The Hopf Fibration and the Berger Spheres

Due —

Introduction \(\mathbb{R}^4 \) is the set of ordered quadruples of real numbers \((x_1, x_2, x_3, x_4)\), along with the Euclidean distance function:

\[
\text{dist} \left((x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4) \right) = (x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2 + (x_4 - y_4)^2.
\]

One can identify \(\mathbb{R}^4 \) with \(\mathbb{C}^2 \), the set of ordered pairs or complex numbers: a point \((z^1, z^2) = (x^1 + iy^1, x^2 + iy^2) \in \mathbb{C}^2\) can be identified with the point \((x^1, y^1, x^2, y^2) \in \mathbb{R}^4\).

If \((z^1, z^2), (w^1, w^2)\) are two points in \(\mathbb{C}^2 \), the distance between them is

\[
\text{dist} \left((z^1, z^2), (w^1, w^2) \right) = |z^1 - w^1|^2 + |z^2 - w^2|^2.
\]

Recall that if \(z \in \mathbb{C} \) then \(|z|^2 = z \overline{z}\).

Let \(S^3 \subset \mathbb{R}^4 \) denote the unit 3-sphere, defined to be

\[
S^3 \triangleq \left\{ (x^1, x^2, x^3, x^4) \in \mathbb{R}^4 \text{ s.t. } (x^1)^2 + (x^2)^2 + (x^3)^2 + (x^4)^2 = 1 \right\} = \left\{ (z^1, z^2) \in \mathbb{C}^2 \text{ s.t. } |z^1|^2 + |z^2|^2 = 1 \right\}.
\]

1 The Hopf action

Problem 1 If \(p, q \in \mathbb{C}^2 \), the distance \(\text{dist}(p, q) \) can be calculated in the \(\mathbb{C}^2 \) sense or the \(\mathbb{R}^4 \) sense. Prove that the distance is the same regardless of which distance function is used.

Def Given any \(\theta \in \mathbb{R} \), let \(\psi_\theta : \mathbb{C}^2 \to \mathbb{C}^2 \) be the map

\[
\psi_\theta(z^1, z^2) = (e^{i\theta} z^1, e^{i\theta} z^2).
\]

Note that \(\psi_\theta \) is the identity map if and only if \(\theta \) is a multiple of \(2\pi \).

Problem 2 Given any \(\theta \in \mathbb{R} \), prove that \(\psi_\theta \) is an isometry that fixes the origin \((0, 0) \in \mathbb{C}^2\).

Prove that, unless \(\theta \) is a multiple of \(2\pi \), then \((0, 0)\) is the only fixed point of \(\psi_\theta \). Finally, prove that if \((z^1, z^2) \in S^3\) then also \(\psi_\theta(z^1, z^2) \in S^3\).

Remark Thus \(\psi_\theta : S^3 \to S^3 \) is an isometric action: this is known as the Hopf action.
Problem 3) If \(p = (z_1, z_2) \in S^3 \), the orbit of \(p \) under the Hopf action is defined to be the set of all \(\psi_\theta(p) \) as \(\theta \) varies. Prove that the orbit of any point \(p \in S^3 \) is a circle of radius 1.

Remark Each orbit of \(\psi_\theta \) is a circle, and of course each point of \(S^3 \) lies in an orbit. Thus the union of the orbits (each a copy of \(S^1 \)) comprises \(S^3 \). One says that \(S^3 \) is fibered by \(S^1 \); one calls the \(S^1 \) orbits the fibers. The fibration of \(S^3 \) by copies of \(S^1 \) is called the Hopf fibration.

Problem 4) Considering \(S^3 \subset \mathbb{R}^4 \) (instead of \(S^3 \subset \mathbb{C}^2 \)), prove that
\[
\psi_\theta(x^1, x^2, x^3, x^4) = (x^1 \cos \theta - x^2 \sin \theta, x^1 \sin \theta + x^2 \cos \theta, x^3 \cos \theta - x^4 \sin \theta, x^3 \sin \theta + x^4 \cos \theta).
\]
The Hopf action \(\psi_\theta \) produces an action field, which is just the velocity field of the rotation. Letting \(\frac{d}{d\theta} \) denote the action field, compute \(\frac{d}{d\theta} \) in terms of the coordinate fields \(\left\{ \frac{\partial}{\partial x^i} \right\} \).

2 The Hopf map

Def The Hopf map \(\Psi : S^3 \to S^2 \) is a continuous map defined as follows. Regard \(S^2 \) to be \(\mathbb{C} \cup \{\infty\} \) (via stereographic projection). If \(p \in S^3 \) is an arbitrary point, then \(p = (z^1, z^2) \) with \(|z^1|^2 + |z^2|^2 = 1 \). Define
\[
\Psi(p) \in \mathbb{C} \cup \{\infty\}
\]
\[
\Psi \left((z^1, z^2) \right) = \frac{z^1}{z^2}.
\]
In contrast to the lower dimensional situation, there are NO (topologically nontrivial) continuous maps from \(S^2 \) to \(S^1 \).

Problem 5) Prove that \(\Psi : S^3 \to S^2 \) is onto. Which point in \(S^3 \) maps to the ‘point at infinity’ on \(S^2 \)?

Problem 6) Prove that \(p, q \in S^3 \) belong to the same Hopf fiber if and only if \(\Psi(p) = \Psi(q) \).

3 The Berger spheres

Remark The Hopf map \(S^3 \to S^2 \) is an example of a submersion: a map from a higher dimensional space into (in this case onto) a lower dimensional space. As we have seen, \(\Psi \) takes the 3-sphere and collapses the Hopf circles (1-dimensional objects) to points. What is left is a 2-sphere (a 2-dimensional object). The purpose of this section is to see the process occurring dynamically: we will construct a family of metrics that shrinks the Hopf circles to points.
Problem 7) Let X, Y, and Z be vector fields given by

\[
X = \frac{d}{d\theta} \quad = \quad -x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2} - x^4 \frac{\partial}{\partial x^3} + x^3 \frac{\partial}{\partial x^4} \\
Y = -x^3 \frac{\partial}{\partial x^1} + x^4 \frac{\partial}{\partial x^2} + x^1 \frac{\partial}{\partial x^3} - x^2 \frac{\partial}{\partial x^4} \\
Z = x^4 \frac{\partial}{\partial x^1} + x^3 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial x^3} - x^1 \frac{\partial}{\partial x^4}.
\]

Prove that X, Y, and Z are all tangent to S^3. Also prove that $|X|^2 = |Y|^2 = |Z|^2 = 1$, and that X, Y, and Z are mutually orthogonal.

Problem 8) Prove that

\[
[X, Y] = 2Z \\
[Y, Z] = 2X \\
[Z, X] = 2Y.
\]

This also proves that X, Y, Z cannot be considered coordinate fields.

Def We shall define the Berger metric on S^3 as follows. Let $\eta^1 \triangleq X_\alpha$, $\eta^2 \triangleq Y_\alpha$, and $\eta^3 \triangleq Z_\alpha$. Given $\alpha \in \mathbb{R}$, let

\[
g_\alpha = \alpha^2 \eta^1 \otimes \eta^1 + \eta^2 \otimes \eta^2 + \eta^3 \otimes \eta^3.
\]

If $\alpha = 1$, then this is precisely the metric that S^3 inherits from the ambient space \mathbb{R}^4.

Problem 9) Each of the metrics g_α has an associated covariant derivative ∇^α. Find

\[
\nabla^\alpha Y \quad \nabla^\alpha Z \quad \nabla^\alpha X.
\]

(It is best to use the Koszul formula directly). Note that the values of $\nabla^\alpha Y$, $\nabla^\alpha Z$, $\nabla^\alpha X$ are now automatic.

Problem 10) Compute the sectional curvatures

\[
\sec(X, Y) \quad \sec(Y, Z) \quad \sec(X, Z).
\]

As measured in the metric g_α, the Hopf fibers are circles of radius α. As $\alpha \to 0$ and the fibers contract to points, the sectional curvatures remain bounded. This is a process known as collapse with bounded curvature.