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 A HEURISTIC PRINCIPLE IN COMPLEX FUNCTION THEORY

 LAWRENCE ZALCMAN

 1. Introduction. A well-known heuristic principle in the theory of functions asserts that "a
 family of holomorphic (meromorphic) functions which have a property P in common in a domain D
 is (apt to be) a normal family in D if P cannot be possessed by non-constant entire (meromorphic)
 functions in the finite plane" [4, p. 250]. In his recent retiring presidential address to the Association
 for Symbolic Logic [7] (required reading for anyone whose interests extend across professional
 boundaries to mathematics as an intellectual discipline), the late Professor Abraham Robinson cited
 the explication of this principle as one of twelve problems worthy of the attention of logicians (and,
 by extension, of mathematicians in general).

 This paper is devoted to such an explication. To be precise, we prove a simple theorem which
 makes the principle rigorous and from which the standard applications of the principle follow quite
 routinely. Some of these applications are noted at the end, together with a slightly novel approach to
 the proof of Picard's big theorem.

 Major credit for the mathematical content of this paper belongs to Christian Pommerenke. He
 proved a result similar to the main lemma for normal functions [6, Theorem 1]. It turns out that the
 same proof works in the (more general) context of normal families and even simplifies a little. Thus,
 this paper is perhaps viewed most properly as a public relations effort for Pommerenke's theorem.

 2. Normal families. A family 9 of functions holomorphic on a domain D C C is said to be
 normal on D if each sequence of functions in 9 contains a subsequence which either converges (to
 some function not necessarily in i) uniformly on every compact subset of D or tends uniformly to
 infinity on each compact subset of D. For meromorphic functions, it is advantageous to introduce
 the familiar spherical, or chordal, metric

 (z~~~~i -) lZZI , ( )
 x (ZZ') (1 + Iz12)"12(l +I Z12)1"2 x (Z' (1 + Z2)1/2

 on the Riemann sphere. A family 9 of meromorphic functions on D is then said to be normal if each
 sequence of functions in 9 has a subsequence which converges uniformly on compacta with respect
 to the spherical metric.

 The spherical distance and the ordinary Euclidean absolute value are boundedly equivalent on
 compact subsets of the plane. It follows that if {f, } converges spherically uniformly on a set S to the

 limit function f o, then the fn actually converge to f uniformly on any compact subset of S disjoint
 from the poles of f. This observation (and a little thought) shows that for analytic (i.e., holomorphic)
 functions the two definitions of normality agree. See [1, pp. 210-219] for an illuminating discussion
 of these matters.

 We shall need the following characterization of normal families, due to F. Marty.

 THEOREM. A family 9 of functions analytic or meromorphic on D is normal if and only if the
 functions

 f -(Z) = If(z) 2 E i
 are uniformly bounded on each compact subset of D.

 Here f# is the spherical derivative of f, sometimes denoted by p(f); the present notation (used in
 [6]) is better adapted for displaying the argument of the function explicitly. At the poles of f, f# is
 defined by continuity; equivalently, one may use the relation f# = (1If)#, obviously valid at regular
 points of f and 1/f, to define f# throughout all of D. The spherical derivative has an appealing
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 814 LAWRENCE ZALCMAN [October

 geometric interpretation: one has

 f#(Z) = lim X(f(z + h), f(z))/Ih I,
 h -,O

 and if y is an are in D, then ff #(z)Idz I measures the length of f(y) on the Riemann sphere. Observe
 that f#(z) = 0 only if f'(z) = 0 or f(z) = m0.

 Various proofs of Marty's theorem exist in the literature. Marty's original, rather geometric,

 argument can be found in Ahlfors [1, pp. 218-219]; a purely analytic proof is in [3, pp. 158-160].

 3. The main lemma. Before formulating our principle, it will be convenient to give an alterna-

 tive characterization of normality, which makes explicit the relation with entire or meromorphic

 functions on the plane. The following lemma is perhaps best understood in the context of

 non-standard analysis (for which connection see [7, pp. 509-510]); crudely put, it says that in the

 absence of normality a certain kind of infinitesimal convergence must take place.

 LEMMA. A family 3J of functions meromorphic [analytic] on the unit disc A is not normal if and
 only if there exist

 (a) a number 0 < r < 1

 (b) points zn, IznI<r
 (c) functions fn E F
 (d) numbers Pn > O +

 such that

 (1) fn(zn + PnO) > g(g)

 spherically uniformly [uniformly] on compact subsets of C, where g is a nonconstant meromorphic
 [entire] function on C.

 Proof. Suppose 9 is not normal on A. Then by Marty's theorem there exists a number
 r*, 0 < r* < 1, points z*n in {z: Izi ?- r*}, and functions fn E i such that f'(z*) -> X . Fix a number
 r, r* < r < 1, and let

 (2) Mn = max (1 14) f'(z) = (I- 1) fn(zn).

 The maximum exists since f is continuous for Iz I r, and it is clear that M. - oo. Setting

 pn - Mn (1 2 ) f#(Zn)

 we obtain

 (4) Pn rIzI 2 - 0.
 r-IznI r2Mn rMn

 Thus, the functions

 gn ()=fn (Zn + png)

 are defined for I < Rn, where Rn = (r - lzn 1)/Pn -> ?? as n -> mo. It follows from (3) that

 g n(?) = pnf'n(zn) = 1.

 For Igl?R <Rn, lzn +pngI<r so that by (2) and (3)

 ) =n pnf n (Zn + png) c nn +pt12 -- r + Izn I r-zn lzn

This content downloaded from 129.49.88.147 on Mon, 22 Apr 2019 18:00:19 UTC
All use subject to https://about.jstor.org/terms
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 The first factor on the right is bounded by 1, while (for fixed R) the second tends to I as n -e Xc by
 (4). Thus, by Marty's theorem, {gn} is a normal family; taking a subsequence, we may assume that
 the gn converge uniformly (in the spherical metric) on compact subsets of C to a meromorphic
 function g. Finally, g is nonconstant since g #(0) = lim g #(0) = I 0. It is now clear that if F consists
 of analytic functions the limit function will be entire.

 For the converse, suppose that F is normal on A. By Marty's theorem, there exists M > 0 such
 that

 max f#(z) ' M
 lzl-c(I+r)/2

 for all f E i;. Suppose (1) holds and fix g E C. For large n, lZn + Pn4 C (1 + r)/2, so that
 pnfn(zn +p4) 'npn M. Thus, for all g E C,

 g #(g) = lim pnf (Zn + pn) = O0

 It follows that g is constant (possibly infinity).

 As noted earlier, the proof of the lemma is virtually identical to Pommerenke's proof of a slightly

 different result. The clever trick of using a cut-off function (1 - ( z 12/r2)) can be traced back at least
 to Landau's proof of Bloch's theorem [5, p. 99].

 4. A matter of principle. To formulate the heuristic principle precisely, it will be convenient to
 follow Robinson's idea of displaying the domain of definition of a function explicitly together with
 the function. Thus, we write (f, D) to denote the function f defined on the domain D CC, and we
 distinguish between the functions (f, D) and (f, D') if D$ D'

 The principle may then be stated as follows.

 THEOREM. Let P be a property (i.e., a set) of meromorphic [holomorphic] functions which
 satisfies the following conditions.

 (i) If (f, D) E P and D' CD then (f, D') E P.
 (ii) If (f,D)EP and +b(z) = az +b, then (fob,b-'(D))EP.
 (iii) Let (fn, Dn) E P, where D, C D2 CD3 C .. and D = U Dn. If fn -e f spherically uniformly on

 compact subsets of D, then (f, D) E P.

 Suppose (f, C) E P only if f is constant. Then for any domain D the family of functions satisfying
 (f, D) E P is normal on D.

 The present formulation differs from Robinson's (tentative) version [7, p. 509] in that it applies to
 meromorphic as well as analytic functions. More importantly, we only require invariance with
 respect to linear (as opposed to general conformal) maps.

 Condition (i) is only a convenience; it can be avoided by a suitable reformulation of (iii).
 Conditions (ii) and (iii), on the other hand, are quite essential, as the following examples show.
 (Actually, (ii) need hold only for 0 < a 1, and it would be enough to require (iii) only for the case
 where the Dn are discs centered at the origin and D = C.)

 EXAMPLE 1. Let (f, D) E P if and only if D CA = {z; Z | < 1}. Then (i) and (iii) are satisfied, while
 (ii) does not hold. Since (f, C) E P is never satisfied, P contains no entire or globally meromorphic
 functions at all. But the family of all analytic (or meromorphic) functions on A is clearly not normal

 (consider the sequence {ffn}, where fn (z) = nz).

 EXAMPLE 2. Let (f, D) E P if and only if D, C (D CC). For analytic functions, P may be
 phrased informally as "f is not entire." Obviously (i) and (ii) hold, but (iii) fails. Again P contains no
 entire functions; yet if D is any proper subdomain of C, (f, D) E P for all f analytic on D, and this
 family is not normal.
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 EXAMPLE 3. This is a more "natural" version of the preceding phenomenon. Let (f, D) E P if
 and only if f is bounded on D, i.e., there exists a constant M = M(f, D) such that supDlf(z)I < M.
 Conditions (i) and (ii) hold while (iii) fails. If (f, C) E P, f must be constant by Liouville's theorem.
 But the family of all bounded analytic functions on a disc (for instance) is not normal.
 A slight modification of the condition of Example 3 yields a positive result.

 EXAMPLE 4. Fix M > 0 and let (f, D) E P if and only if SUPD lf(z)l M. Then (i)-(iii) are clearly
 satisfied and P contains no nonconstant entire functions. The theorem applies, and we recapture a
 classical sufficient condition for normality.

 The proof of the theorem is hardly more than a restatement of the lemma of the preceding
 section, to which we refer the reader for the notation used below. Indeed, let 9 be the family of all
 functions on the domain which have property P. If F is not normal on D, Marty's condition (or the
 usual compactness argument) shows that it already fails to be normal on some subdisc, which (by

 (ii)) we may assume to be A. Let Rn = (r - Iz. I)lp.; since Rn -4 oo, we may suppose (by taking a
 subsequence, if necessary) that the Rn form an increasing sequence. Set gn(;') = fn(zn + p;),

 An = { 1I1 < R }. The functions (g, Dn ) satisfy P by (i) and (ii), so by (iii) (g, C) does also. Since P
 contains no nonconstant functions defined on C, this yields a contradiction. Thus, f must be normal
 on D.

 5. An application. Perhaps the most celebrated criterion for normality is the following theorem,
 due to Paul Montel.

 MONTEL'S THEOREM. Let F be a family of functions meromorphic on the domain D. If there
 exist three points wI, W2, W3 on the Riemann sphere such that wi 0 f(D) (i = 1, 2, 3) for each f E i,
 then 3Z is a normal family.

 Thus, Montel's theorem asserts that if each function in 9 omits the same three values then 9 is
 normal. (For families of analytic functions the value Xo is always omitted, so one need require only
 that two finite values be omitted.) The usual proof makes use of Jacobi's elliptic modular function
 and is thus "nonelementary." Our principle, together with Picard's little theorem, gives an
 elementary proof. (Quite a different proof, also of elementary character, is in [8, pp. 347-350].)

 Indeed, it is enough to take for P the property "either f is constant or it omits the values wI, w2,
 and W3 on D." Conditions (i) and (ii) are at once seen to hold, while (iii) is a consequence of
 Hurwitz's theorem [1, p. 176] (or the argument principle). That any meromorphic function on C
 which satisfies P must be constant is, of course, Picard's little theorem.

 Montel's theorem can be generalized in various directions. One extension, less well-known than
 it deserves, is the following.

 EXTENDED MONTEL THEOREM. [2, vol. 2, p. 202] Let 9 be a family of functions meromorphic
 on the domain D. Suppose that each f E J omits three distinct values (which may depend on f) a, b, c

 on the sphere, the product of whose chordal distances y(a, b) x (b, c) x(a, c) is bounded away from 0
 independently of f. Then 3Z is a normal family.

 For the proof, let E be a positive lower bound for the product of the distances and take P to be

 the property "f omits three values a, b, c such that V(a, b)X(b, c)X(a, c) ' e." By Picard's theorem,
 no nonconstant meromorphic function can have P. Thus, since (i) and (ii) are trivially satisfied, it
 remains only to show that P is preserved under uniform convergence with respect to the spherical
 metric.

 Suppose then that fn -e f spherically uniformly on compact subsets of D and that fn omits
 an, bn, cn with X(an, bn)x(bn, cn),(an,cCn) e E. We may assume f is nonconstant, for otherwise it
 trivially satisfies P. Since the sphere is compact, we can find points a, b, c and a subsequence (again

 denoted {f}n ) such that X (an, a) ?->, X (bn, b) -> , X (Cn c) -> 0. By continuity, X (a, b ) X (b, c)
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 x(a, c) _ E, so we only need to prove that f never takes on the values a, b, c. Indeed, suppose
 f(zo) = a, where a mo. Choose r > 0 such that K = {z: Iz - zol r} C D and f is analytic on K. Since
 f is bounded on K (and a $ m), f, (z) - an converges uniformly on K to f(z) - a. The latter function
 is nonconstant and vanishes for z = zo, so by Hurwitz's theorem fn (z) - an must (for large n) vanish
 'on K. This is a contradiction. If a = 00, we consider the functions 1/f, l/fn and argue as before, using
 the invariance property x(z, z') = X(1/z, lIz').

 6. Pedagogics. Montel's theorem is the central device in one of the standard proofs of the Big
 Picard Theorem: in the neighborhood of an (isolated) essential singularity, a meromorphic function
 takes on every value in the Riemann sphere infinitely often with at most two exceptions. For analytic
 functions, even more is true, as was proved by Gaston Julia.

 JULIA'S THEOREM. Let f(z) be analytic in D = {z: 0 < Z | < 1} with an essential singularity at 0.
 Then there exists a point zo E D such that, for each E > 0, f(z) assumes every complex value, with at
 most one exception, infinitely often on the union of the homothetic discs

 Dn = {Z Iz-zo/2n |I<E /2n }.

 Again, the main tool in the proof is Montel's theorem. (The reader should be warned that the proofs
 given in [4, p. 259] and the first two editions of [8] are incomplete; a correct proof is in [8, pp.
 351-352]).

 We see no particular merit in avoiding the use of the modular function, which is at any rate
 required to obtain the precise values of the constants appearing in the theorems of Schottky and
 Landau [2, vol. 2, pp. 195-201]. On the other hand, it is perhaps of methodological interest that the
 theorems of both Picard and Julia can be given a purely elementary proof. One such development
 may be found in the important text of Saks and Zygmund [8, pp. 341-353].

 An alternate program for obtaining these theorems in elementary fashion may be sketched as
 follows. First prove (Landau's version of) Bloch's theorem; this is a natural sequel to the lovely
 one-quarter theorem of Koebe and might well appear at the end of a unit on conformal mapping.
 Next, derive the Little Picard Theorem from Bloch's theorem. (This much is standard; cf. [4, pp.
 384-390], [5, pp. 98-102], [8, pp. 341-346]). Prove Montel's theorem via the heuristic principle (made
 rigorous) and Picard's little theorem. Finally, derive the Big Picard Theorem and Julia's extension. If
 desired, Montel's theorem can also be used to give a very brief proof of Schottky's theorem [4, pp.
 261-262], and Landau's theorem then follows in a couple of lines [8, pp. 354-355]. Instructors
 interested in emphasizing the importance and usefulness of normal families, who find themselves
 pressed for time and unwilling to tell less than the full truth about the modular function, may find the
 approach outlined above an attractive alternative to the existing routes.

 Preparation of this paper was supported in part by NSF GP 38882.
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 SECOND CORRECTION TO: "INNER PRODUCT SPACES"

 STANLEY GUDDER AND SAMUEL HOLLAND

 In a recent correction [1] the first author pointed out a gap in his paper in this MONTHLY [2]. We

 now fill that gap. Our argument is a simplified version of that given in [3].

 THEOREM. An innerproduct space Vis complete if every maximal orthonormal set in Vis basic.

 Proof. Suppose every maximal orthonormal set in V is basic. We show that (5) of Theorem 3.1

 [2] holds. Let f be a nonzero continuous linear functional on V (if f 0, the result is trivial). Let

 M = {x E V: f(x) = 0}. Then M is a closed subspace of V. Let B = {xi: i C I} be a maximal

 orthonormal set in M. Extend B to a maximal orthonormal set B U B, of V, where B, = {y1: j E J}.
 Now Jf 0 since otherwise B would be basic in V and then M = V which is a contradiction. Also

 yi 0 M for every j E J since B is maximal in M. Suppose y,, Y2 E B, and let y = y - f(yO)y2/f(y2).
 Then y E M and yIxi for every i EL Since B is maximal in M, y = 0 and hence y, = Y2. It follows
 that B, = {y,}. If x E V, then

 x n f(x, xi)xi + Kx, yK)y,.

 Hence f(x)= (xy) f(yl)= (x,fty,)Y)

 References

 1. S. Gudder, Correction to inner product spaces, this MONTHLY, 82 (1975) 251.

 2. S. Gudder, Inner product spaces, this MONTHLY, 81 (1974) 29-36.

 3. S. Holland, Jr., Hilbert spaces and von Neumann algebras, Mimeographed notes, Univ. of Mass., 1972-73,
 unpublished.

 DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DENVER, DENVER, CO 80210

 DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MA 01002.

 QUERIES

 EDITED BY A. C. ZITRONENBAUM

 This Department welcomes queries from readers about mathematics at the collegiate level, such as

 sources for exposition of a particular topic from a special point of view, references to vaguely remembered

 articles, descriptions of special kinds of courses or teaching methods, and methods for constructing

 illustrative examples for exercises of particular kinds (questions on research topics should, in general, be

 addressed to the "Queries Department" of the Notices of the American Mathematical Society). Replies

 will be forwarded to the questioner and may be edited into a composite answer for publication in this

 Department. Consequently all items submitted for consideration for possible publication should include

 the name and complete mailing address of the person who is to receive the reply. Queries and answers

 should be sent to A. C. Zitronenbaum, Mathematisches Institut, D8 Munchen 2, Theresienstrasse 39, West

 Germany.

 Reply to Query 17. This Query asked for a complete list of programmed text in elementary

 mathematics. E. G. Begle points out that a bibliography "Programmed Learning and Individually

 Placed Instruction" can be obtained from Hendershot Programmed Learning, 4114 Ridgewood, Bay

 City, Michigan 48706.

 Reply to Query 18. In this Query, the addresses of firms that manufacture mathematical models

 for educational uses, was asked for. D. Wheeler suggests the La Pine Scientific Company, 600 S.
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