Lecture 25
Info about final:

* May $12 \quad 8 \cdot 30$ pm- 11 pm Chiba in by llamas $^{\prime}$).
* Everyone will be on Zoom with webcam on (if no webcam, use phone).
* Will sabart plato of work on gradescope.
* Allowed to use
the textbook/ kw / kw solus /notes/ bat no other sourse
* Focus will be on pest spring break matental, * some incluction.

Recap
X countable $\Leftrightarrow\left|\mathbb{Z}^{+}\right|=|X|$
set
\Longleftrightarrow J bijection

$$
f=\mathbb{Z}^{+} \rightarrow X
$$

Can list all the elements of x ra sequential list (possibly infinite)
Eng $\left|F+\left|=|E| \begin{array}{r}\text { even positive }\end{array}\right.\right.$

$$
\begin{aligned}
& 1 \longleftrightarrow 2 \\
& 2 \leftrightarrow 4 \\
& 3 \leftrightarrow 6
\end{aligned}
$$

$$
\left|\frac{\pi^{+}}{\lambda}\right|=\left|\frac{\# 1}{15}\right|
$$

positive IT all integers integer.

$$
\left|\mathbb{Z}^{+}\right|=\left|\mathbb{Q}^{+}\right|
$$

$\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{3}, \frac{3}{2}, \frac{3}{1}, \ldots-$

There avo iffinste sets $|x|$ for which

$$
|7+1 \neq|x|
$$

Theorem (anton (1891)
There ave no surjection

$$
\mathbb{\#}^{+} \rightarrow P\left(\mathbb{\#}^{+}\right)
$$

Proved at end of last lecture.
*Another way of saying the result There are different infinities

$$
\left|\#^{+}\right|<\left|P\left(\mathbb{7}^{+}\right)\right|
$$

*Another way of saying the result Mary attempt to list elements ir $P\left(\right.$ t $\left.^{+}\right)$ will not be exhaustive even if its an infinite lest.

Contract with the following:
Let $x=$ The set english texts.
$x=\{$ tace, the, hello world! The textbook, lord of the rings
\ldots ". cesdf $(k-\sim-1$?
Your brograpliy"?
X is cocentable.
Here is a cist of all elements of x :

* List all sequences with ab cc, y.

$$
\text { of length } 1
$$

* List all sequences with abbe, of length $2^{\text {etc }}$
* List all sequences with ab ,c, etc, of length 3

Any text will be seen in this lest.

So x is countable,
because we live exhibited a bijection

$$
f: \#^{+} \rightarrow x
$$

(ie a (resting of clements)

$$
\begin{aligned}
& f(1)=(1 \\
& f(2)=a^{\prime} \\
& f(3)=b^{\prime} \\
& f(4)=c^{\prime}
\end{aligned}
$$

Contrast with $P\left(\mathbb{E}^{+}\right)$.
Any attempt to lost elements in P(4) well not be exhaustion even of its an infinite

Note: in our list for x^{2} ? will see a lot of math: * "the set of even number" * "the set coutaring one" These are descriptions -f things In $P\left(7^{t}\right)$.

Bat it will not contari descriptions of all elements.

$$
P\left(\not z^{+}\right)
$$

Consequence Some subsets of \#+ cannot be described (via english (ext). or any language

Consequence.
The set of things
that can be described in english is countable.

Another obsenvateon:
Finite subsets of \mathbb{F}^{+3} is countable.

S subsets θf \#t3 is not uncountable.

Sufrite subsets *f \#t\} is not uncountable?
if

Suftrite subsets \&f \#+\} were countable,

Then
Finite subsets of 1 It
Sulfite subsets $\in f$ \#t $\} \cup P_{*}(\#)$
would la countable.

But this would mean

$$
P(\#) \text { is countable. }
$$

We proved there is no Sonjedion $F^{+} \rightarrow P\left(F^{+}\right)$
The proof actually shows - if
x is a set, there is no surjection from $x \rightarrow P(x)$.

$$
n<2^{n}
$$

Consequence

$$
\left|7^{+}\right|<\left|P\left(\frac{ \pm}{\sharp}\right)\right|<\left|P\left(P\left(\mathbb{Z}^{+}\right)\right)\right|<1<P\left(P\left(P(\not)^{+}\right)\right.
$$

Recall: I asked you to ref

$$
P(e(\{a, b\})) .
$$

-

16 elem ents.
There infinitely many infinities.

$$
\left|\mathbb{\#}^{+}\right|<2<\left|P\left(\mathbb{Z}^{+}\right)\right|
$$

Is there another nifirify or between?
This question was resolved 1950 s
it's ondecible
Theorem (Cohen)
It is impossible to
prove or disprove this fact.
Other uncountable sets.
$\mathbb{R}=$ set of real numbers

$$
=\{1,2, \pi, 2.718--, \sqrt{2}, \ldots\}
$$

Theorem: (ch 14)
[op] is uncountable. (so R is uncountable).

Proof:
There $=s$ a sorjection

$$
\begin{aligned}
& g:(0,1] \rightarrow P\left(\not \Psi^{+}\right) \\
& g(0.1)=\{1\} \\
& g(001010101 \ldots)=E^{\text {even }} \\
& g(011111)(1,-)-\mathbb{Z}^{+} \\
& g(x)=\left\{i \in \mathbb{Z}^{+} \quad\right. \text { ito digest } \\
& \text { in lopizaniy } \\
& \text { of } x \text { is } \\
& \text { 13. }
\end{aligned}
$$

Why is it a surjection?

$$
g\left(\text { min }_{\text {need to show }}\right)=1
$$ need to show for any A,

we can put a we can put a number

Put $x=0,\left(a_{i}\right)$
where $a_{i}=1 \leqslant f \in A$.
Ex

$$
g(0 \cdot 100(00001)=\{1,4, a\}
$$

So we have a surjection

$$
g=[0,1] \rightarrow P\left(\#^{+}\right)
$$

That mearo there is no surjection

$$
\left.f=\boldsymbol{\#}^{+} \rightarrow \overline{\operatorname{Co}}\right] .
$$

Otherwise we could use it to get a so rejection

$$
\#^{+} \ngtr \Gamma_{0}, 门 \underset{g}{ } P\left(\#^{+}\right)
$$

Consequence Some real uunbers caunot be descrilsed (via english text). or any language.

