1 The Hausdorff distance

1.1 Basic Properties

Given a bounded metric space X, the set of closed sets of X supports a metric, the Hausdorff metric. Whether X is bounded or not, there is a compact, locally compact topology on the space of closed sets. If $A, B \subset X$ are closed sets, define their Hausdorff distance $d_H(A, B)$ to be the number

$$
\inf \{ r \mid B \text{ is in the } r \text{-neighborhood of } A \text{ and } A \text{ is in the } r \text{-neighborhood of } B \}.
$$

We can say this more precisely as follows. We say B is r-close to A (or B is in the r-neighborhood of A) if

$$
B \subset \bigcup_{x \in A} B(x, r).
$$

Then the Hausdorff distance is the infimum of all r such that B is r-close to A and A is r-close to B. There is still another equivalent definition. Given a point $p \in X$ and a closed set $A \subset X$, define

$$
d(p, A) = \inf_{y \in A} \text{dist}(p, y).
$$

Then the Hausdorff distance is

$$
d_H(A, B) = \max \left\{ \sup_{x \in A} d(x, B), \sup_{y \in B} d(y, A) \right\}
$$

That is, $d_H(A, B)$ is the farthest distance any point of B is from the set A, or the farthest any point of A is from B, whichever is greater.
Theorem 1.1 If X is a bounded metric space, the set of closed sets of X is itself a metric space with the Hausdorff metric.

pf We verify the metric space axioms. First, the symmetry of d_H is clear by definition. Second, d_H satisfies the triangle inequality because if C is in the r-neighborhood of B and B is in the s-neighborhood of A, then C is in the $(r+s)$-neighborhood of A. Likewise A is in the $(r+s)$-neighborhood of C. Thus $d(A, C) \leq d(A, B) + d(B, C)$. Finally $d_H(A, B) = 0$ implies $A \subset \overline{B} = B$, because if B is in every r-neighborhood of A then every point of A is a limit point of B. Likewise $B \subset \overline{A} = A$. □

If X is not bounded, the metric space axioms continue to hold, but $d_H(A, B)$ could well be infinity.

1.2 Compactness

Denote the closed subset of X by $C(X)$ (or just C for short). Given a closed set A and a number r, let $\mathfrak{B}(A, r)$ be the set of all $D \in C$ with $d_H(B, A) < r$. Since d_H is a metric on C, we know that the balls $\mathfrak{B}(A, r)$ are open, and form a neighborhood base.

Obviously the balls with rational radius also form a base, so the induces topology on C is first countable. All metric spaces are Hausdorff, so (C, d_H) is Hausdorff. One can state this directly: since distinct closed sets are separated by a finite distance, say ϵ, so the balls of radius, say, $\epsilon/4$ around each is disjoint.

If X is noncompact, then the topology associated to the Hausdorff distance is neither compact nor even locally compact. To see the local noncompactness, simply pick a sequence $x_i \in X$ that has no convergent subsequence, and define the closed sets X_i to be $X_i = \{x_j\}_{j=1}^i$. Given any neighborhood \mathfrak{N} of $X_\infty = \{x_j\}_{j=1}^\infty$, each $X_i \in \mathfrak{N}$.

If X is noncompact, $(C(X), d_H)$ is not even locally compact. For instance if the base space X is nondiscrete (it has the property that, given any point $x \in X$ and any number $\epsilon > 0$, there is a point $y \in X$ with $d(x, y) < \epsilon$), then it is not locally compact. As an example, we will will show that \mathbb{R} is not locally compact. Let $A = [0, \infty)$ be the half-line, and consider its r-neighborhood $B(A, r)$ (wlog assume $r < \frac{1}{2}$). Define the A_i inductively by setting $A_0 = A$ and $A_i = A_{i-1} - (i, i+r/2)$. We have $d_H(A_i, A_j) = r/2$ for any $i \neq j$, so there are no Cauchy subsequences, and therefore no convergent subsequences.

In fact, the metric topology on $(C(\mathbb{R}), d_H)$ is not even locally paracompact. There exist closed sets A such that every neighborhood of A contains an uncountable discrete subset.

In sharp contrast we have the following theorem.

Theorem 1.2 If X is compact, then $(C(X), d_H)$ is compact.

pf
Let \(A_i \) be a sequence of open sets. Each \(A_i \) has a \(\frac{1}{j} \)-net consisting of \(< N_j \in \mathbb{N} \) elements (an \(\epsilon \)-net is a maximal discrete \(\epsilon \)-separated subset; the compactness of \(X \) guarantees the existence of the number \(N_j \)). Let \(A^k_i \subset A_i \) be the union of the \(\frac{1}{j} \)-nets in \(A_i \) for \(1 \leq j \leq k \); note that the cardinality of \(A^k_i \) is at most \(N_1 + \cdots + N_j \).

Fixing \(k \), some subsequence \(A^k_{i_k} \) converges in the Hausdorff topology, to a some discrete set \(A^k \). Since \(A^k_{i_k} \) is \(\frac{1}{k} \)-close to \(A_{i_k} \), we have that, for large \(i_k \), \(A_{i_k} \) is \(\frac{3}{k} \)-close to \(A^k \). We can require that \(A^k_{i_k} \) is a subsequence of \(A^{k+1}_{i_{k+1}} \), which means \(A^k \subset A^{k+1} \). Since \(A^k \) is \(\epsilon \)-close to \(A^k_{i_k} \) for large \(i_k \), and \(A^k_{i_{k+1}} \) is \(\frac{1}{k} \)-close to \(A^{k+1}_{i_{k+1}} \) which is \(\epsilon \)-close to \(A^{k+1} \), we have that \(A^k \) is \((\frac{1}{k} + 2\epsilon) \)-close to \(A^{k+1} \), any \(\epsilon > 0 \) so that \(A^k \) is \(\frac{1}{k} \)-close to \(A^{k+1} \).

The diagonal subsequence \(A^k_{i_k} \) converges to some set \(A^\infty \), in which each \(A^k \) is \(\frac{1}{k} \)-dense.

A topology does exist on \(\mathcal{C}(X) \) that is both locally compact and compact, regardless of the compactness of \(X \). Let a base for this topology be set of the form \(N_{K,\epsilon}(A) \), where \(K \subset X \) is compact, \(A \subset X \) is closed, and \(\epsilon > 0 \), where we define

\[
N_{K,\epsilon}(A) = \{ B \in \mathcal{C}(X) \mid d_H(A \cap K, B \cap K) < \epsilon \}.
\]

This topology on \(\mathcal{C}(X) \) is called the pointed Hausdorff topology. If \(X \) is compact, it is the metric topology. If \(X \) is noncompact, this topology is not induced by any metric.

2 The Gromov-Hausdorff distance

The Gromov-Hausdorff distance was invented by Gromov for the purpose of making precise the notions of “closeness” and “convergence.” Recall that his “Almost Flat Manifold” theorem states that a compact bounded-curvature manifold that is “close” to being a point has a finite normal cover that is “close” to being a nilmanifold. The idea behind the Gromov-Hausdorff distance is not difficult; here is what Gromov himself has to say:

- “Either you have no inkling of an idea or, once you have understood it, the very idea appears so embarrassingly obvious that you feel reluctant to say it aloud...”

- “I knew [of] it [the Gromov-Hausdorff metric] for a long time, but it just seemed too trivial to write. Sometimes you just have to say it.”

The Gromov-Hausdorff distance significantly extends the idea of the Hausdorff distance (and is not equivalent to it). Given two closed subsets \(A \) and \(B \) of any metric space (not necessarily subsets of the same space), we define

\[
d_{GH}(A, B) = \inf_{f,g} d_H(f_A \rightarrow X(A), g_B \rightarrow X(B))
\]

\(^1\)Taken from Cheeger’s lecture ‘Mikhail Gromov: How Does He Do It?’.
where the notation $f_{A \to X}$ (resp. $g_{B \to X}$) denotes an isometric embedding of A into some metric space X (resp. isometric embeddings of B into X) and the infimum is taken over all possible such embeddings.

In general the topology associated to the Gromov-Hausdorff distance is neither locally compact nor locally paracompact. To redress this we define the pointed Gromov-Hausdorff topology. This is a topology on the set of pointed sets (defined to be pairs (A,p) where A is a closed subset of a metric space and $p \in A$). A local base for this topology are the sets of the form $N_{K,\epsilon}(A)$ (where A is closed, $K \subset A$ is compact and $p \in K$, and $\epsilon > 0$); we define $N_{K,\epsilon}(A)$ to be the set of pointed closed sets (B,q) so that there exists a compact subset $J \subset B$, $q \in J$, and so that there are isometric embeddings $f : A \cap K \to X$ and $g : B \cap J \to X$ into some space X so that $f(p) = g(q)$ and the Hausdorff distance satisfies $d_H(f(A \cap K), g(B \cap J)) < \epsilon$.

This topology is locally compact and compact. If the Gromov-Hausdorff topology is restricted to compact closed sets, the Gromov-Hausdorff topology and the pointed Gromov-Hausdorff topology coincide.

3 The Lipschitz, $C^{k,\alpha}$, and $L^{p,k}$ topologies

The Gromov-Hausdorff topology is not suitable for questions of differentiability or even topology, since Gromov-Hausdorff limits can jump differentiable structures, topologies, and even dimensions. For example a sequence of tori can converge to a round sphere, or to a circle or to a point.

Thus the Gromov-Hausdorff topology is completely inadequate when studying Riemannian structures (curvature, etc), and we have to find something sharper. Let $f : M \to N$ be a map between metric spaces. Define the dilation of f to be

$$dil(f) = \sup_{p,q \in M} \left\{ \frac{\text{dist}_N(f(p), f(q))}{\text{dist}_M(p, q)} \right\}.$$

We allow $dil(f)$ to take values in $[0, \infty]$. We define the Lipschitz distance between compact homeomorphic metric spaces M, N by

$$\text{Lip}(M, N) = \inf_{f : M \to N} \left| \log(dil(f)) \right| + \left| \log(dil(f^{-1})) \right|.$$

One easily verifies that this is a metric (up to equivalence of isometric metric spaces). If M is compact then the induced topology is locally compact. If M is noncompact, one can define a “local Lipschitz topology,” meaning convergence occurs iff it occurs when restricted to compact subsets of the original metric spaces M, N. The convergence is essentially of Lipschitz type: for instance the graphs of $\frac{1}{n} \sin(n \pi t)$ over the unit interval for $n \in \mathbb{Z}$ converge to the unit interval. If one includes Riemannian metrics of type $C^{0,1}$, then the space of Riemannian metrics on a compact manifold M is locally compact and complete in
the Lipschitz topology; this can be seen by examining the sequence of metrics on a chart in M diffeomorphic to a Euclidean ball and applying the Arzela-Ascoli theorem.

It is possible to further refine the Lipschitz topology in the category of Riemannian manifolds. Given a sequence of Riemannian manifolds (M_i, g_i), one says that they converge to (M, g) in the $C^{k,\alpha}$- or $L^{k,p}$-topology if there are homeomorphisms $f : M \to M_i$ such that the following holds: Given any coordinate chart $U \subset M$ with coordinates $\{x^1, \ldots, x^n\}$, with pullback metrics $g_{i,jk} dx^j \otimes dx^k$, the functions $g_{i,jk}$ converge to g_{jk} in the $C^{k,\alpha}$- or $L^{p,k}$-sense.