Lecture 23
HW Due Monday
Last time: if X and Y are sets
Defined
$*{ }^{\prime}|x|=M| |^{\prime}$ means $\quad \exists f=x \rightarrow Y$ bijection
*" $|x| \leq|x|^{\prime \prime}$ means $\exists f=x \rightarrow K$ igjective
What about multiple dotes:

Warning: (x (has no meaning eg ($\left.\mathbb{I}^{t}\right)$ has no meaning

Example

$$
\begin{aligned}
\text { ample } \quad \begin{aligned}
+ & =\{1,2,3, \ldots\} \\
E & =\{2,4,6, \ldots\}\} \\
*\left|\mathbb{Z}^{+}\right| & =|E|
\end{aligned} .\left\{\begin{array}{l}
=\mid
\end{array}\right.
\end{aligned}
$$

i.e. is there a bijedion

$$
f=\mathbb{I}^{+} \rightarrow E ?
$$

i.e is there a

$$
f=\mathbb{I}^{+} \rightarrow E ?
$$

which is surjective and injective.

Yes.
$x f(x)=2 x$

rijective:
if $x \neq y$

$$
2 t=2 y
$$

Durjective:
given $y \in E$,

$$
f\left(\frac{y}{2}\right)=y
$$

We've just shown that

$$
\left|\mathbb{Z}^{+}\right|=1 E
$$

Quiz:

$$
\begin{aligned}
& 800 \% \\
& C / F
\end{aligned}
$$

True, ret $\Rightarrow x \in \mathbb{Z}^{+}$
2)

$$
E=I^{+}
$$

False, $l \in \mathbb{Z}^{+}$, but $\& E$.

So we have
Contrast this to the situation

$$
E \subset \mathbb{H}^{+}
$$

$$
E \neq \mathbb{Z}^{+}
$$ but

$$
|E|=\left|\mathbb{I I}^{+}\right|
$$

This is
a surprising feature
of cardinalities infinite sets.
 for finite sets:

$$
\begin{aligned}
& A \subset B \\
& A \neq B
\end{aligned}
$$

Then

$$
|A|<|B|
$$

© 菏

$$
\left.* \mid \not \mathbb{H}^{+}\right) \stackrel{?}{=} 1 \mathbb{Z}
$$

$$
\mathbb{Z}=\{-21,1,2,-\}
$$

Is there a bijection

$$
f: \mathbb{H}^{+} \rightarrow \mathbb{\#} ?
$$

Yes

$$
f(x)= \begin{cases}\frac{x-1}{2} & x \text { odd } \\ -\frac{x}{2} & x \text { even }\end{cases}
$$

Egg.

$$
\begin{aligned}
& f(1)=0 \\
& f(2)=-1 \\
& f(3)=1 \\
& f(4)=-2 \\
& f(5)=2 \\
& f(6)=-3 \\
& f(7)=3 \\
& 1 \\
& -4 \\
& 4 \\
& 4
\end{aligned}
$$

infective?
Pacisible
$\frac{\text { Barjective }}{\text { Plausible }}$
So (plausibly) bijective

How to formally prove that f is a bijection?
Easiest way show that f lias an inverse.

Here,

$$
\begin{aligned}
& g=\mathbb{Z} \rightarrow \mathbb{+}, \\
& g(x)= \begin{cases}-2 x & x<0 \\
2 x+1 & x \geq 0\end{cases}
\end{aligned}
$$

Egg. $g(3)=2 \cdot 3+1=7$
Then venfy

$$
g(f(x))=x \quad f(g(x))=x
$$

Note on notation:
To describe a function

$$
f=\Psi^{+} \rightarrow X
$$

we can just "list" the function values.
$E \cdot g$
The first example $f=\mathbb{Z}^{+} \rightarrow E$ car be written

$$
\begin{aligned}
& 2,4,6,8,10, \cdots \\
& \uparrow, \text { in } \\
& f(1) f(2) f(3) f(4) f(5)
\end{aligned}
$$

The second example $f \quad \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{\text {. }}$

$$
0,-1,1,-2,2,-3,3, \ldots
$$

With this notation, vie have the following dretronany:
function $\mathbb{\#}^{+} \rightarrow X \Leftrightarrow$ infinite sequence $\begin{gathered}\text { of elements }\end{gathered}$ of elem
in X
surjective \Rightarrow every $y \in x$ can be found in
injective \Longleftrightarrow no duplicates in

$$
\mathbb{Q}^{+}=\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{3}{7}, \frac{11}{29},-3, \begin{array}{l}
\text { So for: } \\
|z|=(\#+) \\
|\#|=|\in|
\end{array}\right.
$$ ratios of inpositive (and 0)

$$
\left|\frac{?}{H}\right| \stackrel{?}{=}\left|\mathbb{Q}^{+}\right|
$$

Let's altempt fird bejection:

$$
f: \mathbb{F}^{+} \rightarrow \text { (1) }
$$

$$
x f(x)=\frac{1}{x}
$$

a) injective
b) surjective
(c) bijective

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \ldots
$$

a) it is injective no duplicates.
b) not surjective,
$\frac{\frac{3}{7} l^{2} \text { is not in list }}{\text { oflmf ine is } 0 \text { irst) lis }}$

No, not in list.
(even though "(imit" is 0).
To say that something is in list, mast ba able to theoretically) tell what position it occurs.
E.g. $\frac{1}{10 x}$ is at position 100. Egg 0 is af position??

Another cit emit:
$0, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \ldots$
Not surjective, missing 2 .

$$
\theta_{1} \frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{1}, \frac{2}{3}, \frac{3}{2}, \frac{1}{4}, \frac{4}{1}, \frac{3}{4}, \frac{4}{3}
$$

Wal I get $\frac{572}{999}$?

Wee I get $\frac{p}{q}$?
Yes, wat until
listing numbers with denominator q :

$$
\frac{1}{9}, \frac{q}{1}, \frac{2}{q}, \frac{q}{2},-\frac{p}{q}, \frac{q}{p}
$$

So it es surjective and injective, so we have a bijection.
50

$$
\left|\mathbb{Z}^{+}\right|=\mid\left(\omega^{+}\right)
$$

Example

$$
\left|\mathbb{Z}^{+}\right|^{?}\left(P\left(\mathbb{Z}^{+}\right) \mid\right.
$$

$$
\begin{aligned}
& \mid \#+(E) \\
& (\#+1=(\mathbb{Z}) \\
& (\#=(Q+)
\end{aligned}
$$

Recall $P\left(\Psi^{+}\right)=$set of of \mathbb{H}^{+}

$$
=\left\{\phi_{1}\{1\},\{2\},\right.
$$

Is there a bijection? $f: \mathbb{I}^{+} \rightarrow P\left(\not ¥^{+}\right)$ Attempt:

$$
\begin{aligned}
& \Phi, \frac{S\{ \},\{2\},\{1,2\},\{3\},\{1,3\},\{2,3\},}{\{1,23\},\{4\},}
\end{aligned}
$$

Or:

* List all subsets of ϕ
* Lest subsets of \{1B (that hoary seen
(ex)

Or:
0) List all subsets of Φ

1) Lest
subsets of $\{1\}$ (that yo wal yea)
2) Lest subsets of 31,23 (that hour Seen
Yes?
3) Lest subsets of \{1233) that your sear seed)
4) Lest subsets of $\{1-8\}$ that yoga Seen)
Bill you see

$$
\{5,6,8\} \quad \text { in the }
$$

Yes, in step 8.
Will you see

$$
\begin{aligned}
& \{2,4,6,8, \ldots, 10000\} ? \\
& \text { Yes in step } 10,000
\end{aligned}
$$

is f surjective?

$$
S=\mathbb{Z}^{+} \rightarrow P\left(\mathbb{I}^{+}\right)
$$

Ans: Tes (No

$$
1<27 \%
$$

Which element of $P\left(7^{+}\right)$ is not in the lost?
$\{1,2 \ldots\}$
$(n o t \ln \operatorname{lm} f)$.

$$
\mathbb{E}^{+} \propto \ln f
$$

Because everything in our lest rs finite.
Imf is missing all infinite sets.

2 things:

1) Fix our attempt
2) Co back to $f=\mathbb{7}^{+} \rightarrow+$ describe like step process.
