Lecture 16 Inverses and bijection (ch 9).
(HW Due Thursday)
Last time.

* $f=x \rightarrow Y$ is a bijection
f is surjective and rjective.
* $g: Y \rightarrow Z$ then
$g \circ f$ is a new function,

$$
g \circ f: x \rightarrow z
$$

* Id $x: x \rightarrow x$ is the function

$$
I_{x}(a)=a \quad \text { for } a \in X
$$

Picture:

* $g: x \rightarrow x$ is a left inverse to

$$
f=x \rightarrow y \quad \text { if }
$$

$$
g \circ f=l d x
$$

For all $a<x$
$g(f(a))=a$

Example firstChildof: Parent \rightarrow Maiman
mother of Humans \rightarrow Parents
first-Childof is not left inverse of mother of, because

First Child of (mother of (Sasha))

$$
=\text { firstchild of (Michelle) }=\text { Maia }
$$

Pectoral interpretation of left inverse:

$$
g \circ f=(d x \text {, so } g \text { is a cleft }
$$

inverse to f.
Excercise
There is a different left immerse for t. what is it?
Answer:

$$
g \circ f=1 d x
$$

so g is another left inverse of f

Another example:

$$
\begin{array}{ll}
f: \mathbb{R} \rightarrow \mathbb{R} \geq 0, & f(x)=x^{2} \\
g: \mathbb{R} \geq 0 \rightarrow \mathbb{R}, & g(x)=+\sqrt{x}
\end{array}
$$

ls f a left inverse for $g^{?}$
66% True
Answer:
Wart to check if

$$
f \circ g=l_{\mathbb{R}_{20}}
$$

le.

$$
\begin{aligned}
& f(g(x))=x \\
& (+\sqrt{x})^{2}=x
\end{aligned}
$$

So f is a left inverse for g
ls g a left inverse for $f ?$
66% No
Answer = No

$$
\begin{aligned}
& g(f(x))=x \\
& +\sqrt{x^{2}}=x
\end{aligned}
$$

Not true, take $x=-1$
Exercise
is mother of Humans \rightarrow Parents a left inverse of
first Child of: Parents \rightarrow Humans?
Answer: No.
Excercise
is mother of Humans \rightarrow Mothers a left ruvese of
first Child of: Mothers Humans?
Answer: Xes.

Definition
$g: X \rightarrow X$ is right inverse of
$f=x \rightarrow Y$ if

$$
f \circ g=l d Y
$$

Excercse Replace left with right, in previous examples.
Picture of right inverse

$f \circ g=1 d$, so g is a right inverse for f.

Consider the modified f ?

Find a right inverse for f.
This is impossible because f is not scerjective.

Theorem If f is not surjection, f does not have a right inverse
Theonem if f is not injective, f does not have a Left inverse.

Theorem if f has a right inverse f is surjective.

Theorem of f has a left reverse: then f is injective.

Definition $f: x \rightarrow Y$ is an reverse for $g=x \rightarrow x$ if (f is
a left inverse for g) and $(f$ is a right inverse for g)

In other words,

$$
f(g(y))=y \quad g(f(x))=x
$$

for all yet and $x \in X$

Pictorial interpretation:

Are there any other inverses to g? No

Theorem: if $g: x \rightarrow x$ has an inverse, it has a unique inverse.
Proof: let $f=x \rightarrow X$ be an inverse to g. Let $\tilde{f}: X \rightarrow Y$ be another inverse tog. Goal = show that $f=\tilde{f}$.

First, note that

$$
g \circ f=g \circ \tilde{f}
$$

So
Coth are equal to $(d x)$
because ti f are inverse to g.
$g(f(x))=g(f(x))$ for all $x \in x$ by definition of
Apply of to both function composition sides

$$
f\left(g\left(\frac{f(x)}{a}\right)\right)=f\left(\frac{g\left(\frac{f(x)}{a_{a}}\right)}{a}\right)_{0}
$$

So

$$
f(x)=\tilde{f}(x) \quad \text { for all } x \in x
$$

Because $f(g(a))=a$ for all a.
so $\quad f=f$

Examples:

* The inverse of

$$
\exp : \mathbb{R} \rightarrow(0, \infty)
$$

18

$$
\log :(0, \infty) \rightarrow \mathbb{R}
$$

* The inverse of

$$
\left.\sin :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1)\right]
$$

is $\arcsin :[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Inverses and bijection.
Definition $f: x \rightarrow X$ is called invertible If it has an inverse.
Excercise show that $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)=x^{2}
$$

is not invertible:
Theorem f is invertible

$$
\Leftrightarrow
$$

f is a bijection.

Consequently; to prove that f is a bijection, suffices to find an rinererse for f
(See HW Problem 4 and 5).

Exceraise: Which ones are bijective? which ones have inverses?

