Lecture 21


$$
\begin{aligned}
& 8 \times \sqrt[2]{20} \\
& 8 / 2 \pi \sqrt{2}
\end{aligned}
$$



1) How mary dominoes?


Can I tile?

$$
T \int F
$$

No


Can I tile?
$<$ with 7 dominoes

with
31 dominoes

Recall that

$$
\text { * } P_{r}\left(N_{n}\right)=\text { subsets of }\left\{c_{1}--1 n\right\}
$$ with or elements

$$
*\binom{n}{r}=\left|\operatorname{Pr}\left(N_{n}\right)\right|
$$

Quiz:

$$
\binom{4}{2}=
$$

a) 2
b) $\frac{3}{4}$
c) ${ }^{\text {d) }}{ }^{4} 5$
e) 6
$\binom{4}{2}=\left|P_{2}\left(N_{4}\right)\right|=\quad$ umber of subsets of $\{1,2,3,4\}$ with 2 elements.

$$
\begin{aligned}
= & \{\text { number of events }\{1,2\},\{1,3\},\{1,4\}, \\
& \{2,3\},\{2,4\},\{3,4\}\} \\
= & 6
\end{aligned}
$$

Last time:

* $(\hat{r})=(\hat{n}-r) \quad$ by exhibiting a bijection

$$
f=\operatorname{Pr}\left(\mathbb{N}_{n}\right) \rightarrow P_{n-r}\left(\mathbb{N} n_{n}\right)
$$

Theorem:
For $0 \leq r \leq n$

$$
\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}
$$

What does this have to do with pascal's triangle

$$
4142
$$

$$
\begin{gathered}
\binom{n-1}{r-1} \\
\underbrace{}_{\binom{n}{r}}\binom{n-1}{n}
\end{gathered}
$$

Proof
We will find a bijedron

$$
P_{r}\left(\frac{\mathbb{N}_{n}}{1}\right) \rightarrow\left(P_{r}\left(\frac{\mathbb{N}_{n}-i}{\left.\xi_{1}-1, n\right\}}\right) \cup P_{\Gamma}\left(\frac{N_{n-1}}{\left\{N_{1}-\cdots-1\right\}}\right)\right)
$$

luformally:
if $A \in P\left(N_{n}\right)$, chis means that $A \subset\{1, \ldots$ in $\}$, with $r$ elements.

2 cases:
if $n \in A$, then $\{13\}$. $A$ can be rutepreted as an element of

$$
\operatorname{Pr-i}(S(,-1, n-1))
$$

if $n \notin A$, then

$$
\left.A \in P_{r}\left(\varepsilon_{1}, \ldots-n-1\right\}\right)
$$



Formal Proof:
Define

$$
\begin{aligned}
& f: P_{f}\left(N_{n}\right) \rightarrow P_{r}\left(N_{n-1}\right)\text { oP } \left.P_{\Gamma-1}\left(N_{n-1}\right)\right) \\
& f(A)= \begin{cases}A-\{n\} & \text { if } n \in A \\
A & \text { if } n \notin A\end{cases}
\end{aligned}
$$

To show it's a bijection, define

$$
\begin{aligned}
& g: P_{r}\left(N_{n-1}\right) \cup P_{r-1}\left(N_{n-1}\right) \rightarrow P_{r}\left(N_{n}\right) \\
& g(B)= \begin{cases}B \cup\{n\} & B \in P_{r-1}\left(\mathbb{N}_{n-1}\right) \\
B & B \in P_{r}\left(N_{n}\right)^{2}\end{cases}
\end{aligned}
$$

Then $g(f(A))=A$

$$
f(g(B))=B \quad \text { (excerise) }
$$

so $f$ has an inverseSo $f$ s a bijection.

$$
\begin{aligned}
& \left|P_{0}\left(\mathbb{N}_{n}\right)\right|=\mid P_{r}\left(\mathbb{N}_{n-i}\right) \text { ט } P_{r-1}\left(N_{n-r}\right) \mid \\
& \binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1} \\
& (|x|+|y|=|x, y| \text { onlig if deint) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sef }] 2^{\text {bijection }} \rightarrow \text { set } 2 \\
& \sqrt{V} \text { 新 } \\
& \text { expression } 7 \underset{\sim}{\text { equalky of }} \text { in ex pression ? }
\end{aligned}
$$

Theonens
For $\quad n \geq 0$,
For $0 \leqslant r \leq n, \quad\binom{n}{r}=\frac{n!}{r!(n-r)!}$
where $n!=n(n-1) \cdots p$.

$$
e \cdot \quad 4!=4 \cdot 3 \cdot 2 \cdot 1
$$

Proof by raduction

$$
\binom{n+1}{r}=\left(\begin{array}{c}
\text { bg hor } \\
n \\
r
\end{array}\right)+\binom{n}{r-r}=\frac{n!}{n!(n-r)!}+\frac{n!}{(\Gamma)!}
$$

$$
\begin{aligned}
& \left.\binom{n+1}{r}=\begin{array}{|c}
\text { by cha } \\
n \\
r
\end{array}\right)+\binom{n}{r-r}=\frac{n!}{r^{!}(n-r)!}+\frac{n!}{(r-1)!(n-r+1)!} \\
& \quad=\frac{(n+1)!}{r!(n+1-r)!} \\
& \begin{array}{c}
\text { common } \\
\text { denominator } \\
\text { algebra }
\end{array}
\end{aligned}
$$

Theorem

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}
$$

Not obvious from $\quad\binom{n}{k}=\frac{n!}{k!(n-k)!}$

$$
\text { Egg. } \quad 1+3+3+1=8=2^{3}
$$

Proof:

$$
P_{0}\left(\mathbb{N}_{n}\right) \cup P_{1}\left(\mathbb{N}_{n}\right) \cup \cup \cup P_{n}\left(\mathbb{N}_{n}\right)=P\left(\mathbb{N}_{n}\right)
$$

So

$$
\left|P_{0}\left(\mathbb{N}_{n}\right) \otimes P_{1}\left(\mathbb{N}_{n}\right) \cup \cup P_{n}\left(\mathbb{N}_{n}\right)\right|=\mid P(\mathbb{N}(n)
$$

$$
\begin{aligned}
& \left|P_{0}\left(\mathbb{N}_{n}\right) \cup P_{1}\left(\mathbb{N}_{n}\right) \cup-\cdots P_{n}\left(\mathbb{N}_{n}\right)\right|=\left|P\left(\mathbb{N}_{n}\right)\right| \\
& P_{0}\left(\mathbb{N}_{n}\right)\left|+\left|P_{1}\left(\mathbb{N}_{n}\right)\right|+\cdots+P_{n}\left(\mathbb{N}_{n}\right)\right|=\left|P\left(\mathbb{N}_{n}\right)\right|
\end{aligned}
$$

So by defy,

$$
\binom{n}{0}+\binom{n}{1}+-\binom{n}{n}=2^{n}
$$

Another example where "iateppeteny members as a count"

$$
O\binom{n}{0}+1\binom{n}{1}+2\binom{n}{2}+\cdots\binom{n}{0}=n \cdot 2^{n-1}
$$

latepretation:-
$\binom{n}{r}=$ number of ways to choose r people from $n$ candidates to send to Mars.

$$
r\binom{n}{r}=
$$

$n\binom{n}{r}=\begin{gathered}\text { number of ways to } \\ \text { choose } e\end{gathered}$ choose $r$ people from $n$ candidates to send to Mars and
to pick a leader.

$$
O\binom{n}{0}+1\binom{n}{1}+2\binom{n}{2}+\cdots n\binom{n}{n}
$$

$=$ ncember of ways to choose people from $n$ candidates to send to Mars and
to pick a leader

$$
=
$$

equivalently:
pice a leader $x$ ( $n$ chores)
pick rest of the team
Crick subset of $\{1,2, \cdots, n\}-\{x\}$

$$
\left(2^{n-1}\right. \text { choices }
$$

11
number of ways to choose people from $n$ candidates
to send to Mars $=n 2^{n-1}$
Formally, there is a brjectoon

$$
\begin{gathered}
f=\mathbb{N}_{1} \times P_{1}\left(\mathbb{N}_{n}\right) \cup \mathbb{A}_{2} P_{2}\left(\mathbb{N}_{n}\right) \cup \cdots \mathbb{N}_{n}\left(\mathbb{N}_{n}\right) \\
\\
\longrightarrow \mathbb{N}_{n} \times P\left(\mathbb{N}_{n-1}\right)_{t}
\end{gathered}
$$

