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Abstract This second part of the paper (see AnnMath de Toulouse, arXiv:1408.5797
for part I) is concerned with questions of existence and uniqueness of tangents in
the special case ofGG-plurisubharmonic functions, whereGG ⊂ G(p,Rn) is a compact
subset of the Grassmannian of p-planes inRn . An u.s.c. function u on an open set� ⊂
Rn is GG-plurisubharmonic if its restriction to � ∩ W is subharmonic for every affine
GG-plane W . Here GG is assumed to be invariant under a subgroup K ⊂ O(n) which
acts transitively on Sn−1. Tangents to u at a point x are the cluster points of u under a
natural flow (or blow-up) at x . They always exist and are GG-harmonic at all points of
continuity. A homogeneity property is established for all tangents in these geometric
cases. This leads to principal results concerning the Strong Uniqueness of Tangents,
which means that all tangents are unique and of the form �Kp where Kp is the Riesz
kernel and � is the density of u at the point. Strong uniqueness is a form of regularity
which implies that the sets {�(u, x) ≥ c} for c > 0 are discrete. When the invariance
group K = O(n),U(n) or Sp(n) strong uniqueness holds for all but a small handful of
cases. It also holds for essentially all interestingGGwhich arise in calibrated geometry.
When strong uniqueness fails, homogeneity implies that tangents are characterized by
a subequation on the sphere, which is worked out in detail. In the cases corresponding
to the real, complex, and quaternionic Monge–Ampère equations (convex functions,
and complex and quaternionic plurisubharmonic functions), tangents, which are far
from unique, are then systematically studied and classified.
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1 Introduction

Part I of this paper was concerned with the study of tangents to F-subharmonic func-
tions (or subsolutions) for any fully non-linear subequation F ⊂ Sym2(Rn). Key
to the results is the notion of the Riesz characteristic of F , a real number p = pF
with 1 ≤ p ≤ ∞. When p is finite, there is an associated tangential p-flow on
F-subharmonic functions u at 0 given by

ur (x) =

⎧
⎪⎨

⎪⎩

r p−2(u(r x)− u(0)) if 1 ≤ p < 2,

u(r x)− M(u, r) if p = 2, and

r p−2u(r x) if p > 2,

(1.1)

where

M(r) ≡ sup
|x |≤r

u(x). (1.2)

Tangents to u at 0 are then defined to be the cluster points of this flow in L1
loc(R

n). A
basic result is that tangents always exist, and the set of tangents to u at 0 has a list of
characterizing properties (Part I, Section 11). Tangents are also always maximal (Part
I, Section 10). In particular, they are F-harmonic outside possible poles.

Of basic importance to this study is the pth Riesz kernel K p(|x |) where

Kp(t) =

⎧
⎪⎨

⎪⎩

t2−p if 1 ≤ p < 2

log t if p = 2

− 1
t p−2 if 2 < p < ∞.

(1.3)

When the Riesz characteristic p = pF is finite, every increasing radial F-harmonic
is of the form �Kp(|x |)+ C . A fundamental Monotonicity Theorem (Part I, Section
5) states that

M(u, r)− M(u, s)

Kp(r)− Kp(s)
is increasing in r and s. (1.4)

for all 0 < r < s where M is defined. This gives the notion of the density of u at 0:

�M (u, 0) = lim
r<s↓0

M(u, r)− M(u, s)

Kp(r)− Kp(s)
. (1.5)

(When F is convex, there are other densities defined via the area and volume averages).
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2192 F. R. Harvey, H. B. Lawson, Jr.

This part of the paper is exclusively concerned with geometric subequations deter-
mined by a closed subsetGG ⊂ G(p,Rn) of the Grassmannian of unoriented p-planes
in Rn (where 1 ≤ p ≤ n). We recall that the associated subequation is

F(GG) ≡
{
A ∈ Sym2(Rn) : tr (A∣∣W

) ≥ 0 ∀W ∈ GG
}

. (1.6)

The Riesz characteristic of F(GG) is the integer p. The F(GG)-subharmonic functions
are called GG-plurisubharmonic, and they are characterized by the property that their
restrictions to affine GG-planes are subharmonic [10]. Many examples of geometric
interest are given in Part I. These include in particular the plurisubharmonics associated
to any calibration, and the Lagrangian subharmonics in Cn .

Recall that the standing assumptions on F ⊂ Sym2(Rn) in Part I were

(i) (Positivity) F + P ⊂ F where P = {A ≥ 0},
(ii) (Cone property) t F = F for all t ≥ 0,
(iii) (ST-Invariance) F is invariant under a subgroupG ⊂ O(n)which acts transitively

on the sphere Sn−1.
The first two assumptions are automatic for F(GG). The last is equivalent to the

assumption thatGG is invariant under the subgroup G ⊂ O(n) acting on the Grassman-
nian G(p,Rn).

To state the main results we recall the following.

Definition 1.1 We say that uniqueness of tangents holds for the subequation F if for
every F-subharmonic function u defined in a neighborhood of 0, there is exactly one
tangent to u at 0. We say that strong uniqueness of tangents holds for F if for every
such u, the unique tangent is �(u, 0)Kp(|x |).
Definition 1.2 An upper semi-continuous function U : Rn → [−∞,∞) is said to
have Riesz homogeneity p if Ur = U for all r > 0. This condition holds if and only
if there exists an upper semi-continuous function g on the unit sphere S such that

U (x) = |x |p−2g
(

x

|x |
)

in the cases where p �= 2, (1.7)

while in the case where p = 2,

U (x) = �log|x | + g

(
x

|x |
)

with sup
Sn−1

g = 0 and � ≥ 0 a constant.

(1.8)

Note 1.3 When p = 1, our assumption of ST-invariance implies that GG = G(1,Rn).
Hence, there is only one geometric subequation, namely P = {A ≥ 0}. The
P-subharmonic functions are exactly the convex functions, and in this case straight-
forward classical arguments establish the existence, uniqueness, and homogeneity of
tangents at every point. These proofs are omitted. On the other hand, strong uniqueness
of tangents fails in this case, and the classification is given in Sect. 5.

Our first main result is the following. Let GG ⊂ G(p,Rn) be as above, with p ≥ 2.
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Tangents to Subsolutions Existence and Uniqueness, II 2193

TheHomogeneity Theorem Suppose u is aGG-plurisubharmonic function defined in a
neighborhood of 0, and supposeU is a tangent to u at 0.ThenU has Riesz homogeneity
p.Moreover, for allGG-planes W passing through the origin, the function g is constant
on the unit sphere W ∩ Sn−1 in W . In fact, when p �= 2,

g

(
x

|x |
)

= −�(W ) i f x ∈ W ∈ GG.

The fact that g is constant on each intersection W ∩ Sn−1 for W ∈ GG leads to the
following. We say GG has the transitivity property if for any two vectors x, y ∈ Rn

there exist W1, . . . ,Wk ∈ GG with x ∈ W1, y ∈ Wk and dim(Wi ∩ Wi+1) > 0 for all
i = 1, . . . , k − 1.

The Preliminary Strong Uniqueness Theorem If GG has the transitivity property,
then strong uniqueness of tangents holds for all GG-plurisubharmonic functions.

This covers a number of interesting cases which are not included in the Strong
Uniqueness Theorem of Part I. For example, this establishes strong uniqueness for
plurisubharmonic functions in Special Lagrangian, associative, coassociative, and
Cayley geometry (See Sect. 3). The invariance groups in these cases are SU(n), G2,
and Spin7. For the standard families of groups acting transitively on spheres, we have
the following nearly complete result.

The Principal Strong Uniqueness Theorem Fix p ≥ 2 and n ≥ 3. Then strong
uniqueness of tangents to GG-plurisubharmonic functions holds for:

(a) Every compact SU(n)-invariant subset GG ⊂ GR(p,Cn) with the one exception
GG = GC(1,Cn),

(b) Every compact Sp(n) · Sp(1)-invariant subset GG ⊂ GR(p,Hn) with three excep-
tions, namely the sets of real p-planes which lie in a quaternion line for p = 2, 3, 4
(when p = 4 this is GH(1,Hn)),

(c) Every compact Sp(n)-invariant subset GG ⊂ GR(p,Hn), for p ≥ 5.

We recall that by Theorem 14.1 from Part I: If strong uniqueness holds, and p > 2,
then for every GG-plurisubharmonic function u, the set

Ec = {x : �(u, x) ≥ c} is discrete f or all c > 0.

In those cases where strong uniqueness fails we have the following question: What
is the subequation on the sphere Sn−1 satisfied by the function g in (1.7), (1.8)? This
subequation isworked out in Sect. 4. Its viscosity subsolutions are exactly the functions
g in the Homogeneity Theorem above.

The three classical cases where strong uniqueness of tangents fails are

GG = GR(1,Rn), GC(1,Cn) and GH(1,Hn).

The associated subequations

F(GG) = PR, PC and PH,
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2194 F. R. Harvey, H. B. Lawson, Jr.

are the homogeneous real, complex, and quaternionic Monge–Ampère equations,
respectively. These cases are discussed in detail in Sect. 5.

For the first case, PR-subharmonic functions are just classical convex functions.
Here tangents are unique, but strong uniqueness is far from true. The results here are
classical, but we review them for the light they shed on the general picture.

For the second case, PC-subharmonic functions are the standard plurisubharmonic
functions in Cn . Here even the uniqueness of tangents fails. However, the subsets of
functions in L1

loc(C
n) which can arise as the set of tangents at 0 to a p.s.h. function

u have been completely classified by Kiselman [16] whose work was the inspiration
for this paper. One new feature of our presentation is that in this case, we show
that tangents correspond bijectively to quasi-plurisubharmonic functions on complex
projective space Pn−1(C).

For the third case, PH-subharmonic functions are quaternionic plurisubharmonic
functions (cf. [1–3]). Here the determination of tangents is new. As above, the tangents
correspondbijectively to upper semi-continuous functions g onquaternionic projective
spacePn−1(H)which satisfy the inequalityHessH(g)−2gI ≥ 0 in the viscosity sense.

Finally, in Appendix 1 we give a rounded discussion of the many examples to
which the results of both Parts I and II apply. This includes the establishment of the
maximal and minimal subequations of Riesz characteristic p as well as the maximal
and minimal ones in the convex case.

For general references on calibrated geometry and its function theory see [5,6,12].

2 The Homogeneity Theorem

In this section we establish the homogeneity of tangents for all geometrically deter-
mined subequations. We assume, to begin, that GG ⊂ G(p,Rn) is a smooth compact
submanifold of the Grassmannian where the integer p equals 2, 3, . . . , n−1. Later we
will be able to drop this smoothness assumption and allowGG to be any closed subset of
p-planes. We always assume thatGG is invariant under the natural action on G(p,Rn)

of a subgroup G ⊂ O(n) which acts transitively on the unit sphere Sn−1 ⊂ Rn . This
implies in particular that every vector in Rn lies in some GG-plane.

Recall that the associated subequation F is given by

F = F(GG) ≡ {A ∈ Sym2(Rn) : trW A ≥ 0 for all W ∈ GG}.

The Riesz characteristic of F is easily seen to be the integer p, and in fact, this is the
reason for the choice of normalization for the Riesz kernel Kp in (1.3).

Suppose u is an F-subharmonic function which is defined in a neighborhood of the
origin, andU is a tangent to u at 0. We assume u �≡ −∞. By the Restriction Theorem
proved in [10]

u
∣
∣
W is Laplacian subharmonic on W (near 0) for each W ∈ GG. (2.1)

In particular, either u
∣
∣
W is L1

loc or u
∣
∣
W ≡ −∞. We say that W is non-polar for u at 0

in the first case, and polar in the second case. The invariance ofGG implies that F ⊂ �

(see (6.3) in Part I), and hence u is �-subharmonic near 0 ∈ Rn . Therefore, its −∞
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Tangents to Subsolutions Existence and Uniqueness, II 2195

set has �-capacity zero, and hence measure zero. This proves

The union of all polar planes W ∈ GG is a set of measure zero in Rn . (2.2)

If W is non-polar for u near 0, then because of (2.1) we can apply the classical fact
for the Laplacian that

u
∣
∣
W has the unique tangent function �(W )Kp, (2.3)

where Kp denotes the function Kp(|x |) and where the constant

�(W ) = �M (
u
∣
∣
W

) = �S (u
∣
∣
W

)

is the maximum and/or spherical density of u
∣
∣
W at 0 (see (12.3) and Proposition 12.4

in Part I). That is,

lim
r→0

(
u
∣
∣
W

)

r
= �(W ) Kp in L1

loc(W ). (2.3′)

Note that these limits are over all r , not just a sequence r j . Also note that for p ≥ 3
we have

(
u
∣
∣
W

)

r
= ur

∣
∣
W . (2.4)

(This does not hold for p = 2).
Themain result of this section is the following. Recall we assume u �≡ −∞. Extend

the definition of �(W ) to all W ∈ GG by defining �(W ) = +∞ if W is polar for u at
0.

Theorem 2.1 Suppose u is an F-subharmonic function which is defined in a neigh-
borhood of the origin, and U is a tangent to u at 0. Then U has Riesz homogeneity p,
that is,

U (x)=

⎧
⎪⎨

⎪⎩

1
|x |p−2 g

( x
|x |
)

if p > 2

�log |x | + g
( x
|x |
)

if p = 2

where g ≡ U
∣
∣
Sn−1 ∈ USC(Sn−1),

(2.5)

and where, in the case p = 2, sup g = 0, and � = �M (u, 0). Moreover, for each
GG-plane W passing through the origin, the function g is constant on the unit sphere
W ∩ Sn−1 in W. In fact, when p > 2,

g

(
x

|x |
)

= −�(W ) for x ∈ W ∈ GG. (2.6)
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2196 F. R. Harvey, H. B. Lawson, Jr.

Proof We first treat the case p ≥ 3. Fix constants 0 < a < b, and let A = {x ∈ Rn :
a ≤ |x | ≤ b} be the annulus with radii a, b. It will suffice to prove our assertions on
A.

To begin set Gr ≡ G(p,Rn) and consider the tautological vector bundle

E ≡ {(W, x) ∈ Gr × Rn : x ∈ W } σ−−→ Gr,

where σ is given by projection onto the first factor in Gr × Rn . Projection onto the
second factor gives another map

E

σ ↙ ↘ π

Gr Rn .

Note that π : E − Z → Rn − {0} is a proper submersion, where Z = π−1(0) ⊂ Y
is the zero section of the vector bundle σ . Setting EA = π−1(A) we have a pair of
smooth compact fiber bundles

EA

σ ↙ ↘ π

Gr A,

where the fiber of σ overW ∈ Gr is the (a, b)-annulus inW . Note that the orthogonal
group acts naturally on this diagram.

We now restrict this annulus-bundle EA to the submanifold GG ⊂ Gr , that is, we
set E ≡ σ−1(GG). The diagram above reduces to a new diagram

E

σ ↙ ↘ π

GG A.

(2.7)

Note that the subgroup G ⊂ O(n) acts naturally on this diagram (2.7), and recall that
G acts transitively on the concentric spheres Sn−1r = {|x | = r}, a ≤ r ≤ b, in the
annular region A. This, together with the fact that π is a linear embedding on the
fibers of σ , shows that E

π−−→ A is also a smooth fiber-bundle over the manifold-
with-boundary A.

We fix a defining sequence u j ≡ ur j forU , and consider the pull-backs ũ j ≡ π∗u j

and Ũ ≡ π∗U to E. Note that Ũ is u.s.c., in fact it is essentially u.s.c. (since U is),
and we have that
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Tangents to Subsolutions Existence and Uniqueness, II 2197

ũ j → Ũ in L1(E). (2.8)

In addition, set Ṽ (W, x) ≡ �(W )Kp(|x |) if x �= 0 and (W, x) ∈ E, i.e., x ∈ W .
Then (2.3′) implies that

ũ j
∣
∣
σ−1(W )

(x) → Ṽ (W, x) in L1(σ−1(W ))) ∼= L1(W ∩ A))

∀W ∈ GG non − polar. (2.9)

Lemma 2.2 Ũ = Ṽ almost everywhere on E. Furthermore,

U
∣
∣
W = �(W )Kp f or almost all W ∈ GG. (2.10)

Corollary 2.3 Ur = U on Rn for all r > 0, i.e., U is p-homogeneous.

Proof of Corollary 2.3 By (2.10) and (2.2) we see that U = Ur a.e. in Rn . Note,
however, that U = Ur a.e. implies that U = Ur everywhere since both functions are
classically �-subharmonic (and therefore satisfy U (x) = limr→0 ess supBr (x)U for
all x). ��
Proof of Lemma 2.2 The fibration σ : E→ GG is locally a product B × A where B is
an open ball in the manifold GG and A is the [a, b]-annulus in Rp. Furthermore, the
riemannian measure on B × A (for the metric induced from Gr × Rn) is smoothly
equivalent to the product measure. Hence, it suffices to consider the cartesian case.
For simplicity we drop the tildes and rewrite the condition (2.8) as

u j (w, x) → U (w, x) in L1(B × A). (2.8′)

and rewrite the condition (2.9) as

u j (w, x) → V (w, x) in L1(A) for all non−polar w ∈ B. (2.9′)

By (2.8′) we have that

|u j (w, x)−U (w, x)| → 0 in L1(B × A) (2.8′′)

and by (2.9′) we see that for all non-polar w ∈ B,

|u j (w, x)−U (w, x)| → |V (w, x)−U (w, x)| in L1(A). (2.9′′)

Now by the Fubini Theorem, the function

I j (w) ≡
∫

A
|u j (w, x)−U (w, x)| dx

in integrable on B, and

∫

B
I j (w) dw =

∫

B×A
|u j (w, x)−U (w, x)| dw dx . (2.11)
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2198 F. R. Harvey, H. B. Lawson, Jr.

Moreover, by (2.9′′) we know that

I j (w) converges pointwise to
∫

A
|V (w, x)−U (w, x)| dx on B. (2.12)

By Fatou’s Lemma and (2.12), (2.11) and (2.8′′) we have
∫

B×A
|V (w, x)−U (w, x)| dw dx =

∫

B
lim I j (w) dw ≤ lim

∫

b
I j (w) dw = 0.

Thus V = U a.e. on B× A. Furthermore, for almost allw ∈ B, the restrictions satisfy
V
∣
∣
w×A = U

∣
∣
w×A a.e. on A. Since these restrictions are both�-subharmonic on A, we

conclude equality everywhere on A. This establishes (2.10) and completes the proof
of Lemma 2.2. ��

Finally we prove (2.6). Let GG∗ ⊂ GG denote the set of non-polar GG-planes W for
which

U
∣
∣
W = �(W )Kp. (2.13)

This set has full measure in GG by (2.10).
Consider a general non-polar p-plane W ∈ GG. Let SW = W ∩ Sn−1 denote the

unit sphere in W . Since g ≡ U
∣
∣Sn−1 is upper semi-continuous on SW , it assumes its

maximum at a point x ∈ SW . Now since

Ũ (W, x) = ess lim sup
(W ′,x ′)→(W,x)

Ũ (W ′, x ′)

and GG∗ has full measure, there exists a sequence (Wj , x j ) ∈ Y , with |x j | = 1 and
Wj ∈ GG∗ such that (Wj , x j ) → (W, x) and Ũ (Wj , x j ) → Ũ (W, x). Choose another
unit vector y ∈ SW . SinceWj → W , we have SWj → SW and there exists a sequence
of unit vectors y j ∈ Wj such that y j → y. SinceWj ∈ GG∗, we have g(x j ) = g(y j ) =
−�(u

∣
∣
Wj

). Thus, using the upper semi-continuity of g we have

g(x) = lim
j
g(x j ) = lim

j
g(y j ) ≤ g(y),

and g(y) ≤ g(x) since g(x) is the maximum value of g on SW . We have proved that
g is a constant C on SW . By Corollary 2.3 we conclude that U = C/r p−2 on W , and
so C = �(W ) by definition. This gives (2.13) for our general non-polar plane W .
Finally note that by definition u

∣
∣
W ≡ −∞ if W is polar for u at 0. This immediately

implies ur
∣
∣
W ≡ −∞ and therefore U

∣
∣
W ≡ −∞.

We have now proved Theorem 2.1 for p ≥ 3 under the assumption that GG is a
smooth submanifold. For a general GG, choose any point W ∈ GG and consider the G-
orbitGG0 ≡ G ·W ⊂ GG. NowGG0 is a compact smooth submanifold of G(p,Rn), and
since F ⊂ F0 ≡ F(GG0), we see that any F-subharmonic function is F0-subharmonic.
Hence the result for smooth GG implies the result in general.

123

Author's personal copy



Tangents to Subsolutions Existence and Uniqueness, II 2199

We now address the case p = 2. The proof given here follows that of Kiselman
[16] and is easier than the one given above for the cases p ≥ 3. Our first observation
is that by the first equality in (10.8) of Part I, we have

U (x) ≤ �M (u)log |x | x ∈ Rn .

Suppose now thatW ∈ GG is non-polar for u at 0. Using either of the complex structures
induced on the 2-plane W by the inner product, we have that if x ∈ W and λ ∈ C,
then U (λx) ≤ �M (u)log |λx |. Hence,

U (λx)−�M (u)log |λ| ≤ �M (u)log |x |.

For x ∈ W − {0}, the function V (λ) ≡ U (λx)−�M (u)log |λ| is bounded above and
�-subharmonic on C (since U

∣
∣
W is �-subharmonic). By Liouville’s Theorem V (λ)

is constant equal to V (1) = U (x). Hence, V (λ) = V (1) says that

U (λx) = �M (u)log |λ| +U (x) ∀ x ∈ W, λ ∈ C.

Setting y = reiθ ∈ W , x = eiθ , this gives the desired result:

U (y) = �M (u)log |y| +U

(
y

|y|
)

∀ y ∈ W.

Finally the first equality in (10.4) of Part I shows that M(1) ≡ sup|x |=1U (x) =
�M (u)log 1 = 0. ��

3 The Strong Uniqueness Theorems

To begin we introduce the following concept.

Definition 3.1 We say that GG ⊂ G(p,Rn) has the transitivity property if for any
two vectors x, y ∈ Rn there exist W1, . . . ,Wk ∈ GG with x ∈ W1, y ∈ Wk and
dim(Wi ∩Wi+1) > 0 for all i = 1, . . . , k − 1.

Note that if any two points x, y ∈ Rn are contained in W for some W ∈ GG, then,
of course, GG has the transitivity property.

Theorem 3.2 (Strong Uniqueness I) Assume GG has the transitivity property. Then
strong uniqueness of tangents holds for all GG-plurisubharmonic functions.

Proof LetU be a tangent at 0 to aGG-plurisubharmonic function u, and suppose p �= 2.
By Theorem 2.1 we know that for every W ∈ GG, U (x) = −�(W )

|x |p−2 ∀ x ∈ W . Thus

if W,W ′ ∈ GG satisfy dim(W ∩ W ′) ≥ 1, then �(W ) = �(W ′). Hence, by the
transitivity property, �(W ) is constant on GG. Clearly that constant is �(u, 0). When
p = 2 the argument is similar. ��
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2200 F. R. Harvey, H. B. Lawson, Jr.

3.1 Some Examples

One can establish the transitivity property for the following sets GG, and therefore
one has strong uniqueness of tangents for the corresponding GG-plurisubharmonic
functions.

(a) GG = G(p,Rn) (p-plurisubharmonic functions) for p > 1.
(b) GG = GC(k,Cn) (complex k-plurisubharmonic functions) for k > 1 (p = 2k).
(c) GG = GH(k,Hn) (quaternionic k-plurisubharmonic functions) for k > 1 (p = 4k).
(d) GG = ASSOC (Associative subharmonic functions in R7) (p = 3).
(e) GG = COASSOC (Coassociative subharmonic functions in R7) (p = 4).
(f) GG = CAYLEY (Cayley subharmonic functions in R8) (p = 4).
(g) GG = LAG (Lagrangian subharmonic functions in Cn) (p = n).
(h) GG = ISOp (p-isotropic subharmonic functions in Cn).

Note 3.3 In the three cases, G(1,Rn) (i.e., F = P), G(1,Cn) (i.e., F = PC), and
G(1,Hn) (i.e., F = PH), strong uniqueness fails. In Sect. 5 the possible tangents in
these cases are completely characterized. In the convex case uniqueness of tangents
holds, which of course is classical. In the complex case, uniqueness fails. This is due
to Kiselman [16].

Strong uniqueness in cases (a), (b), and (c) above also follows from Theorem 13.1
in Part I. However, the others do not.

Theorem 3.4 (The Transitivity Theorem) Fix p ≥ 2 and n ≥ 3.

(a) Every compact SU(n)-invariant subset GG ⊂ GR(p,Cn), except GG = GC(1,Cn)

⊂ GR(2,Cn), has the transitivity property.
(b) Every compact Sp(n) · Sp(1)-invariant subset GG ⊂ GR(p,Hn) with three excep-

tions has the transitivity property. The exceptions are the sets of real p-planes
which lie in a quaternion line for p = 2, 3, 4. When p = 4 this is GH(1,Hn).

(c) For p ≥ 5, every compact Sp(n)-invariant subset GG ⊂ GR(p,Hn) has the tran-
sitivity property.

Proof of (a) When p ≥ 3 there is a simple argument, which we give first. LetW ⊂ Cn

be a real 3-plane and consider the orbit SU(n) ·W ⊂ GR(3,Cn).

Lemma 3.5 Given any unit vector x ∈ Cn and any unit vector e ⊥ span {x, J x},
there exists V ∈ SU(n) ·W with x, e ∈ V .

Proof Clearly there exists W ′ ∈ SU(n) · W with x ∈ W ′. Let H = {x, J x}⊥.
Then dimR(W ′ ∩ H) ≥ 1 so there exists a unit vector e0 ∈ W ′ ∩ H . Thus W ′ =
span {x, v, e0} for a unit vector v ⊥ x, e0.

Choose g ∈ SU(n) such that gx = x and g(e0) = e. This is possible since
SU(n − 1) ≡ {g : gx = x} acts transitively on the unit sphere in Cn−1 for n > 2. Set
V = g(W ′) = span {x, gv, e}. ��
Corollary 3.6 For any real 3-dimensional subspace W ⊂ Cn, the set SU(n) · W
has the transitivity property. Consequently, any compact U(n)-invariant subset GG ⊂
GR(p,Cn) for p ≥ 3 has the transitivity property.
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Proof Given non-zero vectors x, y ∈ Cn , choose a unit vector ewith e ⊥ x, J x, y, J y.
By Lemma 3.5 there existWx ,Wy ∈ SU(n) ·W with x, e ∈ Wx and y, e ∈ Wy . Thus,
SU(n) ·W has the transitivity property. The second assertion follows immediately. ��
This leaves the case where p = 2.

Lemma 3.7 Given a real 2-plane W ⊂ Cn and any (real) orthonormal basis x, v of
W, the number |〈J x, v〉| ≡ cos θ is a complete invariant of the orbit

GG ≡ SU(n) ·W ⊂ GR(2,Cn).

Proof Suppose y, w are orthonormal with |〈J y, w〉| = cos θ . There exists g ∈ SU(n)

with gx = y, sowemay assume y = x . By changing the sign of (say) v if necessary,we
may assume 〈J x, v〉 = 〈J x, w〉. Now v = 〈v, J x〉J x+v0 andw = 〈w, J x〉J x+w0,
where v0 and w0 are orthogonal to x, J x . Now since n ≥ 3, there exists g′ ∈ SU(n−
1) ≡ {g : gx = x}, as above, so that g′(v0) = w0, and therefore g′(v) = w. ��

Part (a) for p = 2 is a consequence of the following.

Proposition 3.8 If W ∈ GR(2,Cn) is not a complex line, then the orbit U(n) ·W has
the transitivity property.

Proof Fix a unit vector x ∈ Cn and consider the set

Bx ≡ {v ∈ Cn : |v| = 1 and 〈J x, v〉 = cos θ}.

By assumption the invariant cos θ �= 1. Hence this set is a geodesic ball in S2n−1 of
intrinsic radius 0 < θ < π about the point J x .

Now suppose y ∈ Cn is another unit vector with the property that ∂Bx ∩∂By �= ∅,
and choose v ∈ ∂Bx ∩ ∂By . Then x ∈ span {x, v} and y ∈ span {y, v} and by
Lemma 3.7 both span {x, v} and span {y, v} lie in GG.

In the event that ∂Bx ∩ ∂By = ∅, we can find a sequence of points x =
x0, x1, x2, . . . , xN = y such that

∂Bxk−1 ∩ ∂Bxk �= ∅ for k = 1, . . . , N .

This completes the proof of (a).

Proof of (c). This closely follows the arguments given in Lemma 3.5 and Corollary
3.5, and is omitted.

Proof of (b). Let W ⊂ Hn be a real 2-plane, and choose an orthonormal basis {x, v}
of W . Let π⊥x denote orthogonal projection onto (Hx)⊥ ⊂ Hn .

Lemma 3.9 The norm |π⊥x (v)|2 is independent of the choice of orthonormal basis
{x, v} for W, and it is a complete invariant for the action of Sp(n) · Sp(1) acting on
the Grassmannian GR(2,Hn).
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Proof Let e0 = 1, e1, e2, e3 be an orthonormal basis of H. Then |π⊥x (v)|2 =
1− 〈x, v〉2 −∑3

j=1 〈v, e j x〉2 = 1−∑3
j=1 〈v, e j x〉2. Now let x ′ = x cos θ + v sin θ

and v′ = −x sin θ + v cos θ be another orthonormal basis of W . Using the fact
that 〈v, e j x〉 = −〈e jv, x〉, one computes that 〈v′, e j x ′〉 = 〈v, e j x〉 cos2 θ −
〈e jv, x〉 sin2 θ = 〈v, e j x〉 for j = 1, 2, 3. This proves the independence of the choice
of orthonormal basis.

Now suppose we have 2-planes with o.n. bases W = span {x, v} and W ′ =
span {x ′, v′}. Then there exists g ∈ Sp(n) with g(x) = x ′, so we may assume that
x = x ′. Let πx denote orthogonal projection onto the quaternion line Hx . The sub-
group of Sp(n) · Sp(1) which maps Hx to itself is transitive on all real 2-planes
in Hx ; in fact it contains an SO(4) = Sp(1) · Sp(1)-subgroup acting standardly
on Hx = R4. Thus there is an element in this subgroup which fixes x and maps
πxv to πxv

′ (since they are orthogonal to x and have the same length). Now since
Sp(n − 1) ≡ {g ∈ Sp(n) : g(x) = x} acts transitively on the unit sphere in (Hx)⊥, it
contains an element which maps π⊥x v to π⊥x v′. ��
Proposition 3.10 LetW be a real 2-plane inHn which is not contained in a quaternion
line. Then the orbit GG ≡ Sp(n) · Sp(1)W has the transitivity property.

Proof Let W = span {x0, v0} as above. By assumption the invariant sin2 θ ≡
|π⊥x0v0|2 �= 0. Fix a unit vector x ∈ Hn . By Lemma 3.9 the set of 2-planes in GG

which contain x is


x ≡ {W ∈ GG : x ∈ W } = {span {x, v} : |π⊥x v|2 = sin2 θ}
∼= {v ∈ S4n−1 : |π⊥x v|2 = sin2 θ}.

This is the real hypersurface of points in S4n−1 at constant distance θ from the geodesic
2-sphere S2x ≡ {e · x : e ∈ ImH and |e| = 1}. Now it is straightforward to see that

x∩
y �= ∅ for all y sufficiently close to x . By homogeneity themeasure of closeness
is independent of x . The transitivity property follows. ��

Assertion (b) now follows, and the proof of Theorem 3.4 is complete. ��
Theorem 3.4 implies that nearly every SU(n)- or Sp(n)-invariant set GG has the

transitivity property. Among the geometrically interesting examples are the sets of
Lagrangian and, more generally, isotropic planes in Cn (see Example A.4). Here are
further examples.

Example 3.11 (Cauchy–Riemann sets) Fix integers 1 ≤ m and p > 2m, and define

GG = {W ∈ GR(p,Cn) : dimC(W ∩ JW ) ≥ m}.
Closely related is the set

GG0 = {V ⊕ L ∈ GR(2m + �,Cn) : V = JV, L ⊥ J L and dimCV = m}.
Notice that GG0-submanifolds have constant CR-rank ≡ m, and GG-submanifolds have
CR-rank ≥ m. (The CR-rank of a submanifold M ⊂ Cn is defined to be the smallest
complex dimension of dim(TxM ∩ JTxM) for x ∈ M).
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Example 3.12 (Quaternionic Isotropic and Cauchy–Riemann Sets) InHn we have the
sets of isotropic p-planes (p ≤ n)

ISOH
p ≡ {W ∈ GR(p,Hn) : Iw, Jw, Kw ⊥ W ∀w ∈ W }.

There are also quaternionic analogues of the Cauchy–Riemann sets given in Example
3.10.

Theorem 3.13 (Strong uniqueness II) Fix p ≥ 2 and n ≥ 3. Then strong uniqueness
of tangents to GG-plurisubharmonic functions holds for:

(a) Every compact SU(n)-invariant subset GG ⊂ GR(p,Cn) with the one exception
GG = GC(1,Cn) ⊂ GR(2,Cn),

(b) Every compact Sp(n) · Sp(1)-invariant subset GG ⊂ GR(p,Hn) with three excep-
tions, namely the sets of real p-planeswhich lie in a quaternion line for p = 2, 3, 4
(when p = 4 this is GH(1,Hn)),

(c) For p ≥ 5, every compact Sp(n)-invariant subset GG ⊂ GR(p,Hn).

Proof This is an immediate consequence of Theorems 3.2 and 3.4 above. ��

4 Homogeneous F-Subharmonics

We begin by computing the formula for the second derivative D2
xu of a function u,

which is homogeneous of degree m, in terms of its restriction g ≡ u
∣
∣
Sn−1 to the unit

sphere Sn−1 ⊂ Rn . For our application it is useful to replace m by p ≡ −m + 2 (or
m = −(p − 2)) so that

u(x) = 1

|x |p−2 g

(
x

|x |
)

. (4.1)

Remark 4.1 (p = 2) In the special case p = 2 the natural extension of g is given by

u(x) = �log|x | + g
(

x
|x |
)
. This choice is consistent with the Riesz kernels and with

classical pluripotential theory. The formulas computed below, when p = 2, only apply
to the special case� = 0. However, they also apply directly to give the corresponding
formulas in the general case. This is discussed in Remark 5.3.

Let Hessσ g denote the riemannian hessian of g at a point σ = x/|x | ∈ Sn−1. Using
the orthogonal decomposition

Rn = Tσ (Rn) = Tσ (Sn−1)⊕ Nσ (Sn−1), (4.2)

the quadratic form Hessσ g on Tσ (Rn) can be considered to be a quadratic form onRn

(whose null space contains Nσ (Sn−1)). Also, the tangential derivative Dσ g = dg at
σ can be considered a vector in Rn . Then

|x |pD2
xu=Hessσ g−(p − 2)gP[x]⊥−(p − 1) (σ ◦ Dσ g)+(p − 2)(p − 1)gP[x],

(4.3)
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where on the right-hand side, J 2g ≡ (g, Dg,Hess g), the riemannian 2-jet of g ∈
C2(Sn−1), is evaluated at the point σ = x/|x | ∈ Sn−1.

Proof of (4.3) One computes that D
(

1
|x |p−2

)
= − p−2

|x |p−1
x
|x | , and from Lemma 2.1 in

Part I, we have that

|x |pD2
(

1

|x |p−2
)

= −(p − 2)P[x]⊥ + (p − 2)(p − 1)P[x]. (4.4)

Define g̃(x) = g(x/|x |) for x ∈ Rn−{0}. Then direct calculation shows that Dg̃(x) ∼=
(1/|x |)Dσ g and that

D2
x g̃ ∼= 1

|x |2 (Hess g − σ ◦ Dg) . (4.5)

These formulas for the first and second derivatives of the functions 1/|x |p−2 and g̃
yield the formula (4.3) for the second derivative of the product u. ��

Define �(J 2σ g) ∈ Sym2(Rn) to be the RHS of (4.3). That is,

�(J 2σ g) ≡ Hessσ g − (p − 2)g(σ )Pσ⊥

−(p − 1)(σ ◦ Dσ g)+ (p − 2)(p − 1)g(σ )Pσ . (4.6)

Then (4.3) says that

|x |pD2
xu = �(J 2σ g) with σ ≡ x

|x | . (4.3′)

In terms of the 2× 2-blocking induced on Sym2(Rn) by the decomposition (4.2)

�(J 2σ g) =
(
Hess g − (p − 2)gI −(p − 1)Dg

−(p − 1)Dgt (p − 2)(p − 1)g

)

(4.6′)

with RHS evaluated at σ (and with Dg written as a column vector).
The formula (4.3′) has been proved for u and g related by (4.1) and of class C2.

This immediately implies the following.

Proposition 4.2 For a cone subequation F and u(x) = 1
|x |p−2 g

(
x
|x |
)
of class C2,

u is F − subharmonic on Rn − {0} ⇐⇒ �(Jx (g)) ∈ F ∀ |x |=1, and

u is F − harmonic on Rn − {0} ⇐⇒ �(Jx (g)) ∈ ∂F ∀ |x | = 1.

We wish to extend this proposition to include upper semi-continuous functions u
and g. Note that with u and g related by (4.1), u is upper semi-continuous onRn−{0}
if and only if g is upper semi-continuous on Sn−1.
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Lemma 4.3 Given a subset F ⊂ Sym2(Rn), consider the subset

FSn−1 ≡ �−1(F) (4.7)

of the 2-jet bundle J 2(Sn−1).

(1) F closed ⇒ FSn−1 closed.
(2) F satisfies (P) ⇒ FSn−1 satisfies (P).
(3) F is a cone ⇒ FSn−1 is a cone bundle.
(4) F is a convex cone ⇒ FSn−1 is a convex cone bundle.
(5) For any subgroup H ⊂ O(n)

F is H-invariant ⇒ FSn−1 is H-invariant .

(6) If F is a cone subequation, i.e., (1), (2), and (3) are true, then the dual

˜FSn−1 =
(
F̃
)

Sn−1 .

(7) Suppose F is a cone subequation with Riesz characteristic p.
(a) If p > 2, then

FSn−1 satisfies (N) ⇐⇒ F is Pp − monotone.

(b) If 1 ≤ p < 2, then (N) fails for FSn−1 .

Before proving this lemma we state the main result. But first consider the following.

Example 4.4 Let F ≡ {A : tr A ≥ 0} = � be the standard Laplacian on Rn . Then by
(4.6′) FSn−1 is the linear subequation Lg ≥ 0 on Sn−1, where

Lg ≡ tr�(J (g)) = �Sn−1g − (n − p)(p − 2)g.

Note that L satisfies (N) if 2 < p ≤ n.

Now the extension of Proposition 4.2 to include u.s.c. functions u and g can be
stated as follows.

Theorem 4.5 (p �= 2) Suppose that F ⊂ Sym2(Rn) is a cone subequation. If u and
g are upper semi-continuous functions related by (4.1), then

u is F − subharmonic on Rn − {0} ⇐⇒ g is FSn−1 − subharmonic on Sn−1, and

u is F − harmonic onRn − {0} ⇐⇒ g is FSn−1 − harmonic on Sn−1

⇐⇒ g is FSn−1 − subharmonic on Sn−1 and

−g is F̃Sn−1 − subharmonic on Sn−1.

In the applications typically u is F-subharmonic across 0. This imposes an addi-
tional condition on g.
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Proposition 4.6 Suppose F has Riesz characteristic 1 ≤ p < ∞, p �= 2, and that

u(x) ≡ 1
|x |p−2 g

(
x
|x |
)
is F-subharmonic on Rn across 0. Let � ≡ �M (u, 0) be the

density of u at 0. Then

(1) g is FSn−1 -subharmonic on Sn−1, and
(2) if 2 < p < ∞, then supSn−1 g = −� ≤ 0, while
(3) if 1 ≤ p < 2, then supSn−1 g = � ≥ 0.

Proof Note that K (1) = −1 for 2 < p < ∞, while K (1) = 1 for 1 ≤ p < 2. Now
Lemma 5.4 in [14] can be used to compute �M (u, 0). ��
Remark 4.7 If F is Pp-monotone and 2 < p, then a converse is true, since (2)⇒ u
is locally bounded above across 0, in which case the singularity at 0 is removable by
results in [13]. Thus (1) and (2) imply that u is F-subharmonic on Rn .

Proof of Lemma 4.3 Formula (4.6′) shows that

� : J 2( Sn−1) −→ Sn−1 × Sym2(Rn) ≡ Sym2(Rn)
∣
∣
Sn−1

is an O(n)− equivariant bundle map, (4.8)

and, in fact when (p − 1)(p − 2) �= 0, it is a bundle isomorphism. From this the
implications (1), (3), (4), and (5) are obvious. To prove (2) note that with

Jσ (Sn−1) ∼= R × T ∗σ Sn−1 × Sym2(T ∗σ Sn−1),

we have

�(0, 0, P) =
(
P 0
0 0

)

∈ P if P ≥ 0.

To prove (6) note that (4.8) implies that �−1(IntF) = Int�−1(F), and that the fibers
of Int�−1(F) are the fibers of �−1(IntF). For (7) note that by (4.6)

�(J + (−r, 0, 0)) = �(J )+ r(p − 2)(Pe⊥ − (p − 1)Pe).

Hence, for p > 2, FSn−1 satisfies (N) ⇐⇒ F is Pp-monotone, while for 1 < p < 2,
FSn−1 does not satisfy (N). ��
Proof of Theorem 4.5 The implications⇒ are easy since a test function ψ for g at σ
induces a test function ϕ(x) ≡ 1

|x |p−2 ψ
( x
|x |
)
for u at σ .

To prove the reverse implications we fix a point x0 which we may assume to be
of the form x0 = (ρ, 0, . . . , 0) for ρ > 0. We then choose the local coordinate y on
the sphere about (1, 0, . . . , 0) given by �(y) = (1, y)/|(1, y)| for |y| < 1. Setting
t = r − ρ gives local coordinates (t, y) about x0 on Rn with (0, 0) corresponding to
x0.

Under this coordinate change a function of the form |x |2−pg
( x
|x |
)
becomes (ρ +

t)2−pγ (y). To complete the proof it will suffice to prove the following lemma.

123

Author's personal copy



Tangents to Subsolutions Existence and Uniqueness, II 2207

Lemma 4.8 Suppose ϕ(t, y) is a strict quadratic test function for the function
u(t, y) = (ρ + t)2−pγ (y) at (0, 0). Then there exists a smooth test function ψ(y)
for γ (y) at 0 in Rn−1 such that

(ρ + t)2−pγ (y) ≤ (ρ + t)2−pψ(y) ≤ ϕ(t, y) near (0, 0).

Proof We can assume that γ (0) = 0. By assumption ϕ is a strict test function of the
form

ϕ(t, y) = pt + 〈q, y〉 + at2 + 2〈b, y〉t + 〈Cy, y〉.

Setting y = 0 gives 0 = u(t, 0) < pt + at2 and therefore

p = 0 and a > 0.

We now have

(ρ + t)2−pγ (y) ≡ u(t, y) ≤ ϕ(t, y) = at2 + 2〈b, y〉t + k ≡ Qy(t),

where

k = k(y) ≡ 〈q, y〉 + 〈Cy, y〉.

For fixed δ > 0 small we define

ψ(y) ≡ inf|t |≤δ

1

(t + ρ)2−p
Qy(t).

Then on {|t | ≤ δ} we have
(1) u(t, y) ≤ (t + ρ)2−pψ(y) (because γ (y) ≤ ψ(y)), and
(2) (t + ρ)2−pψ(y) ≤ ϕ(t, y).

It remains to show that ψ(t) is smooth when δ is taken sufficiently small. One
calculates that t is a critical point of the function t �→ (t + ρ)p−2Qy(t) in the range
t + ρ > 0 if and only if

At2 + 2Bt + C = 0, (4.9)

where

A = ap, B = ρa + (p − 1)〈b, y〉, C = 2ρ〈b, y〉 + (p − 2)k(y).

When y = 0, we have that apt2 + 2ρat = 0 which happens iff

t = 0 or t = −2ρ

p
.

123

Author's personal copy



2208 F. R. Harvey, H. B. Lawson, Jr.

We choose δ � 2ρ/p to rule out the second possibility. The roots t1(y) and t2(y) of
(4.9) with t1(0) = 0 are two smooth functions of y in a neighborhood of 0.

It remains to show that ψ(y) = t1(y). Since t1(y) and t2(y) are the critical points
of (t + ρ)p−2Qy(t), this means we must show that inf |t |≤δ(t + ρ)p−2Qy(t) is not
assumed for t = ±δ. One checks that this is true for y = 0 and therefore for all
sufficiently small y. ��

5 Tangents to Convex, C-Plurisubharmonic and H-Plurisubharmonic
Functions

We now give a brief discussion of three geometric cases where strong uniqueness
of tangents does not hold. These are the convex functions (where GG = G(1,Rn)),
the classical complex plurisubharmonic functions (where GG = G(1,Cn)), and the
quaternionic plurisubharmonic functions (where GG = G(1,Hn)). The results in the
first case follow from classical convex analysis [18]. Those in the complex case are
due to Kiselman [16]. The results in the quaternionic case are new.

5.1 Tangents to Convex Functions

Suppose u is a convex function defined in a neighborhood of 0 in Rn , or equivalently,
u is P = F(G(1,Rn))-subharmonic. The Riesz characteristic of this subequation is
1, and the appropriate homotheties are

ur (x) ≡ 1

r

(

u(r x)− u(0)

)

, r > 0.

Tangents are unique. In fact,

ur ↓ U ≡ lim
r↓0 ur uniformly on compact subsets of Rn . (5.1)

This is easy to see geometrically. The mappings �r : Rn+1 →: Rn+1 given by
(x, t) �→ 1

r (x, t − u(0)) carry the epigraph of u to the epigraph of ur . Convexity
implies that for 0 < r < s, epi(ur ) ⊃ epi(us). The epigraphs epi(ur ) increase
to epi(U ), that is, the functions ur decrease to U . The local uniform convergence
follows.

Tangents are homogeneous of degree 1, that is,

Ur (x) = U (x), i.e., U (r x) = rU (x). (5.2)

This is immediate since tangents are unique.
The subdifferential of u at 0, denoted (∂u)(0), is the set of p ∈ Rn such that

u(x) − u(0) ≥ 〈p, x〉 for |x | small. It is easy to see that (∂u)(0) is a non-empty
compact convex set. Now the unique tangent function U to u at 0 is related to the
subdifferential by
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U (x) = sup
p∈(∂u)(0)

〈p, x〉. (5.3)

Note that p ∈ (∂u)(0) ⇐⇒ 1
r (u(r x)− u(0)) ≥ 1

r 〈p, r x〉 = 〈p, x〉, and hence

p ∈ (∂u)(0) ⇐⇒ p ∈ (∂ur )(0) ⇐⇒ p ∈ (∂U )(0)

and U (x) ≥ 〈p, x〉 ∀ p ∈ (∂u)(0). (5.4)

Finally we show that

�S(u, x) = 0 ⇐⇒ u is differentiable at x . (5.5)

(When this holds, �M (u, x) = |Dxu|). Both assertions in (5.5) remain unchanged if
we subtract an affine function from u. By subtracting a supporting affine function we
may assume that u ≥ 0 and u(x) = 0. Then by (5.1) u is differentiable at x if and only
if the tangent U at x is ≡ 0. Now �S(U, 0) = �S(u, x), so if �S(u, x) = 0, then the
homogeneity of U implies that

∫

S− U (tσ) dσ = �S(U, 0) = 0 for all t ≥ 0. However,
U ≥ 0 since u(r x)/r ↓ U and u ≥ 0, and soU = 0. Conversely, ifU = 0, then since
u(r x)/r converges uniformly to U = 0, u is differentiable at x with Dxu = 0.

5.2 Homogeneous Convex Functions

Every convex functionU which is homogeneous of degree 1 is , of course, the unique
tangent to itself at 0. By subtracting off an affine function, one can always assume that

U ≥ 0 and U (0) = 0.

Such functions are classically understood. Rewrite U as U (x) = ‖x‖. Then

‖λx‖ = λ‖x‖ ∀ λ ≥ 0, x ∈ Rn and ‖x + y‖ ≤ ‖x‖ + ‖y‖, (5.6)

that is, ‖ • ‖ is a semi-norm on Rn (not necessarily balanced). By (5.3) the unit ball
‖p‖∗ ≤ 1 in the dual norm ‖ • ‖∗ is the subdifferential (∂U )(0).

Let U (x) be a C2-function which is homogeneous of degree 1, i.e., U (x) =
|x |g( x

|x |
)
where g ≡ U

∣
∣
Sn−1 . Then formula (4.3) with p = 1 states that

D2
xU = 1

|x |
(
Hesseg + g(e)Pe⊥

)
where e = x

|x | . (5.7)

That is, D2
xU is the pull-back of the quadratic form Hesseg+ gI on the tangent space

TeSn−1 to the sphere using the splitting Rn = TeSn−1 ⊕R · e. Theorem 4.5 gives the
following.
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2210 F. R. Harvey, H. B. Lawson, Jr.

Proposition 5.1 Let g ∈ C(Sn−1) be a continuous non-negative function on the
sphere Sn−1, and extend g to a homogeneous function U (x) ≡ |x |g( x

|x |
)
of degree 1

on Rn. Then

U is convex on Rn ⇐⇒ Hess g + gI ≥ 0 (in the viscosity sense) on Sn−1.

When n = 2, this is the subequation g′′(θ) + g(θ) ≥ 0 on S1. Note that the
negativity condition (N) fails.

Summary Tangents are unique; strong uniqueness fails, but tangents can be character-
ized by (5.6) or Proposition 5.1.

5.3 Tangents to Plurisubharmonic Functions in Cn

In 1988, Christer Kiselman proved that tangents to plurisubharmonic functions are
not unique. In fact he completely characterized the subsets of L1

loc(C
n) which arise as

the tangent sets to psh functions. (See Theorem 4.1 in [16]). We present those results
here.

Since the Riesz characteristic in this case is 2, the appropriate homotheties are

ur (x) ≡ u(r x)− sup
Br

u, r > 0.

The following is (essentially) one of Kiselman’s results in [16]. Let

π : Cn − {0} → Pn−1
C

denote the standard map to complex projective space, and let ω denote the standard
Kähler form on Pn−1

C so that π∗ω = i∂∂log|z| on Cn − {0}.
Proposition 5.2 Suppose U is a tangent to a plurisubharmonic function u defined in
a neighborhood of the origin in Cn. Then U is of the form

U (x) = �log|x | + π∗g with g ∈ USC(Pn−1
C ), (5.8)

where

(i) � ≡ �M (u) is the (maximum) density of u at 0,
(ii) g is �-quasi-plurisubharmonic on Pn−1

C , that is

i∂∂g +�ω ≥ 0, (5.9)

(iii) and

sup
Pn−1
C

g = 0. (5.10)
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Since only (5.9) is not stated in [16], we include its straightforward proof. Assume
(5.8) has been established, where g ∈ USC(Pn−1

C ). Then i∂∂U = i∂∂(�log|x | +
π∗g) = π∗(�ω + i∂∂g), from which one concludes that

U is plurisubharmonic on Cn − {0} ⇐⇒ i∂∂g +�ω ≥ 0 on Pn−1
C .

(5.11)

Remark 5.3 This result can be deduced from the case p = 2 in the last section (see
Remark 4.1). If

U (x) = �log|x | + g

(
x

|x |
)

∀ x ∈ Cn,

then

D2
xU = 1

|x |2
(
Hesseg +�I −Deg
−(Deg)t −�

)

.

One can show that the hermitian symmetric part (D2
xU )C vanishes on Ce and equals

(Hesseg)C + �P(Ce)⊥ on (Ce)⊥ (compare the more complicated quaternionic case
below). This completes a second proof.

Remark 5.4 (a) Note also that each tangentU is maximal onCn−{0} since its restric-
tion to each complex line through the origin is �-harmonic.
(b) A specific example of such a tangentU , which is notPC-subharmonic onCn−{0},
is given by (5.8) with g(x) = log(|x1|/|x |). Note that g satisfies (ii) and (iii) in
Proposition 5.2.

Proposition 5.2 characterizes the possible tangent functions to u at 0. Kiselman’s
characterization of the possible tangent sets T0u can be stated as follows.

Theorem 5.5 (C. Kiselman [16]) Suppose that � ≥ 0 and that M is a non-empty
subset of the �-quasi-plurisubharmonic functions on Pn−1

C with each element g ∈ M
satisfying (5.10). If M is closed and connected in L1

loc(P
n−1
C ), then there exists a

plurisubharmonic function u defined on a neighborhood of the origin in Cn such that

T0u = M.

5.4 Homogeneous Quaternionic Harmonics

The remaining series of ST-invariant geometric cases where strong uniqueness fails
is the case of quaternionic plurisubharmonic functions (GG = GH(1,Hn) in Sect. 3).
Such functions have been studied by S. Alesker and M. Verbitsky in [1,3], and also by
the authors [7,8]. Note that in this case theRiesz characteristic is 4. Letπ : Hn−{0} →
Pn−1
H denote the standard map to quaternionic projective space.
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Proposition 5.6 Suppose U is a tangent to a quaternionic plurisubharmonic function
u defined in a neighborhood of the origin in Hn. Then U is of the form

U (x) = 1

|x |2π∗g with g ∈ USC(Pn−1
H ), (5.12)

where g satisfies the subequation

HessH(g)− 2gI ≥ 0 on Pn−1
H . (5.13)

HereHessH(g) is the quaternionic hermitian symmetric part of the riemannian hessian
H = Hess g on Pn−1

H , defined by

HH(v,w) = 1
4 {H(v,w)+ H(Iv, Iw)+ H(Jv, Jw)+ H(Kv, Kw).}

Proof By Theorem 2.1 we know thatU
∣
∣
W∩S4n−1 is constant for every quaternion line

W ⊂ Hn . Hence, U
∣
∣
W∩S4n−1 = π∗g for some g ∈ USC(Pn−1

H ). To simplify notation
and to make accord with Sect. 4, we shall denote π∗g simply by g.

Consider the unit sphere S4n−1 ⊂ Hn = R4n . At any x ∈ S4n−1 we get a decom-
position of R4n as

R4n = Hx ⊕ Vx ⊕ Rx, (5.14)

where Vx is the tangent space to the fiber at x of the fibration

π : S4n−1 −→ Pn−1
H

andHx is the orthogonal complement of Vx in Tx S4n−1.H is horizontal for π and π∗
maps it isometrically onto TπxP

n−1
H . It is an H-linear subspace of Hn . Note that the

radial H-line through x satisfies Hx = Vx ⊕ Rx .
Let I, J, K be the standard basis for the imaginary quaternions. Then we get a

trivialization of V by the global vector fields:

V1(x) = I (x), V2(x) = J (x), V3(x) = K (x). (5.15)

Now we are considering the operator from (4.6′)

L(g) =
⎛

⎝
Hess g − 2gI −3Dg

−3Dgt 6g

⎞

⎠

written with respect to the splitting Tx S4n−1 ⊕ Rx . We want to compute this for a
function g = π∗g̃ where g̃ : Pn−1

H → R. More precisely we want to compute the
quaternionic hermitian symmetric part:

LH(g)(v,w)≡ 1
4 {(Lg)(v,w)+(Lg)(Iv, Iw)+(Lg)(Jv, Jw)+(Lg)(Kv, Kw)}.
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Our first observation is that

V ⊂ Ker(Dg) and V ⊂ Null(Hessg).

Thus if v ∈ V , then we find that

4LH(g)(v, v) = −2g − 2g − 2g + 6g = 0.

Similarly, if e = x we have LH(g)(e, e) = 0, and LH(g)(v, e) = 0. Thus the restric-
tion of LH(g) to H · x (the radial H-line) is zero.

We now want to compute the spherical hessian Hess(g). Let H be an invariant
horizontal vector field obtained by lifting a vector field H̃ on Pn−1

H via π , and let V
be a vertical vector field which is a real linear combination of the Vj above. Then

0 = LV (H) = [V, H ] = ∇V H −∇HV

where ∇ is the riemannian connection on the sphere. Observe now that

∇HV = ∇H (J x) = {∇R4n+4
H (J x)}Tan = {(J H)}Tan = (J H) ∼= V H,

(5.16)

where we identify J ∼= V via the global identification (5.15) above:

V ∼= ImH. (5.15′)

Now let H1, H2 be invariant horizontal vector fields as above. Then

(Hess g)(H1, H2) = H1H2g − (∇H1H2)g

= H1H2g − (∇H1H2)
Hg

=
(
HessP

n
Hg

)
(H1, H2) lifted to the sphere.

We must now compute the (V,H)-component of Hess g.

(Hess g)(H, V ) = HVg − (∇HV )g

= 0− 〈(∇HV ), Dg〉
= −〈V H, Dg〉 = −〈H, μ∗V Dg〉

by (5.16) above, where μV is the action of the imaginary quaternion V on H at x .
So with respect to the splitting (5.14) we have

L(g) =
⎛

⎝
HessPg − 2gI −μ∗Dg −3Dg

μ∗Dgt −2gI 0
−3Dgt 0 6g

⎞

⎠ .
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Now we know that

LH(g) =
⎛

⎝
HessPHg − 2gI ∗ ∗

∗ 0 0
∗ 0 0

⎞

⎠ .

It remains only to compute the H-symmetric part of the *’s.
Consider a vector (a, b) ∈ H⊕ (V ⊕Rx) = H⊕H⊥. We want to look at the term

〈LHa, b〉. This is

〈LHa, b〉 = 1
4 {〈La, b〉 + 〈L Ia, I b〉 + 〈L Ja, Jb〉 + 〈LKa, Kb〉} .

This is the trace of a quadratic form on H = R4, and it can be expressed with respect
to any orthonormal basis. As a result we may assume that b = x ≡ e and a ∈ V .

〈La, b〉 = 〈−3(Dg)a, e〉 = −3〈(Dg)a, e〉

and

〈L Ia, I e〉 = 〈I a, L Ie〉 = 〈I a,−μ∗I (Dg)〉 = −〈I 2a, (Dg)〉 = 〈a, Dg〉.

Similarly,

〈L Ja, Je〉 = 〈LKa, Ke〉 = 〈a, Dg〉.

The sum is zero. Hence we have that with respect to the decomposition H⊕H⊥

|x |2
(
D2u

)

H
=

⎛

⎝
HessPHg − 2gI 0

0 0

⎞

⎠ .

The (1,1)-term is the pull-back of the quaternionic hermitian symmetric part of the
hessian on quaternionic projective space. This completes the proof. ��

Appendix: Further Discussion of Examples

In this appendix we examine specific subequations of Riesz characteristic p, in more
detail. We consider two types: cone subequations and convex cone subequations, and
in both cases the subequations will always be ST-invariant . It may be of some surprise
that in each of these two categories there is a unique largest and smallest subequation.

The Largest/Smallest Characteristic p Subequation

We first consider the category of cone subequations. For A ∈ Sym2(Rn) let λ1(A) ≤
· · · ≤ λn(A) denote the ordered eigenvalues of A, and set λmin(A) ≡ λ1(A) and
λmax(A) ≡ λn(A). We then define
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Pmin/max
p ≡ {A : λmin(A)+ (p − 1)λmax(A) ≥ 0} (6.1)

Pmin/2
p ≡ {A : λmin(A)+ (p − 1)λ2(A) ≥ 0} (6.2)

It is clear from Definition 3.2 in Part I that both of these subequations has Riesz char-
acteristic p. These are the largest and smallest cone subequations with this property.

Lemma 6.1 Let F be an ST-invariant cone subequation of Riesz characteristic p.
Then

Pmin/2
p ⊂ F ⊂ Pmin/max

p .

Note One computes that the dual of this largest subequation Pmin/max
p is Pmin/max

q
where (p − 1)(q − 1) = 1. Compare this with (3.22) in Part I which says that
(pF − 1)(qF − 1) ≥ 1 for any subequation F . Also see Example 13.14 in Part I.

Proof of Lemma 6.1 Each A ∈ Sym2(Rn) can be written as a sum A = λ1Pe1 +
· · · + λn Pen using the ordered eigenvalues of A. Set B0 ≡ λ1Pe1 + λ2Pe⊥1

, and
B1 ≡ λ1Pe1 + λn Pe⊥1

, and note that B0 ≤ A ≤ B1.

If A ∈ Pmin/2
p , then λ1 + (p − 1)λ2 ≥ 0. Thus, B0 ∈ Pmin/2

p . Since Pmin/2
p and F

have the same increasing radial profile E↑ given by (3.1) in Part I (and λ2 ≥ 0), we
conclude that B0 ∈ F . However, B0 ≤ A proving that A ∈ F .

For the other inclusion, pick A ∈ F . Since F ⊂ P̃ , we have λmax ≥ 0. Now A ≤ B1

implies B1 ∈ F . Again F and Pmin/max
p have the same increasing radial profile E↑

given by (3.1) in Part I. Therefore, B1 ∈ Pmin/max
p . This implies by definition that

A ∈ Pmin/max
p . ��

The largest and smallest characteristic p subequations in the convex cone case are
different in dimensions ≥ 3 (see Sect. 4 in Part I for the definitions of Pp and P(δ)).

Lemma 6.2 Let F be an O(n)-invariant convex cone subequation of Riesz character-
istic p. Then 1 ≤ p ≤ n and

Pp ⊂ F ⊂ P(δ) where δp = (p − 1)n

n − p
.

(One computes that the Riesz characteristic of P(δp) is p). In fact, the first inclusion
holds for any ST-invariant characteristic p convex cone subequation F.

Proof The first inclusion follows from the fact that −(p − 1)Pe + Pe⊥ generate the
extreme rays in Pp. This is proved in [11, Theorem 5.1c]. The second inclusion is
Proposition 13.9 in Part I. ��

O(n)-Invariant Subequations

Such a subequation F determines a subset E ⊂ Rn consisting of the n-tuples
(λ1(A), . . . , λn(A)) of eigenvalues of A. Consider λ(A) = (λ1(A), . . . , λn(A)) as
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a multi-valued map λ : Sym2(Rn) → Rn . Then we define E ≡ λ(F). The set E
is closed and symmetric (invariant under the permutation of coordinates in Rn). In
addition,

E is Rn+ (positive orphant) monotone, i.e., E + Rn+ = E, (6.3)

since the ordered eigenvalues are P-monotone.

Definition 6.3 A closed symmetric subset E ⊂ Rn (with ∅ �= E �= Rn) will be called
a universal eigenvalue subequation if E is Rn+-monotone.

Note that this is an abuse of language since E itself is not a subequation. The
“universal” nature of E will be described later. However, such a set E determines the
O(n)-invariant subequation

F = λ−1(E). (6.4)

Note that

F is a cone ⇐⇒ E is a cone, and

F is convex ⇐⇒ E is convex. (6.5)

Of course, P and Rn+ correspond, i.e., P = λ−1(Rn+). The Riesz characteristic of F
is easily computed from its eigenvalue profile E .

The increasingRiesz characteristic of F equals sup{p : (−(p−1), 1, . . . , 1) ∈ E}.
The decreasing Riesz characteristic of F equals sup{q : (−1, . . . ,−1, (q − 1)) ∈
E}.
It is also worth noting that if E and F correspond, the Ẽ and F̃ correspond.

The Complex and Quaternionic Analogues of an O(n)-Invariant Subequation

As described in Example 4.7 in Part I, each O(n)-invariant subequation F on Rn

canonically determines a U(n)-invariant subequation FC onCn and an Sp(n)-invariant
subequation FH on Hn . In both cases the subequation is given by requiring that the n
eigenvalues of the hermitian symmetric part of the matrix lie in EF . That is, if E is
defined by A ∈ F ⇐⇒ λ(A) ∈ E , then

A ∈ FC ⇐⇒ λCk (A) ∈ E and A ∈ FH ⇐⇒ λHk (A) ∈ E, (6.6)

where λCk (A) = λk(AC) and λHk (A) = λk(AH)

The associated Riesz characteristics are doubled for the complex analogues (see
Lemma 4.8 in Part I).

This classifies all the U(n)-invariant subequations F with the property that

F = π−1C

(
FC

)
where πC(A) = AC (6.7)
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and FC is a subset of the hermitian symmetric matrices. Similarly, it defines all the
Sp(n)-invariant subequations F with the property that

F = π−1H

(
FH

)
where πH(A) = AH (6.8)

and FH is a subset of the quaternionic hermitian symmetric matrices (here the Riesz
characteristic is quadrupled).

The largest/smallest results (Lemmas 6.1 and 6.2 in the R case) have counterparts
in the C and H cases. The precise statements and their proofs are left to the reader.

Example 6.4 (Lagrangian Pluripotential Theory) A notable new example of a U(n)-
invariant subequation not satisfying (6.8) comes from Lagrangian geometry, namely
the geometrically defined subequation F(LAG) where LAG ⊂ GR(n,Cn) is the
set of Lagrangian n-planes in Cn . The F(LAG)-subharmonics can be characterized
as the upper semi-continuous functions whose restrictions to Lagrangian planes are
subharmonic (parallel to classical pluripotential theory). The eigenvalues of the skew-
hermitian part Askew

C come in pairs λ1,−λ1, λ2,−λ2, . . . , λn,−λn . The subequation
F(LAG) is determined by a constraint on these eigenvalues together with the real
trace

μ ≡ 1

2
tr(A),

namely

μ ± λ1 ± λ2 ± · · · ± λn ≥ 0 (6.9)

for all 2n choices of±. There is a polynomial operator M on Sym2
R(Cn) analogous to

the determinants detRA, detCA, and detHA, namely

MLAG(A) =
∏

2n times

(μ ± λ1 ± λ2 ± · · · ± λn) (6.10)

(see [8, page 433]) and [15, Def. 5.1]. Of course since LAG ⊂ G(n,R2n) and F is
geometrically defined by LAG, F has Riesz characteristic n. The set LAG (for n > 1)
has the transitivity property, so that Theorem 3.2 applies to yield strong uniqueness of
tangents to Lagrangian plurisubharmonic functions.

Example 6.4p. (Isotropic Subharmonic) The previous example can be generalized as
follows. For each integer p, 1 ≤ p ≤ n we consider the set

ISOp = {W ∈ GR(p,Cn) : W is an isotropic p plane}.

Recall that a real p-plane W in Cn = R2n is isotropic if

v ⊥ Jw ∀ v,w ∈ W,
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i.e., the Kähler form ω satisfies ω
∣
∣
W = 0. Note that ISOn = LAG and ISO1 = P .

Except for ISO1 = P the set ISOp has the transitivity property, and so Theorem 3.2
applies to yield strong uniqueness of tangents.

Subequations Arising from Gårding Operators

Gårding’s beautiful theory of hyperbolic polynomials provides a surprisingly rich
collection of non-linear operators. (This connection is mentioned in Krylov [17]).
Moreover, associated with each such “Gårding operator” there are many actual sube-
quations. Here we provide a brief overview. We first start with an operator and discuss
how the many associated subequations are universally constructed. We then describe
three of the basic ways of constructing newGårding operators from a given one. These
repeatable processes lead to a vast array of Gårding operators, starting with just one.

See for example [9] for a self-contained development of Gårding’s theory. His two
fundamental results can be summarized by saying that:

The Garding cone � is convex, and (6.11)

The Garding eigenvalues are � −monotone. (6.12)

Definition 6.5 A homogeneous real polynomial M of degree m on the space
Sym2(Rn) of second derivatives, with M(I ) > 0, is a Gårding operator if:

(1) For each A ∈ Sym2(Rn) the polynomial M(s I + A) has m real roots (M is
I -hyperbolic), and

(2) The Gårding cone �, defined as the connected component of I in {M(A) > 0},
satisfies positivity � + P ⊂ �.

The primary subequation associated with the Gårding operator M is the closure of
the Gårding cone �, which is a convex cone subequation. However, there are many
others.

Definition 6.6 The negatives of the roots of M(s I + A) = 0 are called the
M-eigenvalues of A, and are denoted by �(A) ≡ (�1(A), . . . �m(A)). Thus,
M(s I + A) = M(I )

∏
j

(
s +� j (A)

)
. These M-eigenvalues of A are well defined up

to permutations. Note that M(A) = M(I )�1(A) · · ·�n(A).

Definition 6.7 The kth branch of the equation M(A) = 0 is defined to be the set

{�k(A) ≥ 0},

where �1(A) ≤ · · · ≤ �m(A) are the ordered M-eigenvalues of A.

An important part of the theory shows that the orderedM-eigenvalues are strictly�-
monotone. SinceP ⊂ � by (6.13), we have that each of them branches of {M(A) = 0}
is a subequation.

Note that � = {�min(A) ≥ 0} is the first and smallest branch, and that its dual
subequation {�max(A) ≥ 0} is the largest branch.
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The branches {�k(A) ≥ 0}, k = 1 . . . ,m, are the subequations most intimately
associated with the Gårding operator M in that if a C2-function u is harmonic for one
of these subequations, then

M
(
D2
xu
)
= 0. (6.13)

However, there are many others, all constructed exactly as in the O(n)-invariant case.
Now we make full use of the concept (Definition 6.3) of a universal eigenvalue

subequation.

Proposition 6.8 Given a universal eigenvalue subequation E ⊂ Rm, each Gårding
operator of degree m on Sym2(Rn) determines a subequation on Rn, namely

FE ≡ {A : �(A) ∈ E}.

This subequation is �-monotone (not justP-monotone). Moreover, FE is a cone if and
only if E is a cone., and FE is convex if and only if E is convex.

Proof This is straightforward except for the last assertion which is due to [4].
For example, E = Rm+ is the universal “Monge–Ampère subequation” inducing the

subequation � for each degree m Gårding operator M(A) = M(I )�1(A) · · ·�m(A).
We complete this discussion of Gårding operators by describing three of the basic

methods of constructing new Gårding operators from a given Gårding operator M of
degree m. To be specific the reader may want to start with one of the basic operators
det(AK ) for K = R,C or H.
I. The Derived or Elementary Symmetric Operator With k = 1, . . . ,m fixed and
� ≡ m − k we define

σk(A) ≡ 1

(�)!
d�

dt�
M(A + t I )

∣
∣
t=0 and σk(A) ≡ =

∑

i1<···ik
�i1(A) . . . �ik (A)

and note that they are equal.
II. The p-Convexity Operator For each real number p with 1 ≤ p ≤ m set


p(A) ≡
∏{

�i1(A)+ · · · +�i[p](A)+ (p − [p])� j (A)
}
,

where the product is taken over all increasing multi-indices I = (i1, . . . , i[p]) and all
j /∈ I .
III. The δ-Uniformly Elliptic Regularization Operator With 0 ≤ δ ≤ ∞ (and renor-
malizing at δ = ∞) set

Mδ(A) ≡ M

(

A + δ

n
(trA)I

)

= M(I )
m∏

j=1

{

� j (A)+ δ

n
(trA)

}

.

��
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Remark 6.9 (Iteration) The first process lowers the degree of the operator. The second
process raises the degree of the operator, and the degree remains the same in the third
process. One can apply any sequence of the three operations, thereby producing a huge
collection of Gårding operators all dependent on the primary operator.

Riesz Characteristics of Branches

Suppose that M is an ST-invariant Gårding operator (Definition 6.5) with ordered
eigenvalues �1(A) ≤ · · · ≤ �m(A). The kth branch, defined by �k(A) ≥ 0, and
the (m − k + 1)st branch, defined by �m−k+1(A) ≥ 0, are dual subequations, since
�m−k+1(A) = −�k(−A) is the operator dual to �k(A). Note that 0 ≤ �k(Pe) ≤ 1,
k = 1, . . . ,m since 0 < Pe < I .

Proposition 6.10 The Reisz characteristic of the kth branch equals �m−k+1(Pe)−1.
That is, with �1(Pe) ≤ · · ·�m(Pe), the quantities �m(Pe)−1 ≤ · · ·�1(Pe)−1 are
the Riesz characteristics of the ordered branches starting with �m(Pe)−1 = the Riesz
characteristic of the smallest branch.

Proof If p is the Riesz characteristic of the kth branch, then 0 = �k(I − pPe) =
1+ p�k(−Pe) = 1− p�m−k+1(Pe). ��

Here are some examples. Let λ1(A) ≤ · · · ≤ λn(A) denote the (standard) ordered
eigenvalues of A.
I. The Basic Elementary Symmetric Function Take M = σk , the kth elementary sym-
metric function of the λ j (A). In general it is hard to compute the M-eigenvalues
�1(A) ≤ · · ·�k(A) of A. However, when A = Pe it is a straightforward computation
that

σk(Pe + t I ) = σk(I )t
k−1

(

t + k

n

)

,

so the σk-eigenvalues of Pe are 0 . . . , 0, k
n , and hence the Riesz characteristic of the

branches are p1 = n
k and p2 = · · · = pk = ∞.

II. The Basic p-Convexity Operator Take M = 
p and set α = p − [p]. The cases
α = 0 andα > 0 are different. Ifα = 0, thenm = (n

p

)
and�I (A) = 1

p {λi1+· · ·+λi p }.
Therefore, A ≡ Pe has its smallest

(n−1
p

)
eigenvalues �I (Pe) = 0, and the remaining

(n−1
p−1

)
eigenvalues �I (Pe) = 1

p . Hence the Riesz characteristic of each of the first
(n−1
p−1

)
branches is p, and for the remaining larger branches it is∞.

When α > 0, the degree is m = ( n
[p]
)
(n − [p]). In the case n = 4, [p] = 2 and

0 < α < 1, there are 12 branches. The smallest 3 have characteristic 2 + α, the next
3 have characteristic 1+ 2

α
, and the rest have characteristic∞.

III. The Basic δ-Uniformly Elliptic Operator Take M = detδ . Thus, M(A) =
det

(
A + δ

n (trA)I
)
so that M(I ) = (1 + δ)n and � j (A) = 1

1+δ
{λ j (A) + δ

n trA}.
Thus the first n − 1 eigenvalues of Pe are δ

n(1+δ)
, and the largest is �n(Pe) = n+δ

n(1+δ)
.
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Therefore, n(1+δ)
n+δ

is the Riesz characteristic of the smallest branch P(δ), and all the

remaining branches have Riesz characteristic n(1+ 1
δ
).

IV. The Lagrangian Operator Take M ≡ MLAG as defined by (6.11). Since (Defini-
tion 6.6) M(s I + A) = M(I )

∏
(s +�(A)) define the 2n Gårding eigenvalues, they

can be calculated to be

�(A) = 1

n
(μ± λ1 ± · · · ± λn) ,

where ±λ1, . . . ,±λn are the eigenvalues of the skew-hermitian part Askew
C of A, and

μ ≡ 1
2 trA. If A = Pe, then μ = 1

2 , and Askew
C = 1

2 (Pe − PJe) has eigenvalues
λ1 = ± 1

2 and λ j = 0 for j > 1. Hence the M-eigenvalues of Pe are zero (2n−1 times)
and 1

n (2n−1 times). Therefore, the Riesz characteristic of the smallest 2n−1 branches
is n, and of the largest 2n−1 branches, it is∞.

Elliptic Regularization: Subequation Expansion/Contraction

For each r > 0 consider the linear map

�r (A) ≡ r A + (1− r)(tr A) 1n I = r
(
A − (tr A) 1n I

)+ (tr A) 1n I. (6.14)

The restriction of �r to each affine hyperplane {tr A = λ} is the r -homothety (multi-
plication by r ) about the center λ

n I . This follows from the second equality. The inverse
is

� 1
r
= 1

r

(
A + (r − 1)(tr A) 1n I

)
. (6.15)

Definition 6.11 Suppose δ ≡ r − 1 ≥ 0 and F is a cone subequation. Then

F(δ) = �r (F) = {A : r� 1
r
(A) = A + δ(tr A) 1n I ∈ F}

is called the r th expansion of F .

Note that F(δ) is also a subequation for all δ > 0 since the homothety factor r ≥ 1.
Note also that if F is a convex cone contained in Int� = {tr A > 0}, then F(δ) ranges
from F to � as δ ranges from 0 to∞. Finally, note that ∂F(δ) = �r (∂F).

Proposition 6.12 Suppose F is a cone subequation with (Riesz) characteristic p =
pF and dual (Riesz) characteristic q = qF . Then the δ-uniformly elliptic cone sube-
quation F(δ) = �r (F) (δ ≡ r − 1 ≥ 0) has its two characteristics given by the same
function

pF(δ) = n(1+δ)p
n+δp = p + δp(n−p)

n+δp

qF(δ) = n(1+δ)q
n+δq = q + δq(n−q)

n+δq . (6.16)
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These formulas hold when pF = ∞ or when qF = ∞, that is

pF = ∞ ⇒ pF(δ) = n(1+δ)
δ

qF = ∞ ⇒ qF(δ) = n(1+δ)
δ

. (6.17)

Proof Note that A ≡ Pe⊥ − (p− 1)Pe ∈ ∂F ⇐⇒ �r (A) ∈ ∂�r (F) = ∂F(δ) and

�r (A) = (1+ δ)Pe⊥ − (1+ δ)(p − 1)Pe − δ(n − p)

n
I

= n + δp

n

[

Pe⊥ −
(
n(1+ δ)p

n + δp
− 1

)

Pe

]

.

Finally, since −A ∈ ∂F ⇐⇒ −�r (A) ∈ ∂�r (F) = ∂F(δ), the formula for qF(δ)

as a function of qF is the same as the formula for pF(δ) as a function of pF . ��
Proposition 6.13 If F is M-monotone, then F(δ) is M(δ)-monotone.

Proof Straightforward.

Example 6.14 As δ ranges from 0 to∞, P(δ) increases from P to �. Each P(δ) is a
convex cone, and with δ > 0 small, these subequations form a “fundamental system”
of conical neighborhoods ofP . Consequently, they provide one of the nicer definitions
of uniform ellipticity. Namely, a subequation F is δ-uniformly elliptic if

F + P(δ) ⊂ F. (6.18)

Since F(δ) + P(δ) ⊂ F(δ), each F(δ) is automatically δ-uniformly elliptic. For
this reason, F(δ) is also called the δ-elliptic regularization of F (cf. [17]).
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