Lecture 17 Ch 10,11)
Last 3 lectures:

* Image, Pre-image
* Surjective, Injective, Bijective.
* Function composition
* Left /right inverse, inverse, invertible.
$\operatorname{Recall}: f=X \rightarrow Y$ is a bijection means f is surjective and injective.

Quiz:

Which ones are bijections

not injective.
not bigective.
injective surjective bijectije -

not surjective. not bijective.

Theorem f is invertible
f is bijective
This will be a homework problem. I will write down the proof and ask you to justify each step.

Today: Counting ch $(0,11)$
Example

$$
\begin{gathered}
\text { 오 아 오 There ave } \\
3 \text { people here }
\end{gathered}
$$

$\{2,4,7\} \quad$ There are 3 elements ir this set.

What do these statements really mean?

What is counting?

Definition

$$
\begin{aligned}
& \mathbb{N}_{n}:=\{1,2,3, \ldots, n\} \\
& \text { Egg. } \mathbb{N}_{2}=\{1,2\} \\
& \mathbb{N}_{7}=\{1,2,3,4,5,6,7\}
\end{aligned}
$$

Definition 10.1.1 Let x be a set We say $1 x$ has n elements if there exists a bijection

$$
f=\mathbb{N}_{n} \rightarrow X
$$

Let's work out some examples to see why this formal definition matches our mituition of counting.
Example Prove that $\{2,4,7\}$ has 3 elements, using the definition.

Proof: Need to show there is a bijection $\quad N_{3} \rightarrow\{2,4,3\}$.

Picture:

f is a bijection.

This example shows that the Def n is matching with our intuition.

In fact,

* every time you count aloud, you are implicitly defining a bijection
$f=N_{n} \rightarrow$ the things are counting.

* Even time you count with fingers,

defining a bijection
f. Fingers \rightarrow the set

Examples Here are some common mistakes that everyone males when courting.
a)

There are 3 houses.
What went wrong?
The function I have inplicity defined is not sarjective. so not bijective.
b)

There are 5 houses.
What vent wrong?
The faction I have implicitly defined is not injectivey so not bijective

Ambiguity?
We proved that $\{2,4,7\}$ has 3 elements.

But we need to make sure its unambiguous.

What if $\{2,4,7\}$ also has 4 elements?
lie what if there was a bijection $\quad f N_{4} \rightarrow\{2,4,7\}$?

-2

- 4
.7

Lesson: For the definition to be good, we need:

Theorem if $f=N_{m} \rightarrow X$ and $g: N_{n} \rightarrow x$ are bijections) then $n=m$.

Proof: HW.

Summary:
When raking a definition

* Explain why it is a "useful". definition
* Make sure its conambiguius.

Question: Is there a bijection

$$
\begin{array}{r}
f=\phi \rightarrow \phi \\
\text { Yes, } f=\{ \}
\end{array}
$$

Eg. $f(x)=x^{2}, f: \mathbb{R} \rightarrow \mathbb{R}$ $\{(1,1),(2,4),(-2,4), \ldots\}$
$f=\{3$ is surjective ryective
scinjective: $\quad \forall g \in Y \quad \exists x \in X \quad f(x)=Y$ $t: x \rightarrow Y$
scerjective: $\forall y \in \emptyset \quad \exists x \in \varnothing \quad f(x)=y$ $t=\phi \rightarrow \phi$

Vaciooly timie

Definition
$|x|$ is the number of elements in x

Theorem Pigeonhole principle if $|A|>|B|$ then there are no injective functions $\quad A \rightarrow B$.

Example

$|A|=4$
A

6

$$
|B|=3
$$

$|A| S|B|$, no manure funcs.

Applications of PHP:

- Suppose you a drawer with red and blue socks.

Prove that if you pull out 3 socks, you are guaranteed to have a matching pair.
Informal Proof:

Proof
Let $f=\{1,2,3\} \rightarrow$ \{red, blue $\}$
$f(i)=$ the color of the eth sock
Since $\mid\{(1,2,3\}) \geq 3$
\mid seed, blue $\} \mid=2$, and $3>2$, f cannot be injective (by PHP).
f cannot be injectivej
so there is $i \neq j \in\{1,2,5\}$ such $f(i)=f(j)$
so
the color of isth sock $=$ the color of auth socks

Next time $=$ mone applications for PHP.
$f: \mathbb{R} \rightarrow \mathbb{R} \subset \mathbb{R}$

$$
\begin{aligned}
\mathbb{R} \times \mathbb{R} & =\{(a, b) ; a \in \mathbb{R}, b \in \mathbb{R}\} \\
& =\mathbb{R}^{2}
\end{aligned}
$$

$f:$ US Citizens \rightarrow \#

$$
Z=\{-1,0,1,2,-2,3,-3, \ldots\}
$$

13

$$
\begin{aligned}
\text { state of }(11776) & =N Y \\
\text { state of }(11772) & =N Y
\end{aligned}
$$

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \geqslant 0 \\
& f(x)=-x^{2}
\end{aligned}
$$

f is not well-defined.

