1 Required Knowledge

What are coordinates?

Given a space M and a point $p \in M$, what is $T_p M$, $T^*_p M$?

Given coordinates $\{x^1, \ldots, x^n\}$, what, precisely, does $\frac{\partial}{\partial x^i} \bigg|_p$ mean?

Given a function f, what does df mean?

How are vector fields and covector fields expressed?

If X is a vector field and ω is a covector field, what is $\omega(X)$?

Given a metric g on V, how is the metric on V^* defined?

Given a metric g on V with components g_{ij}, what are the components g^{ij} of the corresponding metric g on V^*?

Let M be a space with metric g. If X is a vector field, what is X_p? If ω is a covector field, what is ω^i?

Let M be a space with metric g. If $\gamma(\tau)$, $a < \tau < b$ is a path, what is its length?

If ω is a p-form, how is $d\omega$ computed?

What are the four defining properties of the d operator?
2 Practice Problems

1) Consider the Minkowski metric on $\mathbb{R}^{1,1}$. Let $X = x^0 \frac{\partial}{\partial x^0} + x^1 \frac{\partial}{\partial x^1}$ be a vector field, and let $\omega = x^1 dx^0 + x^0 dx^1$ be a 1-form. Find X^\flat and ω^\sharp. Compute $\omega(X)$ and $X^\flat(\omega^\sharp)$.

2) Let $g = 4 \left((x^1)^2 + 1 \right) dx^1 \otimes dx^1 - x^1 x^2 dx^1 \otimes dx^2 - x^1 x^2 dx^2 \otimes dx^1 + (x^1 x^2)^2 dx^2 \otimes dx^2$ be a 2-tensor on \mathbb{R}^2. Is this a metric?

3) Let $g = e^{-(x^1)^2-(x^2)^2} dx^1 \otimes dx^1 + e^{-(x^1)^2-(x^2)^2} dx^2 \otimes dx^2$ be a 2-tensor on \mathbb{R}^2. Prove g is a metric. Compute g^{ij}. Let $X = \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2}$ and compute X^\flat.

4) Let $\{x, y\}$ be coordinates on \mathbb{R}^2. Let $\omega = e^{-x^2-y^2} dx$. Compute $d\omega$, then convert $d\omega$ into polar coordinates. Next, convert ω into polar coordinates first, and then compute $d\omega$. Do you get the same answer?

5) Let $g = \frac{r^2}{(1+r^2)^2} \left(dr \otimes dr + r^2 d\theta \otimes d\theta \right)$ be a 2-tensor. Prove that this is a metric on $\mathbb{R}^2 - \{o\}$. Determine the distance from the origin to the “point at infinity.”