Lecture 17 CCh 10, 11) Last & lectures: * Image, Pre-image * Surjective, Injective, Bijective. * Function composition * Left (right inverse, inverse, invertible. Recall: f=X >Y is a bijection means f is surjective and injective Quiz Which ones are bijectrons

Y X not injective. bryective. Not injedice / surjective (.) bijectije scerjective not bijective

Theorem is invertible \leftrightarrow f is bijective This will be a honework problem. I will write down the proof and ask you to justify each step. Today: Counting (Chio,11) Example 天天天 There are 3 people here. There are 3 elements in this set. 22,4,73 What do these statements really mean? What is counting?

Definition $N_n := \xi_{1,2,3,1}$ NJ $E.g. N_2 = 21,23$. $N_7 = 21, 2, 3, 4, 5, 6, 75$ Définition 10.1.1 Let X be a set. We say X has a elements if there exists a bijection $f = \mathbb{N}_{n} \longrightarrow X$ het's work out some examples to see why this found definition natches our intuition of counting. Example Prove that 22,4,73 has 3 demonts, using the definition.

Proof: Need to show there is a brjection $IN_3 \rightarrow SZ_14_133_2$ Picture: \$2,4,73 N3 ____~ Z (• 20 20 20 4 30 7 4 f is a brjection. This example shows that the Def" is matching with our infuition.

In fact, * eveny time you count aloud, you are implicitly defining a bijection f= Mn > the things counting are Example

* Every time Fingers, count with you 2-3 MA 1 l1.1 set of fingers. 232 implicitly defining a bijection f - Fingers >> the set

Examples Here are some common mostales that everyone males a). There are 3 houses. What went wrong? The function I have implicitly defined is not surjective, so not bijective. (5) (5) (3) (2) (2)There are 5 houses. What went wrong? The function I have implicitly defined is not injective, so not bijective

Ambiquity? We proved that {2,4,75 has 3 elements. But we need to make sure its unambiguous. What if \$214,73 also has 4 elements? T.e. what if there was a bijedton $f: \mathbb{N}_{4} \rightarrow \{z_{1}, 4, 7\}$? 20 . . 3. • 7-4.

hesson: For the we need: definition to be good, Theorem if $f = N_m \rightarrow X$ and $g = N_n \rightarrow X$ are bijections) then n=m. Proof: HW. Summary-When making a definition ~ Explain why it is a "useful" definition * Make sure its cenambiguous. Question: 15 there a bijection $f = \phi \longrightarrow \phi$. Yes, f = 23

Eq. $f(x) = x^2$ f=12->R $\{(1,1), (2,4)\}$ 1 (-2, 4), f=22 surjective and trjedtve surjective: Hyge V JxeX f(r)=Y $\forall y \in \phi \quad \exists x \in \phi \quad f(x) = y$ Surjective: $f: \phi \rightarrow \phi$ Vacuosly true

Definition [X] is the number of elements in X Theorem Pigeonhole principle if IAI>IBI then there are no injective Functions A-SB. Example A B B=3 |A|=4no injective funcs 1A(>1B),

Applications of PHP: * Suppose you a drawer with red and blue socks. Prove if you pull out 3 that if you are guaranteed socks, you are guaranteed to have a matching pair. Informal Proof: Blue Red Proof Let $f=\xi_{1,2,3} \xrightarrow{>} \xi_{red,blue}$ fli)= the color of the ith sock Since (21,8,33) = 3 and 3>2, Bred, blue31=2 f cannot be injective. (by PHP).

· · · · · · · · · · · · · · · · · · ·	cannot so the such	be in is ene is f(i) =	j = c + i J = f $i \neq j \in F(j)$	= 5 1, 2, 53
So the col	se of ith	sock = f	ne color	of jith sock
Nex-	time =	more a	application	ns for PHP.
	· · · · · · · · ·			
.		
.		

f: IR -> IRKIR $\mathbb{R} \times \mathbb{R} = \{(a,b): a \in \mathbb{R}, b \in \mathbb{R}\}$ $= |\mathbb{R}^2$ F: US Citizens > # F= 2-1, 0, 1, 2, -2, 3,-3,-3,-3,-3 state0f(11776) = NY Stateof(11772) = NY

 $\begin{cases} f : \mathbb{R} \to \mathbb{R}_{\geq} \\ f(x) = -x^2 \end{cases}$ f is not well-defined.