lecture 25
Last time: image, pre-image, infective, subjective.

$$
f=x \rightarrow x
$$

* image $-\operatorname{in}(f)=\{f(x)=x \in X\}$
* pre-image: For ye'

$$
f \leftarrow(y)=\{x \in X: f(x)=y\}
$$

* injective: means
"For all $f \in(y)$ has at
$y \in C$ most one element".
* Sarjectise

For all $f \leftarrow(y)$ has at
$y \in C$ one element!

Question:

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x)=x^{3}-1 \\
& f<(0) ?
\end{aligned}
$$

a) $\{0\}$
b) 0
c) $\{1\} 41010$
d) 1
e) $\{-1,1\} 41 \%$

$$
\begin{aligned}
& f \leftarrow(0)=\{x \in x: f(x)=0\} \\
&=\left\{x \in x: x^{3}-1=0\right\} \\
& x^{3}-1=0 \Rightarrow x^{3}=1 \\
& \Rightarrow x=1
\end{aligned}
$$

$$
\begin{array}{r}
f \in(1)=\left\{x \in \mathbb{R}=x^{3}-1=1\right\} \\
x^{3}-1=1 \Rightarrow x^{3}=2 \\
\Rightarrow x=2^{1 / 3} \\
f(y)=\left\{x \in \mathbb{R}=x^{3}-1=1 / 3\right. \\
x^{3}-1=y \Rightarrow x^{3}=y+1 \\
\Rightarrow x=(y+1)^{1 / 3}
\end{array}
$$

a) $f \leftarrow(y)=(y+1)^{1 / 3}$
b) $f^{\leftarrow}(y)=\left\{(y+1)^{1 / 3}\right\} 68 \%$

Answer is 6):
10 of surjective? 7700 yes. For all, $f \leftarrow(g)$ has at least one elem

Is it ingective? Xes.
Graphically injectivity / surjectirily:

"Horizontal line test II

Defferent ways of saging injectirity and surjectivity:
Question
$f: X \rightarrow Y$ surjective \Longleftrightarrow :
a) $\forall y \in Y \quad \forall x \in X f(x)=y$
660% (b) $\forall y e^{C} \quad \exists x \in x \quad f(x)=y$
26% c) $\exists y \in X \quad \forall x \in X \quad f(x)=y$
d) $\exists_{y \in Y} \quad \exists x \in X \quad f(x)=y$
b) For all $y \in Y$

Thene exists $x \in x$

$$
f(x)=y
$$

c) Thene exists $x \in x$

For all $y \in Y$

$$
f(x)=y
$$

$f=X \rightarrow Y$ irjective \Leftrightarrow
$320(0$ a $\quad x=y \Rightarrow f(x)=f(y)$
$\rightarrow 580 \%$ (b) $f(x)=f(y) \Rightarrow x=y$
14% c) $x=y \Rightarrow f(x) \neq f(y)$
$\rightarrow 500 / d(d) \quad x \neq y \Rightarrow f(x) \neq f(y)$
a) if $x=y$ then $f(x)=f(y) x$
true for a(l) functions anguay.
b) if $f(x)=f(y)$ then $x=y$

nof injective.
d) coulrapositive.

Prove that for

$$
f: \mathbb{R} \geq 0 \rightarrow \mathbb{R}
$$

$f(x)=x^{2}$ is izective.
Rough
idea

injective.
Proof Want to show

$$
f(x)=f(y) \Rightarrow x=y
$$

Suppose $f(x)=f(y)$.
Then $x^{2}=y^{2}$
So $\quad x^{2}-y^{2}=0$
so $\quad(x+y)(x-4)=0$
So $(x+y)=0$ or $(x-y)=0$

So $x=-y \quad$ or $\quad x=4$:
innpessible; because

$$
x \geq 0 \text { and } y \geq 0
$$

So $\quad x=y$
Excercise

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x)=x+3
\end{aligned}
$$

a) Prove that f is injective.
b) Prove that f is surjective
a) Want to show

For $x \in \mathbb{R}, y \in \mathbb{R}, \quad f(x)=f(y) \Rightarrow x=y$
Assume $f(x)=f(y)$.
So $x+3=y+3$
So $x+3-3=4+3-3$
$30 \quad x=4$
b) Prove that f is surjectiv e: want to show

$$
\begin{equation*}
\forall y \in x \quad \exists x \in x \quad f(x)=y \tag{1}
\end{equation*}
$$

Suppose $y \in \$.
Wait to find x
for which $f(x)=y$
Wait to find x
for which $x+3=y$
Take $x=y-3$.
This proves (l).

Function composition
if $f: Y \rightarrow Z$ and $g=X \rightarrow Y$ fog is the function

$$
\rightarrow f \circ g \rightarrow=-y \rightarrow+\square
$$

$$
(f \circ g)(x)=f(g(x))
$$

What is the domain and range of fog?
a) fog: $x \rightarrow x$
b) $\operatorname{fog}=x \rightarrow y$
c) $f \circ g: Y \rightarrow Y$
(0) $f \circ g=x \rightarrow z \quad 8.8 \%$

Example
mother of $:$ Humans \rightarrow Humans mother of $(x)=$ the mother of x father of: Humans \rightarrow Humans father of $(x)=$ the father of x. mother of o father $O f(x)$
$=$ a) The internal grandmothe
65% b) The patemel grandmotho of x
c) The paternal grandfather
d) The maternal grandfather

Answer t's b)

$$
\text { other of }=\text { father of }(x)
$$

$$
=\text { mother } \theta f(\text { father of } x)
$$

= mother of father of x.

Example
mo her of o father of o father Of o mothoof $f(x)$ How would you say this in english?
$\frac{\text { Inverses }}{f x \rightarrow Y}$ Suppose

$$
\begin{aligned}
& f: X \rightarrow Y \\
& g: Y \rightarrow x
\end{aligned}
$$

Then g is a leftinuerse for f if

$$
g \circ f=1 d x
$$

Identity function.
For a set x,
$1 d_{x}$ is a special function

$$
d_{x}: x \rightarrow x \quad \quad d_{x}(a)=a
$$

Roughly speaking:
g is left inverse of $f^{\prime \prime}$ means
"g undoes what f does":
"Doing f, then doing g, io the same as doing nofliing.
Example first ChildOf: Parents \rightarrow Hymens.

$$
\begin{aligned}
& \text { first Childof(x) }=\text { the first child } \\
& \text { of } x
\end{aligned}
$$

is firstchildof a left inverse for notherof?

Result: 50/50 Les no:

Answers no:
Is

$$
\text { firstChildof o mother of }=1 d_{\text {Humans }}
$$

1 s this tune for all x.

$$
\begin{aligned}
& \text { first Child of (mother of }(x))=1 d_{\text {Humans }}(x) \\
& \text { first Child of (mother } O f(x))=x
\end{aligned}
$$

No l

Sasha

$$
\begin{aligned}
\text { first Child of }(\text { mother of }(s e y))) & =\text { first child (Midelle) } \\
& =\text { Malia }
\end{aligned}
$$

