Lecture 9 - Fukaya’s Theorem

March 2, 2010

1 Statement

Theorem 1.1 (Fukaya) Given \(n, \mu > 0 \), there is a number \(\epsilon \) so that whenever \(N^n, M \) are Riemannian manifolds with \(|\text{sec}| \leq 1, \text{inj}(N) > \mu, \text{and } d_{GH}(N,M) < \epsilon \), then there is a (differentiable?) submersion \(f : M \to N \) so that \((M,N,f)\) is a fiber bundle, the fibers are quotients of nilmanifolds, and \(e^{-\tau(\epsilon)} < |df(\xi)|/|\xi| < e^{\tau(\epsilon)} \).

We use \(\tau \) to indicate a function of \(\epsilon \) with \(\lim_{\epsilon \to 0} \tau(\epsilon) = 0 \). We set up some notation that will be used throughout.

\[
R = \min\{\mu, 1\}/2
\]

\[
\sigma = \text{a small number, } 0 < \epsilon << \sigma << 1
\]

\[
r = \sigma R
\]

2 Embedding into an \(l^2 \) space

Let \((Z,d)\) be a discrete metric space, with \(\epsilon \)-almost isometries into \(M \) and \(N \), \(j_M : Z \to M \) and \(j_N : Z \to N \). Since \(d_{GH}(M,N) < \epsilon \), we can choose \((Z,d)\) and \(j_M, j_N \) so that \(Z = (z_1, \ldots) \) is a countable set, \(M \) (resp. \(N \)) is in the \(\epsilon \)-neighborhood of \(j_N(Z) \) (resp. \(j_M(z) \)), and so that \(j_M(Z) \) (resp. \(J_N(z) \)) is \(\epsilon \)-dense and \(\epsilon/4 \)-separated in \(M \) (resp. \(N \)).

Consider the space \(\mathbb{R}^2 = l^2(Z) \), the Hilbert space on \(Z \). If \(\epsilon \) is small compared to \(\mu \) then we can define \(f_N : N \to \mathbb{R}^2 \) by setting

\[
p \mapsto (\text{dist}_N(p,z_1), \ldots).
\]

This map is 1-1, but not differentiable since \(\text{dist}_N(z_i, \cdot) \) is Lipschitz and not \(C^1 \) (also it is not a map into \(l^2(Z) \) unless \(\#\{Z\} < \infty \)). However we can compose this with a \(C^\infty \)
cutoff function $h : \mathbb{R} \to \mathbb{R}$ that is constant at 0, and equals zero outside a definite radius. Specifically,

\[
\begin{align*}
h(t) &= 1 \quad \text{if } t \leq 0 \\
h(t) &= 0 \quad \text{if } t \geq r \\
h'(t) &\in [-\kappa/r, 0) \quad \text{if } t \in (0, r/8] \cup [7r/8, r) \\
h'(t) &\in [-\kappa/r, -2/r] \quad \text{if } t \in (r/8, 7r/8).
\end{align*}
\]

Now define

\[
f_N(p) = (h(\text{dist}_N(p, z_1)), \ldots).
\]

Let

\[
K = \sup_{x \in N} \# (B_r(x) \cap j_N(Z)).
\]

The following hold, for appropriate constants C, C_1, C_2:

- f_N is an embedding
- $\exp^\perp : T^\perp N :\to \mathbb{R}^Z$ is a diffeomorphism out to radius $C\sqrt{K}$.
- (quasi-isometry) we have $|df_N(\xi)|/|\xi| \in (C_1\sqrt{K}, C_2\sqrt{K})$
- If $d_N(x, y)$ is small enough compared to $\epsilon, \sigma, \text{ and } \mu$, then
 \[
d(x, y) \leq CK^{-1/2} \text{dist}_{\mathbb{R}^Z}(f_N(x), f_N(y)).
\]

We would like to say something about a similar map $M \to \mathbb{R}^Z$, but we cannot expect the distance functions $\text{dist}_M(z_i, \cdot)$ can themselves ever be made differentiable. Yet we can smooth them. For $p \in M$ set

\[
d_z(p) = \int_{B_r(z)} \text{dist}_M(p, y) \, dy.
\]

Then d_z is C^1 (but not C^2), for if $\xi \in T_pM$ then

\[
\xi(d_z)(p) = \int_{B_r(z)} \xi(\text{dist}_M(p, y)) \, dy,
\]

and $\xi(\text{dist}_M(p, y))$ is defined almost everywhere.

Proposition 2.1 The maps $j_N : N \to \mathbb{R}^Z$, $j_M : M \to \mathbb{R}^Z$ are embeddings, and $j_M(M)$ is in the $6\epsilon\sqrt{K}$-tubular neighborhood of $j_N(N)$.

2
We prove the last statement. Since M and N are ϵ-close in the Gromov-Hausdorff sense, we can find a distance function d on $M \sqcup N$ that restricts to the Riemannian distance on M and N respectively, and so that M is in the ϵ-neighborhood of N and vice-versa, and with $\text{dist}(j_M(z_i), j_N(z_i)) < \epsilon$. Let p be any point of M and let $p' \in N$ be a point with $d(p, p') < \epsilon$. Then

$$d(p, j_M(z_i)) \leq d(p', j_N(z_i)) + d(p, p') + d(j_N(z_i), j_M(z_i))$$

$$d(p', j_N(z_i)) \leq d(p, j_M(z_i)) + d(p, p') + d(j_N(z_i), j_M(z_i))$$

so that

$$|\text{dist}_M(p, j_M(z_i)) - \text{dist}_N(p', j_N(z_i))| \leq 2\epsilon.$$

Since $|h'(t)| \leq 2$ we have

$$|h(\text{dist}_M(p, j_M(z_i))) - h(\text{dist}_N(p', j_N(z_i)))| \leq 4\epsilon.$$

Then

$$|f_M(p) - f_N(p')|^2 = \sum_i (h(\text{dist}_M(p, j_M(z_i))) - h(\text{dist}_N(p', j_N(z_i))))^2 \leq 16K\epsilon^2.$$

Using the averaged quantity $d_{z_i}(p)$ in place of $\text{dist}_N(z_i, p)$ changes the estimates by at most 2ϵ, so we get the result. \hfill \Box

Now we have a map $f : M \to N$ given by

$$f = f_N^{-1} \circ \pi \circ \exp^{-1} \circ f_M$$

where π indicates the projection from the normal bundle of $f_N(N)$ onto N.

3 $f : M \to N$ is a fiber bundle

We have to prove that $f_M(M)$ is transverse to the fibers of the normal bundle of $f_N(N)$ in \mathbb{R}^2. This follows directly from the following proposition.

Proposition 3.1 Given any $\nu > 0$, one can choose ϵ, σ so that the following holds. If $p \in M$ and $p' = f(p)$, then given any $\xi' \in T_pN$ there exists a $\xi \in T_pM$ such that

$$\frac{|df_M(\xi) - df_N(\xi)|}{|df_N(\xi)|} \leq \nu.$$
Let \(l' : [0, t'] \) be a unit-speed geodesic in \(N \) with \(l'(0) = p' \) and \(\frac{d}{dt}l' = \xi' \). Let \(l : [0, t] \) be a geodesic in \(M \) with \(l(0) = p \) and \(\text{dist}_{RZ}(l(t), l'(t')) < \epsilon \). Now let \(l_i' \) be a geodesic from \(j_N(z_i) \) to \(p' \) and let \(l_i \) be a geodesic from a point \(y \in B_{\epsilon}(j_M(z_i)) \) to \(p \). Let \(\theta_i \) be the angle between \(l \) and \(l_i \), and let \(\theta_i' \) be the angle \(l \) and \(l_i' \).

We prove that
\[
\left| \frac{d}{dt} |_{t=0} h(\text{dist}_N(y, p)) - \frac{d}{dt} |_{t=0} h(\text{dist}_N(j_N(z_i), p')) \right| \leq \nu.
\]

We break the proof into two parts; when \(\text{dist}(j_N(z_i), p) < r/8 - \epsilon \) or \(\text{dist}(j_N(z_i), p) > 7r/8 + \epsilon \), and when \(\text{dist}(j_N(z_i), p) \in [r/8 - \epsilon, 7r/8 + \epsilon] \).

In the first case,
\[
\left| \frac{d}{dt} h(\text{dist}_M(y, p)) \right| = h' \cdot \text{dist} \leq \kappa r/8
\]
and
\[
\left| \frac{d}{dt} h(\text{dist}_N(j_N(z_i), p')) \right| = h' \cdot \text{dist} \leq \kappa r/8
\]
so that
\[
\left| \frac{d}{dt} h(\text{dist}_N(y, p)) - \frac{d}{dt} h(\text{dist}_N(j_N(z_i), p')) \right| \leq 2\kappa r/8 < \kappa \sigma/8
\]

Now we consider the second case. By the first variation formula, we have to prove that \(|\theta_i - \theta_i'| \) is small. By Toponogov’s comparison theorem, we have to prove the following.

\[\textbf{Lemma 3.2} \] Given \(\delta > 0, \mu > 0 \), there is a \(\nu \) with the following properties. Given \(\delta R < t_1, t_2 < R \), assume \(l_1 : [0, t_1] \to M \), \(l_2 : [0, t_2] \to M \) are geodesics with \(l_1(0) = l_2(0) = p \), and \(l_1' : [0, t_1'] \to N \), \(l_2' : [0, t_2'] \to N \) are minimal geodesics with \(l_1'(0) = l_2'(0) = p' \) with \(d(l_1'(t_1'), l_1(t_1)) < \nu \), \(d(l_2'(t_2'), l_2(t_2)) < \nu \). If \(\theta \) and \(\theta' \) are the angles formed by \(l_1(0), l_2(0) \) and \(l_1'(0), l_2'(0) \) respectively, then \(|\theta - \theta'| < \mu \).

\[\textbf{Pf} \]
\[
\square
\[
\square
\]