiy ) (wi, — wjy)
(Wi3 - Wi4)(Wi1 - Wiz)

p(wi, Wiy, Wiy, wj,) =
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The crowding phenomenon
oooe

The parameter problem

A uniformly good initial guess

Use cross ratios for the initial guess:

p(2j172j2>2j372j4) = _|p(Wj17 Wi, s Wiz, WJ’4)‘

The guess is uniformly good (Bishop 2003)
There exists K < oo (independent of the polygon) s.t.

dac({2k}, {z}) < log K;

where

dqc(z,z) = inf{log K : 3K — quasiconf. h: D — D s.t. h(z) = Z}.

V.
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The crowding phenomenon
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Numerical experiments

A gallery of polygons |

V
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The crowding phenomenon
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Numerical experiments

A gallery of polygons Il
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The crowding phenomenon

Numerical experiments

[ele] J

Results

polygon CRDT SCTS SCTS with initial guess

Y (crowded) | 30/7.4s 164/9.1s 34/1.8s

Fork | 109/102.3s | 181/6.1s 91/5.2s

Spiral | 71/33.7s 185/14s 41/3.5s

Emma’s maze | 33/59.1s | 1326/411.3s 368/114.0s

Rectangle (200) | 31/161.0s 28/2.8s 3/2.4s
Rectangle (250) | 28/154.8s -/- —/-
oo Y —/- 97/7.1s -/-

Number of evaluations of the nonlinear function are shown against the
time in seconds needed to compute a map to the listed polygons.
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Thousands of vertices

Outline

© Thousands of vertices
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Thousands of vertices
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Applying the Fast Multipole Method

Multipole and local expansions

(5

Consider G(z) = Z}Zl Br; log(z — zx;)-
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Thousands of vertices
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Applying the Fast Multipole Method

Multipole and local expansions

Consider G(z) = Zle Bi; log(z — z;). To speed up computations
use multipole expansions:

P
G(z) =~ ag log(z — zp) +Z —, for |z < rand |z[ > R
m:l
and local expansions:

P +1
z) & Z bm(z—20)™, for |z| < rand |z| > R; error < C <R>p .
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Thousands of vertices
oce

Applying the Fast Multipole Method

Fast evaluation of SC integral

@ The same numerical stability considerations apply
e Can compute f(z) at any N points in O(N log N) time
@ But how to find the prevertices!?
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Thousands of vertices
°

A simple iteration for the parameter problem

Davis's iteration (1979)

) = k¢§”’%, j=0,1,...,N—1.
Wik — w7
® k - is chosen so that ) ¢; = 2w

@ Works best if three non-consecutive prevertices are fixed and
three Davis's iterations performed

@ Known to diverge (even locally) for some polygons
@ When it works, O(N log ) cost to find the prevertices
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Thousands of vertices

Ay =180.370 A, = 208608 A, =272.406




Conclusions

Outline

© Conclusions
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Conclusions

Conclusion

@ Standard methods for the computation of SC maps can be
adapted to perform robustly in the presence of extreme
crowding.

@ Main ingredients of the modified method:

o Care for numerical stability at each stage
e CRDT initial guess uniformly close to the solution

@ Question: What is the best way (cheap, stable, effective) to
obtain an initial guess? Other possibilities include: Zipper (see
talk of Marshall), see talk of Bishop.

@ Related questions: understanding of Davis's algorithm,
alternative efficient iteration for N > 1
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