Practice Lecture
Start: 4:10 pm
L to allow for technical difficulties)

* All lectures will be on zoom, at scheduled time.
* Same holds for OH.
\& HW as before changed weights.
* Exam will be given online, submitted electronically, same time as scheduled.

Problem 5, Midterm 1
a) Prove that if $A \subset B$ then $P(A) \subset P(B)$.

Solution

Scratch Work
First write down relevant definitions.

* P(A) means "set of all subsets of $A^{\prime \prime}$

More precisely:

$$
" x \in P(A) \quad \Leftrightarrow \quad x \subset A "
$$

* $A \subset B$ means " $a \in A \Rightarrow a \in B^{\prime}$

Attempt of
Suppose $A \subset B$.
Want to show $P(A) \subset P(B)$

This is equivalent to showing

$$
\rightarrow_{\text {using }}^{\text {defy }} \rightarrow x \in P(A) \Rightarrow x \in P(B)^{\prime \prime}
$$ def nd

of C Suppose $x \in P(A)$
then $x \in A$ log deft of $P(A)$
So $x \subset B$. using

$$
\text { " } x \subset A, A \subset B \text {, }
$$

$$
\text { then } x \subset B \text { ! }
$$ proved in lecture".

So $x \in P(B)$ $Q \in D$,
using definition of $P(B)$.
problem Sb) Midterm I
Give examples of sets A, B for which

$$
P(A) \cup P(B) \neq P(A \cup B)
$$

Solution I

$$
\begin{aligned}
A & =\{3,7,8\} \\
B & =\{1,2,4\} \\
A \cup B & =\{1,2,4,3,7,8\} \\
P(A) & =\{9,\{7 \xi,\{3\}, \ldots \xi \\
P(B) & =\{\phi,\{1 \xi,\{2\},\{2,4\}, \ldots\} \\
P(A \cup B) & =\{\{1,2\}, \Phi, \ldots\} \\
P(A) \cup P(B) & =\{9,\{7 \xi,\{3\},\{1 \xi,\{23,\}
\end{aligned}
$$

This ts overcomplicated.
i) Don't choose complicated $A B$.
Be hazy.

$$
\begin{aligned}
& A=\{0\} \\
& B=\{1\} \\
& A \cup B=\{0,1\} \\
& P(A)=\{\dot{1},\{0\}\} \\
& P(B)=\{\phi,\{1\}\} \\
& P(A \cup B)=\{\phi,\{0, i \xi,\{1 \xi,\{0\}\} \\
& P(A) \cup P(B)=\{\phi,\{8\},\{1\}\} .
\end{aligned}
$$

2) Sase work by using deft.

What does it mean for 2 sets to be equal?
1 * "same elements"

* $A=B$ means $a \in A \Leftrightarrow a \in B$

Soln 2

$$
\begin{aligned}
& \text { Let } A=\{0\} \\
& B=\{1 \xi \\
& A \cup B=\{0,1\} \text {. } \\
& \{0,13 \in P(A \cup B) \text { because } \\
& \{0,1\} \subset A \cup B \\
& \text { but } \\
& \left.\begin{array}{l}
\{0,1\} \notin P(A) \\
\text { and } \\
\{0,1\} \notin P(B)
\end{array}\right\} \leftarrow\{0,1\} \& \frac{P(A) \cup P(B)}{}
\end{aligned}
$$

* Highly recommend
webcam + microphone.

