Homework Problems Mat 331

Set no. 3, November 26,2003
Due December 8, 2003
(1) Find all common solutions $(\bmod 12)$ (or show that there are none) to

$$
4 x+y \equiv 6(\bmod 12), \quad x+4 y \equiv 9(\bmod 12)
$$

(2) Find all positive integers less than 1000 which leave the remainder 1 when divided by $2,3,5$ and 7 .
(3) Find a reduced system $(\bmod 20)$ and give $\phi(20)$
(4) Show that $3^{3} \equiv-4(\bmod 31)$ and use this to show that $3^{10} \equiv$ $-6(\bmod 31)$. Use this result and Euler's theorem to show that

$$
3^{341} \not \equiv 3(\bmod 31)
$$

and therefore

$$
3^{341} \not \equiv 3(\bmod 341) .
$$

(5) Show that if p is a prime, and a is an integer, and k is a nonnegative integer, then

$$
a^{1+k(p-1)} \equiv a(\quad \bmod p) .
$$

(6) Find $\phi(n)$ for $n=20,60,63,341$ and 561.
(7) Let x be the smallest positive integer such that $2^{x} \equiv 1(\bmod 63)$. Find x and verify that $x \mid \phi(63)$.

