1. **What are the minimum requirements for a classical-type physics to exist?**

1.1. **Our formulation of classical physics to date.** We have an extended phase space $T^*M \times \mathbb{R}$ with a Poincare-Cartan 1-form $\eta = p_i dq^i - H dt$. Notice that, when restricted to phase space T^*M, the form

$$p_i dq^i = \eta|_{T^*M}$$

is intrinsic, by which I mean, it does not depend on the existence of any Hamiltonian. We then constructed the **canonical 2-form**

$$\omega = d\eta,$$

which we proved was nondegenerate. We proved that the phase flow was in fact just the vortex flow of this 2-form on extended phase space. Again, notice that the form

$$dp_i \wedge dq^i = \omega|_{T^*M}$$

is intrinsic to T^*M, meaning is does not depend on the choice of a Hamiltonian. Also, if the phase flow, restricted to T^*M is denoted by $\frac{d}{dt}$, then

$$i_{\frac{d}{dt}} \omega = -dH.$$

Another highly important feature of mechanics is the Poincare integral invariant. In global form this reads

$$\oint_{\gamma_t} \eta = \text{const},$$

where γ is some closed path and γ_t is its image at time t under the flow. In infinitesimal form this reads

$$\varphi_t^* \omega = \omega$$

where φ_t is the flow itself. This means that the Lie derivative of ω vanishes

$$L_X \omega = 0$$

where $X = \frac{\partial H}{\partial p_i} \frac{\partial}{\partial q^i} - \frac{\partial H}{\partial q^i} \frac{\partial}{\partial p_i}$ is the flow field.

Date: September 2009.
1.2. An attempt to reduce physics to its minimum. It appears we need a cotangent bundle T^*M, a 2-form $\omega = dp_i \wedge dq^i$, and a Hamiltonian in order to define a physics. Note that the Hamiltonian itself is \emph{a posteriori}; the cotangent bundle and the 2-form constitute the substratum on which physics is built.

But can we do with even less? Instead of a cotangent bundle T^*M and a canonical 2-form $\omega = dp_i \wedge dq^i$, maybe all we need is an even-dimensional manifold N^{2n} and a nondegenerate 2-form ω. We can still define the flow vector field X (implicitly) by

$$i_X \omega = -dH.$$

The last question to ask is whether the flow defined by X preserves the form ω. We compute

$$L_X \omega = d i_X \omega + i_X d\omega = -ddH + i_X d\omega = i_X d\omega.$$

We want this to be 0 regardless of which Hamiltonian we chose. Thus we require $d\omega = 0$. It appears we have found the bare minimum for a physics to exist:

1.3. Statement of the minimum required for a physics to exist. For a reasonable “mechanics” to exist, we need an even-dimensional manifold N^{2n} on which exists a non-degenerate 2-form ω, which is \emph{closed}: $d\omega = 0$. Any arbitrary function can be used as a Hamiltonian.

2. Vector fields and diffeomorphisms

2.1. Diffeomorphisms define vector fields. Let $\varphi_t : M \rightarrow M$ be a family of diffeomorphisms that are parameterized by t. For each t it is possible to define a vector field X_t, which gives the “direction” of the diffeomorphism at each point. In coordinates, a diffeomorphism can be expressed

$$\varphi_t(x^1, \ldots, x^n) = (\varphi^1_t, \ldots, \varphi^n_t)$$

where each φ^i_t is a function of the coordinates:

$$\varphi^i_t = \varphi^i_t(x^1, \ldots, x^n).$$

Fixing the time at $t = 0$, then given any point $p \in M$ we have

$$X(p) = \left. \frac{d\varphi^i_t}{dt} \right|_{t=0} \frac{\partial}{\partial x^i}.$$

If we fix the time at $t = t_0$, the formula is a little more complicated, due to the fact that the diffeomorphism has advanced in position

$$X_t(p) = \varphi^i_t \left(\left. \frac{d\varphi^i_t}{dt} \right|_{t=t_0} \right) \cdot \frac{d}{dx^i}.$$

Thus a family of diffeomorphism φ_t canonically gives rise, at time $t = 0$, to a vector field:

$$X = \left. \frac{d\varphi^i_t}{dt} \right|_{t=0} \frac{\partial}{\partial x^i}.$$
This is often called “differentiating” the family of diffeomorphisms, for obvious reasons. Can this be done in reverse? Does a vector field always give rise to a smooth family of diffeomorphisms?

2.2. Vector fields define diffeomorphisms. The answer is that if \(X \) is a vector field of differentiability class \(C^{0,1} \), then it does. First we state the theorem:

Theorem 2.1 (Integration of vector fields). Let \(X \) be a vector field of class \(C^{0,1} \) on a manifold. If \(p \in M \), then there is a path \(\gamma : (-\epsilon, \epsilon) \to M \) so that \(\gamma(0) = p \) and \(\dot{\gamma}(t) = X(\gamma(t)) \).

\[\text{Pf} \]
Let us use local coordinates \(\{x^1, \ldots, x^n\} \) to examine the situation. Then if \(\gamma \) is any path and \(X \) the given vector field, we have

\[\gamma(t) = (\gamma^1(t), \ldots, \gamma^n(t)) \quad X(p) = X^i(p) \frac{\partial}{\partial x^i}. \]

Also note that

\[\dot{\gamma}(t) = \frac{d\gamma^i}{dt}(t) \frac{\partial}{\partial x^i}. \]

Therefore solving \(\dot{\gamma}(t) = X \) is therefore equivalent to solving the (nonlinear) system of ODES

\[\frac{d\gamma^i}{dt}(t) = X^i(\gamma^1(t), \ldots, \gamma^n(t)). \]

The ODE existence theorem states that this has a unique solution if the \(X^i \) are \(C^{0,1} \)-differentiable.

\[\square \]

3. The Lie Derivative

3.1. Lie derivatives for objects that either push forward or pull back along diffeomorphisms. Let \(X \) be a vector field, and let \(\phi_t : M \to M \) be its associated family of diffeomorphisms. If \(Y \) is another vector field, we define

\[L_X Y(p) = \lim_{h \to 0} \frac{Y|_p - \phi_{-t*}(Y|_{\phi_t(p)})}{h}. \]

That is, we push \(Y \) forward along the flow, compare it to the \(Y \) that was already defined there, and take a limit. This is called the Lie derivative of \(Y \) along \(X \).

There is no need to stop here: one can take a Lie derivative of any object either pushes forward or pulls back along a diffeomorphism. For instance, if \(\eta \) is an object that pulls back under diffeomorphism, then for \(p \in M \) we define the Lie derivative of \(\eta \) along \(X \), at the point \(p \), to be

\[L_X \eta(p) = \lim_{h \to 0} \frac{\phi_{-h*}(\eta|_{\phi_h(p)}) - \eta|_p}{h}. \]
3.2. **Mixed objects.** Note the difference in treatment between objects that push forward and those that pull back. Before we unify our treatment of the Lie derivative, notice that, if η pulls back, we have

$$L_X \eta = \lim_{h \to 0} \frac{\varphi_h^* \eta - \eta}{h} = \lim_{h \to 0} \frac{\varphi_h^* \eta - \eta}{h}.$$

But then

$$L_X \eta = \lim_{h \to 0} \frac{\varphi_h^* \varphi_h^* \eta - \varphi_h^* \eta}{h} = \lim_{h \to 0} \frac{\eta - \varphi_h^* \eta}{h}.$$

If we make the definition

$$\tilde{\varphi}_h = \varphi_h^* \quad \text{or} \quad \varphi_h^* - \eta,$$

as appropriate, then we can define

$$L_X A = \lim_{h \to 0} \frac{A - \tilde{\varphi}_h A}{h}.$$

Now it is possible to define a Lie derivative on mixed objects also. If $A \in \otimes^{k,l} M$ is some mixed tensor $A = V_1 \otimes \cdots \otimes V_k \otimes \eta_1 \otimes \cdots \otimes \eta_l$, then

$$L_X A = \lim_{h \to 0} \frac{A - \tilde{\varphi}_h A}{h}$$

where

$$\tilde{\varphi}_h(A) = \tilde{\varphi}_h(V_1) \otimes \cdots \otimes \tilde{\varphi}_h(V_k) \otimes \tilde{\varphi}_h(\eta_1) \otimes \cdots \otimes \tilde{\varphi}_h(\eta_l)$$

$$= \varphi_h^*(V_1) \otimes \cdots \otimes \varphi_h^*(V_k) \otimes \varphi_h^*(\eta_1) \otimes \cdots \otimes \varphi_h^*(\eta_l).$$

3.3. **Properties of the Lie derivative.**

4. **Introduction to Symplectic Geometry**

4.1. **Definition of a symplectic manifold.** A 2-form ω with $d\omega = 0$ that is nondegenerate at every point of an even-dimensional manifold N is called a symplectic form. A manifold N that admits a symplectic form is called a symplectic manifold. The study of such pairs (N, ω) is the subject of symplectic geometry.

4.2. **Isomorphism between the tangent and cotangent spaces.** Similarities between Riemannian and symplectic geometry abound. One similarity is that a canonical isomorphisms $T_p M \to T_q M$ exist in both cases. We have already discussed this in the Riemannian case (the \sharp and \flat maps). In the symplectic case, we can interpret ω as a map $\omega : T_p M \to T_p^* M$ by

$$Y \in T_p M \quad \text{maps to} \quad i_Y \omega \in T_p^* M.$$

One can prove that this map is an isomorphism, and therefore has an inverse. Unfortunately there is no widely accepted notation for these maps: the \sharp and \flat symbols are reserved for the Riemannian isomorphisms only.
4.3. **Hamiltonian flows.** Let $H : M \to \mathbb{R}$ be any smooth function. Such a function defines a kind of symplectic gradient vector field, usually given by X_H which is defined (implicitly) by

$$i_{X_H} \omega = -dH.$$

The vector field X_H is called the *Hamiltonian vector field* defined by H. Since any vector field defines a flow, we now have a *Hamiltonian flow*, φ_t, associated to H.

Let us examine how a function $f : M \to \mathbb{R}$ changes along the Hamiltonian flow.

$$L_{X_H} f = X_H(f) = -\omega^{-1}(dH)(\nabla f)$$