MAT 402

Homework I Due February 7th. 2019

- (1) Study the dynamics of the map $f_{\lambda}(x) = \lambda x(1-x)$ for $\lambda = 2$. By "studying the dynamics of a map" I mean that you need to find all attracting and repelling fixed points of the map f_{λ} . Then for each attracting point determine all the points in [0, 1] which converge to it. Justify your answer fully.
- (2) Let $Q_c(x) = x^2 + c$, where $x \in \mathbb{R}$. Prove that if c < 1/4 there is a unique $\lambda > 1$ such that Q_c is topologically conjugate to $f_{\lambda}(x) = \lambda x(1-x)$ via a map of the form $h(x) = \alpha x + \beta$.
- (3) In the Feigenbaum bifurcation diagram for f_{λ} , the Feigenbaum point (which is the limit of the period doubling cascade) has coordinate $\lambda \approx 3.57$. In the case of the Mandelbrot set, there is also a limit of a period doubling cascade (also called the Feigenbaum point) with coordinate $c \approx -1.401155...$ What is the change of coordinate that respects the dynamics and takes f_{λ}

to Q_c ?