MAT 402

Homework VI Due May 9th. 2019. Show all your work

(1) Let $U := \{z \in \mathbb{C} : |z| < 1\}$, and let $\mathcal{F} = (f_n)_{n=1}^{\infty}$ be the family of polynomials on U defined by

$$f_n: U \mapsto \mathbb{C}$$

$$f_n(z) = z^2 + z + 4 + n$$

Use Montel's theorem to prove that \mathcal{F} is normal on U.

- (2) Let $D \subseteq \mathbb{C}$ be a domain, and let \mathcal{F} be the family of all injective holomorphic functions on D that omit the value of 0. Use the Zalcman lemma to prove that \mathcal{F} is normal.
- (3) Suppose that $D \subseteq D' \subseteq \mathbb{C}$ are domains, and that D' is convex. Suppose also that $\varphi: D' \to D$ such that $|\varphi'(z)| \leq \lambda < 1$, for $z \in D'$. Prove that

$$|\varphi(z) - \varphi(w)| \le \lambda |z - w| ,$$

for $z, w \in D'$. Deduce by the Banach fixed point theorem, that φ has a (unique) fixed point $p \in D'$.

Hint. Express $|\varphi(z) - \varphi(w)|$ as an integral.