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ABSTRACT

There is an interesting potential theory associated to each degenerate ellip-
tic, fully nonlinear equation f(D2u) = 0. These include all the potential
theories attached to calibrated geometries. This paper begins the study of
tangents to the subsolutions in these theories, a topic inspired by the re-
sults of Kiselman in the classical plurisubharmonic case. Fundamental to
this study is a new invariant of the equation, called the Riesz characteristic,
which governs asymptotic structures. The existence of tangents to subsolu-
tions is established in general, as is the existence of an upper semi-continuous
density function. Two theorems establishing the strong uniqueness of tan-
gents (which means every tangent is a Riesz kernel) are proved. They cover
all O(n)-invariant convex cone equations and their complex and quater-
nionic analogues, with the exception of the homogeneous Monge-Ampère
equations, where uniqueness fails. They also cover a large class of geometri-
cally defined subequations which includes those coming from calibrations. A
discreteness result for the sets where the density is≥ c > 0 is also established
in any case where strong uniqueness holds. A further result (which is sharp)
asserts the Hölder continuity of subsolutions when the Riesz characteristic
p satisfies 1 ≤ p < 2. Many explicit examples are examined.

The second part of this paper is devoted to the “geometric cases”.
A Homogeneity Theorem and a Second Strong Uniqueness Theorem are
proved, and the tangents in the Monge-Ampère cases are completely classi-
fied.
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1. Introduction.

The point of this paper is to introduce and study tangents for a wide class of degenerate
elliptic, fully nonlinear equations of the form F(D2) = 0 in Rn. It was inspired by
Kieselman’s study [K1] (cf. [K2])) of tangents to plurisubharmonic functions in classical
pluripotential theory. The aim is to develop techniques for studying the behavior, in
particular the singular behavior, of subsolutions – the upper semi-continuous functions u
which satisfy F(D2u) ≥ 0 in the viscosity sense. A number of quite general results are
obtained. These include existence, uniqueness and “harmonicity” of tangents for a wide
range of equations. Densities for subsolutions are defined and shown to be upper semi-
continuous, and a structure theorem is proved for the sets where the density is ≥ c > 0. A
key to the analysis is the notion of the Riesz characteristic of the equation. This invariant
is a real number p ≥ 1 which governs the asymptotic behavior of singularities, and is easily
computed in all of the examples, no matter how degenerate (see Sections 3 and 4).

For this study we focus on the closed set F = {A ∈ Sym2(Rn) : F(A) ≥ 0} (cf.
[Kr], [HL4]), and the operator F will play no role. This set is always assumed to have the
following three properties:

(i) (Positivity) F + P ⊂ F where P ≡ {A ≥ 0}.
(ii) (ST-Invariance) F is invariant under a subgroup G ⊂ O(n)
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which acts transitively on the sphere Sn−1 ⊂ Rn.

(iii) (Cone Property) tF ⊂ F for all t ≥ 0.

A closed set F satisfying Positivity is called a subequation, and the viscosity F -subsolutions
are called F -subharmonic functions. Each subequation F has its own potential theory
([HL4], [HL6]). For some of the results here, in addition to these three conditions, F is also
assumed to be convex. In this case distribution theory provides an alternate but equivalent
foundation (Theorem 9.5) for subsolutions, which is helpful.

The equations covered here include many classical examples coming from real, complex
and calibrated geometry, such as the Monge-Ampère and Hessian equations. The reader
is encouraged to glance at Section 4 for some basic examples.

At the time of the first writing of this paper the authors were unaware of its con-
nections to the important work of Armstrong, Sirakov and Smart [AS]. They also studied
conical subequations F ⊂ Sym2(Rn) with the additional assumption that F is uniformly
elliptic. This is a stringent assumption which eliminates many of the examples arising from
geometry. They also studied only solutions (as opposed to the much more general subso-
lutions considered here). On the other hand they do not assume invariance or convexity,
which is extremely nice. There are also connections of our work to that of Labutin [La1]
who, like Armstrong, Sirakov and Smart, studied uniformly elliptic equations. At the end
of this introduction the overlap / lack of overlap is discussed in more detail.

We begin the paper by introducing the algebraically defined and easily computable
Riesz characteristic pF for F , which determines much of the behavior of subsolutions
examined here. The name comes from the fact that when p ≡ pF is finite, the classical pth

Riesz kernel Kp(|x|), where

Kp(t) =

 t2−p if 1 ≤ p < 2
log t if p = 2
− 1
tp−2 if 2 < p <∞.

(1.1)

is a solution of the non-linear equation F . In fact, every increasing radial solution is of the
form ΘKp(|x|) + C for constants Θ ≥ 0 and C ∈ R. The signs in (1.1) have been chosen
so that Kp(t) is always increasing.

When p is finite, there is an associated tangential p-flow on F -subharmonic functions
u at each point x0, given for x0 = 0 by

ur(x) =

{
rp−2u(rx) if p 6= 2, and

u(rx)−M(u, r) if p = 2,
(1.2)

where
M(u, r) ≡ sup

|x|≤r
u. (1.3)

The tangents to u at 0 ∈ Rn are defined to be the set T0(u) cluster points of
the flow (1.2). When F is convex, these cluster points are taken in L1

loc(Rn). When
1 ≤ pF < 2 (but F not necessarily convex), they can be taken in the local β-Hölder norm
for β < 2 − p. In either case, U ∈ T0(u) if and only if there exists a sequence rj ↓ 0 such
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that urj → U (in the appropriate space). It is a basic result that tangents are always
entire F -subharmonic functions on Rn. In particular, the L1

loc-limits have unique upper
semi-continuous representatives which are viscosity F -subsolutions (see Theorem 9.5(b)).
A fundamental result, which is proved in Sections 11 and 15, is the following.

THEOREM 1.1. (Existence of Tangents). If F is convex or if pF < 2, then tangents
always exist.

A natural question is whether tangents are actually solutions (as opposed to subsolu-
tions). The answer is no (if pF ≥ 2). Classical pluripotential theory provides (self) tangent
examples with large singular sets. It also provides the remedy – an appropriate concept
enlarging the space of (viscosity) solutions.

An F -subharmonic function on Xopen ⊂ Rn is called F -maximal if for each F -
subharmonic function v on X and each compact subset K ⊂ X,

v ≤ u on X −K ⇒ v ≤ u on X.

If u is F -maximal on X, then on any subdomain Y ⊂ X where u is continuous, it is a
viscosity solution (or “F -harmonic”). In particular, it is always the Perron function for its
boundary values on any ball. A second fundamental result is the following (see Theorem
10.2 and Corollary 10.3).

THEOREM 1.2. (Maximality of Tangents). If F is convex, then tangents are always
maximal outside the origin in Rn. If pF < 2, then tangents are F -harmonic (maximal and
continuous) outside the origin.

Existence and regularity (in the weakened form of maximality) for tangents brings us
to the natural question of uniqueness. Here there are several versions.

We say that uniqueness of tangents holds for the subequation F if for every F -
subharmonic function u defined in a neighborhood of 0, there is exactly one tangent to u
at 0.

We say that strong uniqueness of tangents holds for F if for every such u, the
unique tangent is Θ(u)Kp(|x|), with Θ(u) ≥ 0.

We say that homogeneity of tangents holds for F if every tangent to an F -
subharmonic is fixed by the tangential p-flow (1.2).

Since the flow takes a tangent to u to another tangent to u, uniqueness of tangents
implies homogeneity of tangents.

Several important special cases where uniqueness holds are discussed in Section 12
(Propositions 12.2, 12.4 and 12.5).

One of the main results of this paper is the Strong Uniqueness Theorem in Section
13. Note that there is a natural action of the group O(n) on Sym2(Rn). The subequations
F ⊂ Sym2(Rn) which are O(n)-invariant are exactly those which are defined in terms of
the eigenvalues of the matrices A ∈ Sym2(Rn). Every such subequation has a complex
and quaternionic counterpart defined on Cn and Hn by applying the same eigenvalue
constraints to the complex or quaternionic hermitian symmetric part of A.
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THEOREM 1.3 I. (Strong Uniqueness of Tangents I). Suppose F is a convex O(n)-
invariant subequation, or the complex or quaternionic counterpart of such an equation.
Then, except for the three basic cases P,PC,PH, strong uniqueness of tangents holds for
F .

There do exist non-convex O(n)-invariant subequations of every Riesz characteristic
for which strong uniqueness fails. See Example 13.14.

Theorem 1.3 I establishes strong uniqueness for a wide range of equations. These
include the kth Hessian equations (k < n) and p-convexity equations (p real, 1 ≤ p ≤ n),
the trace powers of the Hessian, equations coming from G̊arding polynomials, and much
more. Each of these has a complex and a quaternionic counterpart to which Theorem 1.3,I
applies. However, there are many U(n)- and Sp(n)·Sp(1)-invariant subequations, arising
from calibrations and Lagrangian geometry, which have no O(n)-invariant counterpart, so
that Theorem 1.3 I does not apply. Results in these cases are provided by Theorems 1.3 II
and 1.3 III below, which require a completely different method of proof.

Suppose F = F (Gl ) is a subequation defined by a compact subset Gl ⊂ G(p,Rn) of
the Grassmannian of p-planes in Rn (see Example 4.4).

THEOREM 1.3 II. (Strong Uniqueness II). Fix p ≥ 2 and n ≥ 3. Then strong
uniqueness of tangents to F (Gl )-subharmonic functions holds for:

(a) Every compact SU(n)-invariant subset Gl ⊂ GR(p,Cn) with the one exception
Gl = GC(1,Cn),

(b) Every compact Sp(n)·Sp(1)-invariant subset Gl ⊂ GR(p,Hn) with three exceptions,
namely the sets of real p-planes which lie in a quaternion line for p = 2, 3, 4 (when p = 4
this is GH(1,Hn)),

(c) For p ≥ 5, every compact Sp(n)-invariant subset Gl ⊂ GR(p,Hn).

This result is based on a companion theorem which has further applications. Given
Gl ⊂ G(p,Rn) as above, we say that Gl has the transitivity property if for any two vectors
x, y ∈ Rn there exist W1, ...,Wk ∈ Gl with x ∈W1, y ∈Wk and dim(Wi ∩Wi+1) > 0 for all
i = 1, ..., k−1. The subequations attached to Lagrangian, Special Lagrangian, Associative,
Coassociative, and Cayley geometries all have this property.

THEOREM 1.3 III. (Strong Uniqueness III). If Gl has the transitivity property,
then strong uniqueness of tangents holds for all F (Gl )-subharmonic functions.

Theorems 1.3 II and 1.3 III will be proved in Part II of this paper. There homogeneity
of tangents is proved first, and then strong uniqueness is established. This method makes
no use of uniform ellipticity, and has its roots in pluripotential theory, not viscosity theory.

It is important to note that uniqueness of tangents does not always hold. In the basic
case of convex functions (F = P) we have uniqueness, but strong uniqueness fails. For
classical plurisubharmonic functions (the complex counterpart: F = PC), the uniqueness
question was raised in [H] and answered in the negative by Kiselman [K1], who actually
characterized the sets which can arise as T0(u) for a plurisubharmonic function u in Cn.
In Part II of this paper a similar result is obtained for the quaternionic counterpart PH.

The proof of Theorem 1.3 I involves several steps. The first step is of a classical
nature going back to standard potential theory for the Laplacian and used by Labutin
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and Armstrong-Sirakov-Smart in viscosity theory. In our formulation it involves various
characterizations of radial F -harmonics. For example, a result (Thm. 2.4, 2.7.), straight-
forward in the smooth case, but which fills a gap in the literature, characterizes the radial
viscosity subsolutions u(x) = ψ(|x|) as the subsolutions of the one-variable subequation

RF : ψ′′(r) +
pF − 1

r
ψ′(r) ≥ 0 (1.4)

This classical subequaton is reviewed in detail in Section 5. Several important facts are
derived. For example, all subsolutions of (1.4) are continuous, which has the important
consequence that if a radial function is F -maximal, then it is F -harmonic (a solution), and

hence of the form ΘKp(|x|)+c. Another consequence of (1.4) is that quotients ψ(r)−ψ(t)
K(r)−K(t) are

jointly (or ”doubly”) monotone. This can be applied to a general non-radial F -subsolution
u by associating to u several radial functions which are also F -subharmonic (Lemmas 6.1
and 6.2). The simplest is the maximum M(u, |x|) defined by (1.3), which is a basic tool in
[La∗] and [AS]. We choose the following formulation (see Section 6).

THEOREM 1.4. (Double Monotonicity). Let u be F -subharmonic in a neighborhood
of the origin in Rn. Then

M(u, r)−M(u, s)

K(r)−K(s)
is increasing in r and s. (1.5)

for all 0 < s < r where M is defined.
Furthermore, if F is convex, the same statement holds with M(u, r) replaced by either

S(u, r) ≡
∫
S

− u(rσ) dσ or V (u, r) ≡
∫
B

− u(rx) dx (1.6)

(the spherical or volume average) where B ≡ {|x| ≤ 1} is the unit ball, S ≡ ∂B is the unit
sphere, and

∫
S
− = 1

|S|
∫
S

denotes the average or “normalized” integral.

This theorem has several immediate consequences for the functions Ψ(u, r) for Ψ =
M,S, V . In particular, it leads to the concept of densities (see Corollary 5.3).

Definition 1.5. Suppose u is F -subharmonic in a neighborhood of 0 ∈ Rn. Then the
M-density of u at 0 is the decreasing limit

ΘM (u, 0) ≡ lim
s<r↓0

M(u, r)−M(u, s)

K(r)−K(s)
.

When F is convex, there are also Ψ-densities

ΘΨ(u, 0) ≡ lim
s<r↓0

Ψ(u, r)−Ψ(u, s)

K(r)−K(s)
.

for Ψ = S and V as in (1.6).
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Elementary results concerning these densities are established in Lemma 5.4.
When F is convex, each F subharmonic function is classically ∆-subharmonic, and so

∆u = µ ≥ 0 (a positive measure). Thus we also have the standard “mass density”

Θq(µ, 0) ≡ lim
r↓0

µ (Br(0))

α(q)rq
where q = n− p.

In this convex case all of the densities for M,S, V and µ are universally related, and when
p = 2 we have the further result that ΘM = ΘS = ΘV (see Propositions 7.1 and 7.2).

As noted, tangents need not be unique. However, the averages of tangents are uniquely
determined by the density alone, even in the most degenerate cases. This is step two in
the proof of the Stong Uniqueness Theorem 1.3 I. It is also the key step in the proof of
existence (Theorem 1.1) and maximality (Theorem 1.2).

In the classical case of pluripotential theory the Riesz characteristic is 2, and our next
result, when p = 2, is an extension of the work of Kiselman [K1].

THEOREM 1.6. (Averages of Tangents). Suppose F is convex and u is an F -
subharmonic function defined in a neighborhood of the origin in Rn. Let p = pF be the
Riesz characteristic of F . If p 6= 2, then each tangent U to u at 0 has averages

M(r) = sup
S
U(rσ) = ΘM (u)K(r), S(r) =

∫
S

− U(rσ) dσ = ΘS(u)K(r),

and V (r) =

∫
B

− U(rx) dx = ΘV (u)K(r)

(1.7)

In particular,
ΘΨ(U) = ΘΨ(u) for Ψ = M,S, or V (1.8)

When p = 2, all the densities of u and any tangent U to u at 0, agree, and will be
simply denoted by Θ = Θ(u). Specifically, we have

Θ(u) = ΘM (U) = ΘS(U) = ΘV (U) = ΘM (u) = ΘS(u) = ΘV (u). (1.9)

Moreover, the averages of a tangent U to u are given by

M(r) = Θ log r, S(r) = Θ log r +

∫
S

− U, and V (r) = Θ log r +

∫
B

− U (1.10)

This result about spherical averages of tangents has many applications, for example
it is enough to prove maximality of tangents (see Theorem 8.2).

THEOREM 1.7. (Maximality Criterion). Suppose F is convex and U is an F -
subsolution on an annular region A about 0. If the spherical average S(U, |x|) is an in-
creasing F -solution on A, then U is maximal on A.

Some of the remaining steps in the proof of Theorem 1.3 I, which are given in detail in
Section 13, can be outlined as follows. By applying the maximality criterion we conclude
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in Theorem 10.2 that all tangents are F -maximal. Now if F ′ is any subequation which
contains F and has the same Riesz characteristic, then an F -tangent U to u is also an F ′-
tangent to u. In the O(n)-invariant (and the other cases of Theorem 1.3 I) it is somewhat
surprising that there is a simple convex subequation of characteristic p which contains all
the others (Proposition 13.9). This largest subequation is very nice – in particular, it is
uniformly elliptic. This, together with Theorem 8.7, shows that tangents are harmonic for
this largest subequation, and that they are C1. One completes the proof of Theorem 1.3 I
by showing that for each tangent U and rotation g, we must have U = g∗U or otherwise
one can produce a tangent which is not C1.

As with most notions of density in analysis, we have the following.

THEOREM 1.8. (Upper Semi-Continuity of Density). Suppose u is F -subharmonic
on an open set X ⊂ Rn. Then each of the densities

ΘM (u, x), ΘS(u, x), ΘV (u, x)

considered above is an upper semi-continuous function of x. Equivalently, for all c ≥ 0 and
each Θ as above, the sets

Ec ≡ {x : Θ(u, x) ≥ c} are closed.

We also note that by standard geometric measure theory

cHn−p(Ec) ≤ µ(X).

In many cases one can say much more about these high density sets Ec for c > 0.
For classical plurisubharmonic functions in Cn a deep theorem, due to L. Hörmander,

E. Bombieri and in its final form by Siu ([Ho1], [B], [Siu]), states that Ec is a complex
analytic subvariety. One straightforwardly deduces from this result that for the 2-convexity
subequation P2 in R2n the set Ec is discrete, since PC(J) ⊂ P2 for all orthogonal (parallel)
complex structures J on R2n. This very restrictive corollary has a quite general extension.

THEOREM 1.9. (Structure of High Density Sets). Suppose strong uniqueness of
tangents holds for F . Then for any F -subharmonic function u, the set Ec(u) is discrete.

Theorem 1.9 is essentially sharp. Suppose Ω is a domain with strictly convex boundary.
Given any finite subset E = {xj}Nj=1 ⊂ Ω , any set of numbers Θj > 0, j = 1, ..., N , and

any ϕ ∈ C(∂Ω), there exists a unique continuous u : Ω→ [−∞,∞) such that

(1) u is F -harmonic on Ω− E,

(2) u
∣∣
∂Ω

= ϕ, and

(3) Θ(u, xj) = Θj for j = 1, ..., N .

See Remark 14.2 for more details.

The subequations with characteristic 1 ≤ p < 2 are very different in nature from those
where p ≥ 2. They are discussed in detail in Section 15. In particular, the following is
proved.

8



THEOREM 1.10. (Hölder Continuity 1 ≤ p < 2). Suppose F is a (not necessarily
convex) subequation with Riesz characteristic 1 ≤ p < 2. Then each F -subharmonic
function is locally Hölder continuous with exponent α ≡ 2− p.

Furthermore, if u is an F -subharmonic defined in a neighborhood of 0 ∈ Rn, then
every sequence {urj}∞j=1 with rj ↓ 0, has a subsequence which converges locally uniformly
to an F -subharmonic function U on Rn. In fact for each 0 < β < 2 − p there exists a
subsequence which converges locally in β-Hölder norm. Finally, when F is convex, this
limit U is F -harmonic on Rn − {0}.

For the kth Hessian equation the Riesz characteristic is p = n/k. For k > n/2,
the Hölder continuity result for this subequation is a fundamental theorem of Trudinger
and Wang [TW1], and their proof can be carried over to more general convex equations.
However, we do not require convexity in Theorem 1.10.

In Appendix A we examine the radial subequation for the ”subaffine” case P̃ ≡
{λmax ≥ 0} and establish a basic dichotomy – the Increasing/Decreasing Lemma.

In Appendix B we show that the subequation P(δ) ≡ {A + δtr(A) ≥ 0} is uniformly
elliptic in the conventional sense.

While in Section 4 we give a number of examples to which our theory applies, many
more examples are given in the appendix to Part II. That appendix also constructs the
maximal and minimal subequations of Riesz characteristic p (showing, in particular, that
these largest and smallest subequations exist). There is a companion result describing
the largest and smallest convex subequations of characteristic p. The largest is given in
Proposition 13.9. The smallest is given in Lemma A.1 of Part II.

It is worth noting that the main results results in this paper (existence, strong unique-
ness, maximality, etc.) apply to any subequation obtained by a linear change of variables,
i.e., of the form gtFg for g ∈ GLn(R) (where F is as assumed herein). This means for cone
subequations F which are invariant under a conjugate subgroup g−1Gg where G ⊂ O(n)
acts transitively on Sn−1. Of course the notion of Riesz characteristic must be reformulated
in this case, and the Riesz kernel Kp(|x|) must be replaced by its transform Kp(|gx|).

The Work of Armstrong, Sirakov and Smart

In the very interesting paper [AS] the authors also study conical subequations F ⊂
Sym2(Rn) with the added assumption that F is uniformly elliptic. However, they do not
assume invariance or convexity. An important part of their work (which is ”automatic”
in our case) proves the existence and uniqueness of fundamental solutions – F -harmonic
functions Φ on Rn − {0}, which are invariant under the flow Φr(x) = rp−2Φ(rx) for some
p ≥ 1, p 6= 2 and bounded from above or below. (When p = 2 the log enters as it does here.)
They show the existence and uniqueness of two families of such solutions (up to positive
scalars and additive constants) among all entire punctured F -harmonics with a one-sided
bound. In our degenerate cases two fundamental solutions are not always available. In
fact, they are if and only if both F and the dual F̃ have finite Riesz characteristics. (See
Proposition 3.16 for a description of all such subequations.)

One of the results in [AS] is closely related to the work here. They prove existence
and strong uniqueness of tangents to solutions of uniformly elliptic equations. That is,
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under their assumptions that F is conical and uniformly elliptic, they prove that: Any
F -harmonic function defined on Bε − {0} and bounded above (or below), has a unique
tangent of the form ΘΦ for some Θ ≥ 0 (see [AS; (5.13) ff.]).

This paper addresses a much broader class of functions, namely subsolutions to de-
generate elliptic equations. Naturally the equations must be in some ways restricted, but
the results apply to a wide range of geometrically interesting cases. Here it is shown that
tangents exist and are maximal, and that maximal plus continuous implies F-harmonic.
However, it is not true that maximal implies continuous in this general case. It fails for
example for PC, as does uniqueness of tangents (not just strong uniqueness, see Kiselman
[K1]).

Said differently, the step from maximal to F -harmonic does not always hold in the
degenerate subharmonic case, and it is somewhat surprising that strong uniqueness of
tangents can actually be established for such a broad spectrum of interesting subequations
with p ≥ 2.

We should add that the techniques used in proving strong uniqueness in the non-O(n)-
invariant cases are substantially different from those in the O(n)-case, and they appear in
the sequel (Part II) to this paper.

For the question of existence we need to assume convexity or that 1 ≤ p < 2. This
is quite reasonable since we are dealing with subsolutions and the equations are only
degenerate elliptic. One needs a function space in which to extract convergent subsequences
just to get off the ground. These assumptions provide such spaces, namely L1

loc and Hölder.
The work in [AS] is related to earlier results of Labutin [La∗] who studied the Pucci

extremal equations. He established among other things a removable singularity result
and an extension of a classical result of Bôcher. In this work the classical Riesz kernels
also play a prominent role. There is a careful account of the relationship to the work of
Armstrong-Sirakov-Smart given in [AS].

Historical Reflections

In 1982 the authors showed that for each calibration on a riemannian manifold there is
an associated family of minimal subvarieties – forming a calibrated geometry [HL1]. More
recently [HL2] it was discovered that the calibration also determines a potential theory of
functions whose restrictions to each of the distinguished submanifolds are subharmonic.
Although there is an analogue in this setting of the i∂∂ operator from complex geometry,
that operator does not play a critical role in the development of the potential theory
[HL4]. In fact, somewhat surprisingly, a corresponding potential theory can be established
for any collection of submanifolds determined by requiring their tangent spaces to be
in an arbitrary given closed subset of the grassmannian. Even more generally one has
the potential theory associated to an elliptic (possibly degenerate) nonlinear inequality
F (D2u) ≥ 0, provided by viscosity subsolutions ([CIL]).

This raises the possibility of cross-fertilization between two well established and deep
fields, pluripotential theory (in several complex variables) and nonlinear elliptic theory.
This paper, although not the first, can be viewed as an example of this phenomenon. The
authors believe there are many more to come.
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2. The Radial Subequations Associated to a Subequation F .

In this section we first describe the ordinary differential inequality which governs
C2 radial (i.e., spherically symmetric) F -subharmonic functions. Our main result fills
an apparent gap in the literature by extending this characterization to general upper
semi-continuous radial F -subharmonics. Somewhat surprisingly this extension requires
the attention of Lemma 2.10 below.

Suppose ψ(t) is of class C2 on an interval contained in the positive real numbers. We
also consider ψ as the function ψ(|x|) of x on the corresponding annular region in Rn.

Lemma 2.1.

D2
xψ =

ψ′(|x|)
|x|

P[x]⊥ + ψ′′(|x|)P[x]. (2.1)

where P[x] = x◦x
|x|2 denotes orthogonal projection onto the line [x] through x 6= 0 and

P[x]⊥ = I − P[x] denotes orthogonal projection onto the hyperplane with normal [x].

Proof. First note that D(|x|) = x
|x| , and therefore D2(|x|) = D( x

|x| ) = 1
|x|I −

x
|x|2 ◦

x
|x| =

1
|x| (I − P[x]) = 1

|x|P[x]⊥ . Hence,

Dxψ = ψ′(|x|) x
|x|

and

D2
xψ = ψ′(|x|)D

(
x

|x|

)
+ ψ′′(|x|) x

|x|
◦ x

|x|
=

ψ′(|x|)
|x|

P[x]⊥ + ψ′′(|x|)P[x].

Corollary 2.2. The second derivative D2
xψ has eigenvalues ψ′(|x|)

|x| with multiplicity n− 1

and ψ′′(|x|) with multiplicity 1.

Let F ⊂ Sym2(Rn) be a pure second-order constant coefficient subequation. Then by
Lemma 2.1 a radial C2-function u(x) = ψ(|x|) is F -subharmonic on an annular region in
Rn if and only if

D2
xu =

ψ′(t)

t
Pe⊥ + ψ′′(t)Pe ∈ F, (2.2)

for t = |x| in the corresponding interval in (0,∞). We use λ = ψ′(t) and a = ψ′′(t) as
one-variable jet coordinates. Then the basic one-variable subequation associated with F
is defined as follows.

Definition 2.3. The radial subequation associated with F is the reduced variable
coefficient subequation RF on (0,∞) whose fibre at t is

(RF )t ≡
{

(λ, a) ∈ R2 :
λ

t
Pe⊥ + aPe ∈ F, ∀ |e| = 1

}
.

Thus for C2-functions we have that

u(x) ≡ ψ(|x|) is F subharmonic ⇐⇒ ψ(t) is RF subharmonic (2.3)

11



We extend this to the viscosity setting where F -subharmonic functions are just upper
semi-continuous (see [C], [CIL], [HL4,6] for definitions). The proof given below of the
implication ⇒ is elementary, whereas the proof of ⇐ will require a lemma. Note that the
equivalence: u(x) = ψ(|x|) is upper semicontinuous ⇐⇒ ψ(t) is upper semicontinuous, is
obvious.

THEOREM 2.4. (Radial Subharmonics). The function u(x) ≡ ψ(|x|) is F -subharmonic
on an annular region in Rn if and only if ψ(t) is RF -subharmonic on the corresponding
open sub-interval of (0,∞).

Remark 2.5. In all but this section of the paper, the subequations F will be assumed
to be cones, unless explicitly stated to the contrary. For such subequations the maximum
principle holds, i.e., it holds for each F -subharmonic function u(x) (see Theorem A.2).
Consequently, if u(x) = ψ(|x|) is a radial F -subharmonic on a ball about 0, then ψ(t) must
be increasing in t. This motivates focusing on an “increasing” version of Theorem 2.4.

We will use the fact, which is elementary to establish, that for an upper semi-
continuous function ψ(t),

ψ(t) is increasing ⇐⇒ ψ is {λ ≥ 0} subharmonic. (2.4)

(See [HL16] for a proof.)

Definition 2.6. The increasing radial subharmonic equation R↑F on (0,∞) is defined
by

R↑F = RF ∩ {λ ≥ 0}. (2.5)

In light of (2.3), it is obvious that for C2-functions ψ(t):

ψ(t) is R↑F subharmonic ⇐⇒ ψ(|x|) is F ∩ {x · p ≥ 0} subharmonic (2.6)

where the variable coefficient first-order subequation {x·p ≥ 0} is the constraint x·Dxu ≥ 0
on C2-functions. The equivalence (2.6) can be extended as in Theorem 2.4.

THEOREM 2.7. (Increasing Radial Subharmonics). The function u(x) ≡ ψ(|x|) is

an increasing, radial F -subharmonic function if and only if ψ(t) is R↑F -subharmonic.

Remark 2.8. We will sometimes blur the distinction between ψ(t) and u(x) = ψ(|x|) by
calling ψ(t) a radial (or increasing radial) F -subharmonic.

Remark 2.9. The statement and proof of a theorem analogous to 2.7 for decreasing radial
subharmonics is left to the reader.

Proof of Theorem 2.4. (⇒): Suppose u(x) ≡ ψ(|x|) is F -subharmonic. If ϕ(t) is a
test function for ψ(t) at t0, then ϕ(|x|) is a test function for ψ(|x|) at any point on the
t0-sphere in Rn. Therefore D2

x0
ϕ ∈ F . Applying the formula for D2

x0
ϕ in terms of ϕ′(t0)

and ϕ′′(t0), the equivalence (2.3), and the definition of (RF )t0 , we have J2
t0ϕ ∈ RF . This

proves that ψ(t) is RF -subharmonic.
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(⇐): Suppose that ψ(t) is RF -subharmonic. We must show that u(x) ≡ ψ(|x|) is F -
subharmonic. That is, given a test function ϕ(x) for u(x) at a point x0, we must show
that D2

x0
ϕ ∈ F .

Suppose that there exists a smooth function ψ(t), defined near t0 = |x0|, such that
ϕ(x) ≡ ψ(|x|) satisfies

u(x) ≤ ϕ(x) ≤ ϕ(x) (2.7)

near x0. Then ψ(t) is a test function for ψ(t) at t0. Hence, the 2-jet of ψ at t0 belongs to
RF . By Lemma 2.1 and the discussion above, this implies that D2

x0
ϕ ∈ F . The inequality

ϕ(x) ≤ ϕ(x) (with equality at x0) implies that D2
x0
ϕ = D2

x0
ϕ+ P for some P ≥ 0, which

proves that D2
x0
ϕ ∈ F as desired.

To complete this argument by finding ψ(t) there is some flexibility given by Lemma
2.4 in [HL6] so that not all test functions ϕ(x) need be considered. First we may choose
new coordinates z = (t, y) near x0 so that t ≡ |x|. (Thus t = constant defines the sphere
of radius t near x0.) Furthermore, we may assume that ϕ(z) is a polynomial of degree ≤ 2
in z = (t, y) and that it is a strict local test function, i.e., u(z) < ϕ(z) for z 6= z0. Now
Lemma 2.10 below ensures the existence of ϕ(x) = ψ(|x|) satisfying (2.7).

Let z = (t, y) denote standard coordinates on Rn = Rk×R`. Fix a point z0 = (t0, y0)
and let u(t) be an upper semi-continuous function (of t alone) and ϕ(z) a C2-function, both
defined in a neighborhood of z0.

Lemma 2.10. Suppose u(t) < ϕ(z) for z 6= z0 with equality at z0. If ϕ(z) is a polynomial
of degree ≤ 2, then there exists a polynomial ϕ(t) of degree ≤ 2 with

u(t) ≤ ϕ(t) ≤ ϕ(z) near z0. (2.8)

Proof. We may assume z0 = 0 and u(0) = ϕ(0) = 0. Then

ϕ(z) = 〈p, t〉+ 〈q, y〉+ 〈At, t〉+ 2〈Bt, y〉+ 〈Cy, y〉.

We assume u(t) < ϕ(t, y) for |t| ≤ ε and |y| ≤ δ with (t, y) 6= (0, 0).
Setting t = 0, we have 0 = u(0) < 〈q, y〉 + 〈Cy, y〉 for y 6= 0 sufficiently small.

Therefore, q = 0 and C > 0 (positive definite). Now define

ϕ(t) ≡ 〈p, t〉+ 〈(A−BtC−1B)t, t〉. (2.9)

The inequalities in (2.8) follow from the fact that for t sufficiently small,

ϕ(t) = inf
|y|≤δ

ϕ(z) = 〈p, t〉+ 〈At, t〉+ inf
|y|≤δ
{2〈Bt, y〉+ 〈Cy, y〉}. (2.10)

To prove (2.10) fix t and consider the function 2〈Bt, y〉 + 〈Cy, y〉. Since C > 0, it has
a unique minimum point at the critical point y = −C−1Bt. The minimum value is
−〈BtC−1Bt, t〉. If t is sufficiently small, the critical point y satisfies |y| < δ, which proves
(2.7).
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Proof of Theorem 2.7. The arguments given for Theorem 2.4 along with the following
missing steps provides the proof. If ϕ(t) is a test function for ψ(t) at a point t0, then ϕ(|x|)
is a test function for ψ(|x|) at x0 whenever |x0| = t0. Now

Dx0ϕ = ϕ′(|x0|)
x0

|x0|
and hence x0 ·Dx0ϕ = |x0|ϕ′(|x0|). (2.11)

Hence, if ψ(|x|) is {p · x ≥ 0}-subharmonic, then ψ(t) is {λ ≥ 0}-subharmonic, and thus
increasing. Conversely, if ψ(t) is increasing and ϕ(x) is a test function for ψ(|x|) at x0,
then ϕ(t) ≡ ϕ( tx0

|x0| ) is a test function for ψ(t) at t0 = |x0|. Hence, ϕ′(t0) ≥ 0. However,

ϕ′(t0) = (Dx0
ϕ) · x0.

3. ST-Invariant Cone Subequations – The Riesz Characteristic

This section is devoted to investigating the cone subequations which satisfy a weak
form of invariance which will be referred to as spherical transitivity (ST). Two char-
acteristic numbers (p, q) will be associated with each such subequation F . They uniquely
determine the radial subequation for F and, as we shall show in this and the following
sections, can be easily computed in any example. Moreover, we give a complete description
of all possible examples (of ST-invariant subequations with characteristics (p, q)) in the
second subsection here. Most readers will prefer to come back to this subsection. Although
it adds important perspective to the scope of ST-cone subequations, it is not used in the
subsequent results of the paper.

Recall from the introduction that a subequation F ⊂ Sym2(Rn) is said to be ST-
invariant if there exists a subgroup G ⊂ O(n) which acts transitively on the sphere
Sn−1 ⊂ Rn and leaves F invariant (under the induced action of G on Sym2(Rn)).

For an ST-invariant cone subequation F ,

the slices F ∩ span {Pe⊥ , Pe} for e ∈ Sn−1 are all isomorphic. (3.1)

Note that span {Pe⊥ , Pe} = span {I, Pe} and that the induced action on Sym2(Rn) sends
Pe to Pg(e). In particular,

λPe⊥+µPe ∈ F for one e ∈ Sn−1 ⇐⇒ λPe⊥+µPe ∈ F for all e ∈ Sn−1. (3.2)

This weakening of ST-invariant will be referred to as weak invariance.

The Riesz Characteristics

We begin by focusing on the first of the two characteristics (p, q). Although there is an
abundance of interesting ST-invariant cone subequations in dimensions ≥ 3, there are not
many increasing radial subequations. In fact they are described by a single “characteristic”
number p between 1 and ∞, which determines a one-variable subequation as follows.

Definition 3.1. For each p with 1 ≤ p < ∞, the increasing radial subequation R↑p is
defined by

R↑p : a+
(p− 1)

t
λ ≥ 0 and λ ≥ 0, (3.3)
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while for p =∞, the subequation R↑∞ is first-order and defined by R↑∞ = {λ ≥ 0}.

Definition 3.2. (The Increasing Riesz Characteristic). Suppose F is an ST-
invariant cone subequation. The increasing characteristic pF of F is defined to be

pF ≡ sup{p : Pe⊥ − (p− 1)Pe ∈ F}. (3.4a)

Equivalently, for finite Riesz characteristic, pF is the unique number p such that

Pe⊥ − (p− 1)Pe ∈ ∂F. (3.4b)

Proposition 3.3. (Increasing). Suppose that F is an ST-invariant cone subequation.

Then the increasing radial subequation R↑F equals R↑p where p = pF is the increasing Riesz
characteristic of F

Proof. Using Definitions 2.3, 2.6, 3.1 and 3.2, we must show that for λ ≥ 0

λ

t
Pe⊥ + aPe ∈ F ⇐⇒ a+

p− 1

t
λ ≥ 0.

Set −(p − 1) ≡ at/λ, so that λ
t Pe⊥ + aPe ∈ F ⇐⇒ Pe⊥ − (p − 1)Pe ∈ F . Then

p ≤ p ⇐⇒ −atλ ≤ p− 1 ⇐⇒ a+ p−1
t λ ≥ 0.

Note that by Definition 3.2, the positivity condition for F , and the fact that 0 ∈ F ,
we have that pF ≥ 1. Thus 1 ≤ pF ≤ ∞.

The only equation with pF = 1 is P. At the other extreme we have pF = ∞. Here
there is a test which is very simple to apply in all the ST-invariant examples, namely:
pF = ∞ iff −Pe ∈ F . Hence, determining when pF < ∞ is also simple, namely: pF < ∞
iff −Pe /∈ F .

Lemma 3.4. For ST-invariant cone subequations F

(a) pF = 1 ⇐⇒ Pe⊥ ∈ ∂F ⇐⇒ F = P
(b) pF =∞ ⇐⇒ −Pe ∈ F ⇐⇒ −Pe ∈ ∂F .

(c) pF <∞ ⇐⇒ −Pe /∈ F ⇐⇒ Pe ∈ IntF̃ ⇐⇒ P ⊂ IntF̃ .

Actually, as noted above, it is easy to compute the exact value of pF in all the examples.

Proof of (a). Note first that pF > 1 ⇐⇒ Pe⊥ − εPe ∈ F for all small ε > 0. Now if
F contains an element A with at least one eigenvalue strictly negative, then by positivity
and the cone property there is an element A′ = Pe⊥ − εPe ∈ F . Hence F 6= P ⇒ pF > 1.

Proof of (b). Note first that −Pe ∈ F ⇒ αPe⊥−Pe ∈ F ∀α ≥ 0 ⇒ Pe⊥−(p−1)Pe ∈
F ∀ p ≥ 1 ⇒ pF = ∞. On the other hand −Pe /∈ F ⇒ εPe⊥ − Pe /∈ F ∀ ε ≥
0 small ⇒ Pe⊥ − (p− 1)Pe /∈ F ∀ p large ⇒ pF <∞. To complete the proof of (b)
note that −Pe ∈ IntF cannot occur unless F = Sym2(Rn) since −Pe ∈ IntF ⇒ 0 ∈ IntF .

Proof of (c). Since ∼ (−F ) = IntF̃ , the first part of (c) follows from the first part of (b).

For any subequation G (such as F̃ ), A ∈ IntG ⇒ A+ P ⊂ IntG. Finally, Pe + P = P,

proving that Pe ∈ IntF̃ ⇒ P ⊂ IntF̃ .
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The primary application of the Riesz characteristics (and the reason for choosing the
name) is the fact that the solutions of the associated increasing radial equation R↑p are
given by the Riesz kernels.

Proposition 3.5. An ST-invariant subequation F has finite Riesz characteristic p = pF
if and only if the increasing radial harmonics for F are:

ΘKp(|x|) + C (3.5)

where Θ ≥ 0, C ∈ R, and Kp(t) is the pth Riesz function defined on 1 ≤ t <∞ by

Kp(t) =

 t2−p if 1 ≤ p < 2
log t if p = 2
− 1
tp−2 if 2 < p <∞.

(3.6)

Proof. From (3.4b) it is easy to see that u(x) ≡ ψ(|x|) is F -subharmonic if and only if
ψ(t) is R↑p-subharmonic. The ordinary differential equation given by equality in (3.3) is
easily solved, and ΘKp(t) + C are the viscosity solutions. One can check directly using
Lemma 2.1 that

D2Kp(|x|) =
1

|x|p
(
P[x]⊥ − (p− 1)P[x]

)
and DKp =

x

|x|p
(3.7)

where Kp has been renormalized to

Kp ≡ 1
|p−2|Kp if p 6= 2 and K2 = K2 (3.8)

The sign of Kp(t) has been chosen so that Kp(|x|) is a increasing or downward-pointing
F -harmonic on Rn − {0}. The actual normalization in (3.6) is simpler when the focus is
on the function u, while the normalization in (3.8) is simpler when the focus is on the first
and second derivatives of u.

The second of the two numbers (p, q) can also be defined in several equivalent ways.

Definition 3.6. (The Decreasing Riesz Characteristic). For each ST-invariant cone
subequation F , this characteristic, denoted qF , is defined by

qF = sup {q̄ : −Pe⊥ + (q̄ − 1)Pe /∈ F} , (3.9a)

or equivalently qF is the unique number q such that

−Pe⊥ + (q − 1)Pe ∈ ∂F, (3.9b)

or finally, qF can be defined to be the increasing characteristic of the dual subequation,
i.e.

qF = p
F̃

(3.9c)
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Since ∂F̃ = −∂F , the equivalence of (3.9c) follows easily from (3.4b). Thus the
decreasing characteristic of F might also be called the dual characteristic of F .

For each 1 ≤ q <∞ set

R↓q : a+
q − 1

t
λ ≥ 0 and λ ≤ 0 (3.10)

while for q =∞ the subequation R↓q is first-order and defined by R↓∞ = {λ ≤ 0}.
Then the decreasing versions of Propositions 3.3, Lemma 3.4(c) and Proposition 3.5

state the following.

Proposition 3.7. (Decreasing).

R↓F = R↓q with q ≡ qF . (3.11a)

F has finite decreasing characteristic qF ⇐⇒ Pe ∈ IntF, (3.11b)

which in turn holds if and only if the decreasing radial F -harmonics are

−ΘKq(|x|) + C where Θ ≥ 0 and C ∈ R, and q = qF . (3.11c)

Remark. In summary we have that:

(1) For some p finite, Kp(|x|) is an increasing (or downward-pointing) F -harmonic on
Rn − {0} ⇐⇒ −Pe /∈ F ⇐⇒ F has finite increasing characteristic.

(2) For some q finite, −Kq(|x|) is an decreasing (or upward-pointing) F -harmonic on
Rn − {0} ⇐⇒ Pe ∈ IntF ⇐⇒ F has finite decreasing characteristic.

(3) Both Kp(|x|) and −Kq(|x|) are F -harmonic on Rn − {0} ⇐⇒ F has both character-
istics (p, q) finite ⇐⇒ −Pe /∈ F and Pe ∈ IntF .

These criteria hold for a significant number of degenerate (non uniformly elliptic)
subequations. See the next section and Appendix A in Part II.) However, in case (3) if

either F or F̃ is convex, then both are uniformly elliptic. Conversely, uniform ellipticity
always implies that (p, q) are both finite even in the non-convex case.

Finally, combining both characteristics we have

Proposition 3.8. If F has characteristics (p, q), then the radial subequation for F is

F = R↑p ∪R↓q . (3.12)

Remark 3.9. (Boundary Convexity and the Riesz Characteristic). The finiteness
of the two characteristics of F , which is so easy to ascertain, is equivalent to automatic
boundary convexity for all domains.

Proposition 3.10. The boundary ∂Ω of every smoothly bounded domain Ω ⊂⊂ Rn is

(a) strictly F -convex ⇐⇒ p
F̃

= qF < ∞ ⇐⇒ Pe ∈ IntF ,

(b) strictly F̃ -convex ⇐⇒ pF = q
F̃
< ∞ ⇐⇒ −Pe /∈ F ,
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(c) both strictly F - and F̃ -convex ⇐⇒ (pF , qF ) is finite ⇐⇒ Pe ∈ IntF and
−Pe /∈ F .

Proof. We first prove (b). By Lemma 5.3(ii′) in [HL4], ∂Ω is strictly F̃ -convex at x ∈ ∂Ω
for all domains Ω if and only if

∀B ∈ Sym2(W ), B + tPe ∈ IntF̃ for all t ≥ some t0. (3.13)

where |e| = 1 and W = e⊥. Now (3.13) ⇒ Pe ∈ IntF̃ ⇒ 1
tB + Pe ∈ IntF̃ for all t ≥

some t0 ⇒ (3.13). Thus (3.13) is equivalent to pF < ∞ by Lemma 3.4(c). The proof of
(a) follows by duality, and (a) and (b) together imply (c).

Results in [HL4] immediately imply the following.

THEOREM 3.11. (Universal Solvability of the Dirichlet Problem). Suppose
that F is an ST-invariant cone subequation for which both Riesz characterstics pF and qF
are finite (or equivalently for which the simple condition Pe ∈ IntF and −Pe /∈ F holds).
Then for every domain Ω ⊂⊂ Rn with smooth boundary ∂Ω, and for every ϕ ∈ C(∂Ω),
there exists a unique h ∈ C(Ω) such that

(1) h is F -harmonic on Ω, and

(2) h
∣∣
∂Ω

= ϕ.

Remark 3.12. In fact Theorem 3.11 holds for any constant coefficient second-order
subequation F if and only if its asymptotic cone subequation

−→
F satisfies Pe ∈ IntF and

−Pe /∈ F for all |e| = 1.

A Description of all ST-Invariant Cone Subequations

Although it is always easy to compute the characteristics (p, q) of a given F , it is still
enlightening to give a description (or construction) of all the possible ST-invariant cone
subequations with characteristics (p, q).

The following specific examples are instrumental in this description. ForA ∈ Sym2(Rn)
let λ1(A) ≤ · · · ≤ λn(A) denote the ordered eigenvalues of A, and set λmin(A) ≡ λ1(A)
and λmax(A) ≡ λn(A). We then define

Pmin/max
p ≡ {A : λmin(A) + (p− 1)λmax(A) ≥ 0} (3.14)

Pmin/2
p ≡ {A : λmin(A) + (p− 1)λ2(A) ≥ 0} (3.15)

It is clear that both of these are O(n)-invariant cone subequations. BothA ≡ Pe⊥−(p−1)Pe
and B ≡ −Pe⊥ + 1

p−1Pe have the property that λmin + (p − 1)λmax = 0, which shows

that A,B ∈ ∂Pmin/max
p and hence Pmin/max

p has characteristics (p, q) where q satisfies

(p− 1)(q − 1) = 1. Similarly, Pmin/2
p has characteristics (p,∞) if n ≥ 3.

Our general discussion is a characterization in terms of these two examples and their
duals.
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Proposition 3.13. Suppose that F is an ST-invariant (not necessarily convex) cone
subequation. Then F has a finite (increasing) Riesz characteristic p if and only if

Pmin/2
p ⊂ F ⊂ Pmin/max

p . (3.16)

Equivalently, Kp(|x|) is an increasing (or downward-pointing) radial F -harmonic. In par-

ticular, both the ”smallest” and the ”largest” subequations, Pmin/2
p and Pmin/max

p , have
Riesz characteristic p.

Proof. Let A(p) ≡ Pe⊥ − (p− 1)Pe. If F satisfies (3.16), then A(p) ∈ Pmin/2
p ⇒ A(p) ∈ F ,

and A(p) /∈ IntPmin/max
p ⇒ A(p) /∈ IntF , which proves that A(p) ∈ ∂F , and hence F has

characteristic p.
Each A ∈ Sym2(Rn) can be written as a sum A = λ1Pe1 + · · · + λnPen using the

ordered eigenvalues of A. Set B0 ≡ λ1Pe1 + λ2Pe⊥1 , and B1 ≡ λ1Pe1 + λnPe⊥1 , and note
that B0 ≤ A ≤ B1.

If A ∈ Pmin/2
p , then λ1 + (p − 1)λ2 ≥ 0. Thus, B0 ∈ Pmin/2

p . Since Pmin/2
p and F

have the same increasing radial profile E↑ given by (3.1) (and λ2 ≥ 0), we conclude that
B0 ∈ F . However, B0 ≤ A proving that A ∈ F .

For the other inclusion, pick A ∈ F . Since F ⊂ P̃, we have λmax ≥ 0. Now A ≤ B1

implies B1 ∈ F . Again F and Pmin/max
p have the same increasing radial profile E↑ given

by (3.1). Therefore, B1 ∈ Pmin/max
p . This implies by definition that A ∈ Pmin/max

p .

This imposes a constraint on the decreasing characteristic q of F .

Corollary 3.14. The characteristics of F satisfy

(p− 1)(q − 1) ≥ 1. (3.17)

Proof. It follows from Definition (3.9a) that if one shrinks a subequation, then its decreas-

ing characteristic goes up. Thus if F has characteristic p, we have Pmin/max
p ⊃ F and so

the decreasing characteristic q of F satisfies q − 1 ≥ qPmin/max
p

− 1 = 1/(p− 1).

Remark. The only ST-invariant cone subequation with given characteristics (p, q) satis-

fying (3.17) is Pmin/max
p . This can be proved by using Proposition 3.15 below, but details

are omitted here.

It is just as easy to describe all examples with dual characteristic q. First note that
the duals of the two subequations in (3.16) are given by

P̃min/2
p : λmax(A) + (p− 1)λn−1(A) ≥ 0, (3.18)

P̃min/max
p : λmax(A) + (p− 1)λmin(A) ≥ 0. (3.19)

Note that the increasing characteristics of these two subequations are both ∞, and the
decreasing characteristics are p by (3.9c).
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Applying Proposition 3.13 to F̃ now yields the following result.

Proposition 3.15. Suppose that F is an ST-invariant (not necessarily convex) cone
subequation. Then F has a finite (decreasing) Riesz characteristic q if and only if

P̃min/max
q ⊂ F ⊂ P̃min/2

q . (3.20)

Proof.

Pmin/2
q ⊂ F̃ ⊂ Pmin/max

q ⇐⇒ P̃min/max
q ⊂ F ⊂ P̃min/2

q .

Finally, it is possible to describe all the ST-invariant cone subequations with both
characteristics finite.

Proposition 3.16. Suppose that F is an ST-invariant cone subequation. Then F has
both Riesz characteristics (p, q) finite if and only if

Pmin/2
p ∪ P̃min/max

q ⊂ F ⊂ Pmin/max
p ∩ P̃min/2

q . (3.21)

Such subequations exist if and only if

(p− 1)(q − 1) ≥ 1, (3.22)

and so in particular if this constraint holds for (p, q), then both

Pmin/2
p ∪ P̃min/max

q and Pmin/max
p ∩ P̃min/2

q have characteristics (p, q). (3.23)

Proof. Note that (3.21) holds if and only if both (3.16) and (3.20) hold. Thus by Propo-
sitions 3.13 and 3.15, F has finite Riesz characteristics (p, q) if and only if (3.21) holds.

Corollary 3.14 states that if F has characteristics (p, q), then (3.22) must hold. Now
suppose that (3.22) holds. Then

P̃min/max
q ⊂ Pmin/max

p and Pmin/2
p ⊂ P̃min/2

q (3.24)

because λmax + (q − 1)λmin ≥ 0 ⇒ λmin + (p − 1)λmax ≥ 0 if p − 1 ≥ 1/(q − 1); and
λmin + (p − 1)λ2 ≥ 0 ⇒ λn−1 + (p − 1)λmax ≥ 0 ⇒ λmax + (q − 1)λn−1 ≥ 0 if

q − 1 ≥ 1/(p− 1). Finally, (3.24) implies that Pmin/2
p ∪ P̃min/max

q ⊂ Pmin/max
p ∩ P̃min/2

q so
that both of these subequations have characteristics (p, q).
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4. Some Illustrative Examples.

For the basic subequations the Riesz characteristic is quite easy to compute. We shall
illustrate this with a selection of examples of differing types. A detailed discussion of
subequations of characteristic p, and further results, are given in Appendix A of Part II.

For A ∈ Sym2(Rn) we let

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) (4.1)

denote the ordered eigenvalues of A.

Example 4.1. (The p-Convexity Equation). For each real number p with 1 ≤ p ≤ n,
the smallest (see Lemma A.2 in Part II) convex cone subequation with characteristic p is
also one of the most basic:

Pp ≡ {A : λ1(A) + · · ·+ λ[p](A) + (p− [p])λ[p]+1(A) ≥ 0}. (4.2)

For p an integer the Pp-subharmonic functions are characterized by the fact that their
restrictions to minimal submanifolds of dimension p are intrinsically subharmonic . For
this and a discussion of the geometry associated with this equation, see [HL10]. (Results for
integer p go back to H. Wu [Wu], [Sh].) Note, by the way, that P1 = P is the homogeneous
Monge-Ampère subequation and Pn = ∆ is the standard Laplacian.

There are complex and quaternionic analogues PC
p and PH

p defined by (4.2) but using
the eigenvalues of the complex (respectively quaternionic) hermitian symmetric part of
A = D2u. When p = 1 this yields the homogeneous complex and quaternionic Monge-
Ampère subequations. The PC

p -subharmonic functions are characterized by the fact that
their restrictions to complex p-dimensional submanifolds are ∆-subharmonic. The Riesz
characteristics of PC

p and PH
p are 2p and 4p respectively. See Lemma 4.8 below.

Example 4.2. (The Elementary Symmetric or Hessian Equations). For each
integer k, 1 ≤ k ≤ n, let σk(A) denote the kth elementary symmetric function of the
eigenvalues of A ∈ Sym2(Rn). The convex cone subequation

Σk = {A : σ1(A) ≥ 0, σ2(A) ≥ 0, ..., σk(A) ≥ 0} (4.3)

has Riesz characteristic

pΣk ≡
n

k
(4.4)

These subequations, often called hessian equations, have been the focus of much study
(e.g., [TW∗], [La∗]). There are again complex and quaternionic analogues ΣC

k and ΣH
k

with Riesz characteristics 2n/k and 4n/k respectively.

Example 4.3. (The δ-Uniformly Elliptic Equations). The δ-uniformly elliptic reg-
ularization of the basic subequation P ≡ {A ≥ 0} (cf. Example 4.10) is

P (δ) ≡
{
A : A+ δ

n tr(A)I ≥ 0
}
. (4.5)
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These are convex cone subequations with Riesz characteristic p = n(1 + δ)/(n+ δ). Given
p with 1 ≤ p ≤ n and setting

δ =
n(p− 1)

n− p
(4.6)

Lemma A.2 states that P(δ) is the largest O(n)-invariant convex cone subequation with
Riesz characteristic p. There are again complex and quaternionic analogues described in
Example 4.7 below.

Example 4.4. (Geometrically Defined Subequations). These important examples
account for our choice of normalization in defining the Riesz characteristic. Fix a compact
subset Gl ⊂ G(p,Rn) in the Grassmannian of p-planes in Rn, and define

F (Gl ) ≡ {A : trW (A) ≥ 0 for all W ∈ Gl }} (4.7)

where trW (A) denotes the trace of A
∣∣
W

. Assuming the ST-invariance of Gl , the Riesz
characteristic is easily seen to be

pF (Gl ) = p. (4.8)

Many interesting subequations arise this way. When Gl = G(p,Rn), GC(p,Cn) and
GH(p,Hn) we retrieve the integer cases in 4.1 above. There are many other interesting
examples. One such is LAG ⊂ GR(n,Cn), the set of Lagrangian n-planes in Cn. Closely
related are the sets of isotropic p-planes, and p-planes satisfying certain CR (Cauchy-
Riemann) conditions. Also of interest is SLAG ⊂ LAG, the special Lagrangian planes (cf.
[HL1]). This latter is an example of a subequation associated to a calibration [HL2]. Other
particularly interesting examples come from the associative and coassociative calibrations
in R7 and the Cayley calibration in R8. All the specific subequations in this paragraph
have the property that they are ST-invariant , i.e., invariant under a subgroup G ⊂ O(n)
which acts transitively on the sphere Sn−1 ⊂ Rn.

These geometrically defined subequations will be the sole focus of Part II of this paper.

Example 4.5. (Branches of G̊arding Operators). In many of the cases above, one can
associate a homogeneous polynomial operator Φ(D2u). When the polynomial Φ is G̊arding
hyperbolic with respect to the identity I (which is typically the case), the equation has
many branches [G], [HL7], [HL8].

The simplest case is P = P1 where the operator is Φ(A) = detR(A). Here the branches
are given by {λk(A) ≥ 0} (see (4.1)). Unfortunately, in this case the branches for k > 1
have infinite characteristic.

For the general G̊arding polynomial Φ(A) of degree m, there are ordered eigenvalues,

Λ1(A) ≤ Λ2(A) ≤ · · · ≤ Λm(A), and Φ(A) = Λ1(A) · · ·Λm(A). (4.1)′

Just as with detR(A), the kth branch is defined by {Λk(A) ≥ 0} for k = 1, ...,m. The
Riesz characteristics p1 ≤ · · · ≤ pm of these respective branches are determined by the
eigenvalues of Pe (assuming ST-invariance). They are exactly the numbers 1/Λj(Pe),
j = 1, ...,m arranged in increasing order (see Proposition A.10 in [HL14]). Therefore
the number of branches with finite Riesz characteristic equals the number of non-zero
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eigenvalues of Pe. Only the first and smallest branch is convex, and it is uniformly elliptic
⇐⇒ all branches are uniformly elliptic ⇐⇒ Φ(Pe) > 0.

G̊arding operators are plentiful. For instance, in each of our first three examples there
is an associated G̊arding operator, and hence each comes equipped with branches. To
illustrate, for the case where p is an integer in Example 4.1, we have

Φ(A) =
∏

i1<···<ip

(λi1(A) + · · ·+ λip(A)) = det (DA : ΛpRn −→ ΛpRn) . (4.9)

Said differently, ΛI(A) = λi1(A)+· · ·+λip(A) are the eigenvalues. Here DA is the extension
of A as a derivation. The kth branch is given by requiring that the kth ordered p-fold sum of
the λi’s be ≥ 0. One easily computes that the first

(
n−1
p−1

)
branches have Riesz characteristic

p and the remaining branches have infinite characteristic.
In Example 4.2 the G̊arding operator is Φ(A) = σk(A). Although the eigenvalues

Λj(A) of Φ do not have an explicit formula in terms of the standard eigenvalues of A,
the eigenvalues of A = Pe are all zero except for one which equals k/n. Hence, Σk has
characteristic n/k and all other branches have characteristic ∞.

In Example 4.3 the eigenvalues are

Λk(A) = λk(A) +
δ

n(1 + δ)
tr(A), k = 1, ..., n.

Hence, each of the kth branches {Λk(A) ≥ 0}, for k ≥ 2, has the same Riesz characteristic
p = n(1 + 1

δ ), which is finite but larger than n, while as noted above, the first branch P(δ)
has characteristic n(1 + δ)/(n+ δ).

Example 4.6. (Trace Powers of the Hessian). Consider the non-convex cone sube-
quation

F ≡ {A : tr (Aq) ≥ 0}

where q > 1 is an odd integer. More generally one could define Aq for any q > 0 by using
the function tq for t ≥ 0 and −|t|q for t < 0. In all cases one computes that the Riesz
characteristic is

pF = 1 + (n− 1)
1
q

More generally, for k ∈ [1, n] and q > 0 real numbers, there is the subequation

F ≡ {A : λq1(A) + · · ·+ λq[k](A) + (k − [k])λq[k]+1 ≥ 0}

with tq defined as above. Here the Riesz characteristic is

pF = 1 + (k − 1)
1
q

Example 4.7. (Complex and Quaternionic Analogues). Suppose F ⊂ Sym2(Rn)
is an O(n)-invariant subequation. Then F can be defined by the constraint set E ⊂ Rn
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imposed by F on the eigenvalues λ(A) = (λ1(A), ..., λn(A)). Thus A ∈ F ⇐⇒ λ(A) ∈ E.
The equation F has complex and quaternionic analogues FC and FH, defined on Cn =
(R2n, J) and Hn = (R4n, I, J,K) respectively, as follows. For A ∈ Sym2(R2n) consider
the hermitian symmetric part

AC ≡ 1
2 (A− JAJ)

whose eigenspaces are complex lines with ordered eigenvalues λ1(AC) ≤ · · · ≤ λn(AC).
One now defines FC by applying the eigenvalue constraints E of F to these eigenvalues
of AC. The story in the quaternionic case is parallel and uses the quaternionic hermitian
symmetric part AH ≡ 1

4 (A− IAI − JAJ −KAK) and eigenvalues λk(AH).

Lemma 4.8. If F is an O(n)-invariant cone subequation with Riesz characteristic p, then
the Riesz characteristics of FC and FH are

pFC = 2p and pFH = 4p.

Proof. We consider the complex case. If A = Pe⊥ − (p − 1)Pe ∈ Sym2(R2n), then one
computes that

AC = PCe⊥ −
(p

2
− 1
)
PCe and AH = PHe⊥ −

(p
4
− 1
)
PHe (4.10)

which displays the eigenvalues of AC and AH.

Example 4.9. (The Subequation Determined by a G̊arding Operator and a
Universal Eigenvalue Constraint). The procedures above can be greatly generalized.
Note, to begin, that given an O(m)-invariant subequation F , the eigenvalue set E ≡ λ(F )
is closed, invariant under permutation of coordinates and Rm

+ -monotone. Conversely, any
such eigenvalue set E determines an O(m)-invariant subequation F = λ−1(E). Each such
E is a universal eigenvalue subequation in the sense that, for each degree-m G̊arding
operator Φ on Sym2(Rn), the set F ≡ λ−1

Φ (E) is a subequation on Rn, where λΦ :
Sym2(Rn)→ Rm is the eigenvalue map associated to Φ. See Proposition A.8 in Appendix
A of [HL14] for the details and further discussion.

Example 4.10. (The δ-Uniformly Elliptic Regularization of a Subequation).
Given a cone subequation F ⊂ Sym2(Rn) and δ > 0, define

F (δ) ≡
{
A : A+ δ

n tr(A)I ∈ F
}
. (4.11)

This equation satisfies the uniformly elliptic condition:

F (δ) + P(δ) ⊂ F (δ). (4.12)

One computes that

F has Riesz characteristic p ⇐⇒ F (δ) has Riesz characteristic
pn(1 + δ)

n+ δp
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5. Kp-Convexity and Monotonicity.

In this section we give a fairly complete discussion of the classical one-variable results
that underlie this paper. They concern the properties of subsolutions to the one-variable
subequation Rp introduced below.

In the following section we will prove that associated to each F -subharmonic function
u there are three functions of r (denoted M(r), S(r) and V (r)), which are subsolutions of
Rp, and which capture much of the asymptotic behavior of u. By Lemma 5.1(3) below this
will imply the key double monotonicity result, Theorem 6.4, which is needed for defining
the notion of density and for proving our main theorems.

Fix a real number p with 1 ≤ p <∞, and for r > 0 consider the one-variable Riesz
kernel

Kp(r) ≡
1

(2− p)
r2−p if p 6= 2 and K2(r) = log r. (5.1)

With this normalization

K ′p(r) =
1

rp−1
for all 1 ≤ p <∞.

Note that Kp(r) is a strictly increasing solution to the subequation

Rp : ψ′′(r) +
p− 1

r
ψ′(r) ≥ 0 on (0,∞). (5.2a)

Alternatively,

Rp :
d

dr

(
rp−1ψ′(r)

)
=

d

dr

(
ψ′(r)

K ′p(r)

)
≥ 0 on (0,∞). (5.2b)

All solutions of Rp are of the form

h(r) ≡ CKp(r) + k with C, k ∈ R. (Riesz Harmonics). (5.3)

Note that h(r) is increasing if and only if C ≥ 0.
The change of variables

s = Kp(r) along with its inverse r = K−1
p (s) (5.4)

play an important role. The inverse r(s) = K−1
p (s) is defined on the range of Kp which is

the interval (0,∞) when 1 ≤ p < 2, all of R when p = 2, and (−∞, 0) for 2 < p <∞.

Lemma 5.1. (The Equivalences). The following conditions on an upper semi-continuous
function ψ(r), defined on a subinterval of (0,∞), are equivalent.

(1) (Rp-Subharmonic) ψ(r) satisfies the subequation Rp defined by (5.2).

(2) (Kp-Convexity) ψ(r) is Kp-convex, meaning that under the change of variables
(5.4), the function f(s) ≡ ψ(r(s)) is a convex function of s.
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(3) (Kp-Monotonicity)

ψ(r)− ψ(t)

Kp(r)−Kp(t)
is non− decreasing in r and t (r 6= t).

(4) (Rp-Comparison) If ψ(r) ≤ CKp(r) + k for r = s and r = t, then the
inequality holds for all r between s and t.

Proof. Now f(s) ≡ ψ(r(s)) implies ψ(r) = f(Kp(r)). First, assume ψ is smooth. Then

ψ′(r) = f ′(s)K ′p(r) and hence
d

dr

(
ψ′(r)

K ′p(r)

)
= f ′′(s)K ′p(r). (5.5)

For general ψ, the fact that: ϕ(r) is a test function for ψ at r0 if and only if ϕ(r(s)) is
a test function for ψ(r(s)) at s0 ≡ s(r0), reduces the proof to the smooth case. Since
viscosity convexity f ′′(s) ≥ 0 is equivalent to classical convexity (see for example, [HL4,
Prop 2.6]), this proves that (1) ⇐⇒ (2).

Now (3) is just monotonicity of the slopes of secant lines to the function f(s) ≡ ψ(r(s)),
and hence it is equivalent to the convexity of f(s). Assertion (4) is just the statement that
f(s) is convex if and only if f satisfies comparison with affine functions Cs+ k.

Corollary 5.2. Let ψ(r) satisfy the equivalent conditions in Lemma 5.1. Then

(a) The function ψ(r) is locally Lipschitz continuous.

(b) The left and right hand derivatives ψ′±(r) exist.

Proof. The corresponding statements for the function f(s) ≡ ψ(r(s)) with r(s) = K−1(s)
are standard classical facts about the convex function f .

Densities.

The remainder of the appendix is devoted to describing properties of a function ψ(r),
defined on an interval (0, r0) (with r0 =∞ possible), under the

Hypothesis: ψ satisfies the equivalent conditions (1) – (4) of Lemma 5.1

The Properties (1) and/or (3) enable us to introduce the following.

Corollary 5.3 (Existence of Densities). The decreasing limits

Θψ = lim
r, t→ 0

t > r > 0

ψ(t)− ψ(r)

K(t)−K(r)
= lim

r→0

ψ′±(r)

K ′(r)
(5.6)

exist and define the density Θψ. Moreover, if ψ is increasing, then 0 ≤ Θψ <∞.
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Proof. To see that the two decreasing limits in (5.6) agree divide the numerator and

denominator of ψ(r+δ)−ψ(r)
K(r+δ)−K(r) by δ and let δ → 0.

In this one-variable context, rather than in its later applications, it might be better
to call this “the derivative of ψ(r(s)) at r = 0”.

Note that the monotonicity quotient in (3) remains unchanged if ψ is replaced by a
translate ψ − c with c ∈ R. In particular, the densities of u and u− c are the same. This
point is critical in establishing the following.

Lemma 5.4. If ψ is increasing, then there exists c ∈ R and r0 such that

ψ(r)− c
K(r)

decreases to Θψ as 0 < r < r0 decreases down to 0.

Moreover,
ψ(r)− ψ(0)

K(r)
decreases to Θψ if 1 ≤ p < 2, and (5.7a)

lim
r→0

ψ(r)

K(r)
= Θψ if 2 ≤ p <∞. (5.7b)

(Note: if we set ψ(0) = 0 when 1 ≤ p < 2, then we have in all cases (1 ≤ p < ∞) that
limr→0 ψ(r)/K(r) = Θψ.)

Proof. For any value of p, 1 ≤ p <∞, there is exactly one point in[0,∞] where K vanishes.
However there are three cases: K(0) = 0 if 1 ≤ p < 2, K(1) = 0 if p = 2, and K(∞) = 0
if 2 < p. First let us suppose that the function ψ is defined and finite on an interval
containing the point where K vanishes. Then one can take r in (5.6) to be that point, and
the Proposition follows immediately from the double monotonicity in (3). Specifically, in
the three cases we obtain that:

(1 ≤ p < 2)
ψ(t)− ψ(0)

K(r)
decreases to Θψ as 0 < t < r0 decreases to 0, (5.7a)′

(p = 2)
ψ(t)− ψ(1)

K(t)
decreases to Θψ as 0 < t < r0 decreases to 0, (5.7b)′

(2 < p)
ψ(t)− ψ(∞)

K(t)
decreases to Θψ as 0 < t < r0 decreases to 0, (5.7c)′

This leaves us with an extension problem in the last two cases. Namely we must prove
that there exists an r0 > 0 such that the restriction of the given ψ to (0, r0)

(p = 2) has an extension ψ to (0, 1] satisfying Lemma 5.1(3), and (5.8b)

(2 < p) has an extension ψ to (0,∞) satisfying Lemma 5.1(3)

with ψ(∞) <∞.
(5.8c)
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Suppose that ψ has domain containing (0, r0] (and if p = 2 that r0 < 1 since if r0 ≥ 1
in this case we are finished.) Make the change of variables s0 ≡ K−1(r0) as in Lemma
5.1(2). Since 2 ≤ p <∞, we have s0 < 0. The convex increasing function f(s) on (−∞, s0)
can be extended to a convex increasing function f on (−∞, 0] by defining f to be the affine
function

a(s) ≡ f ′−(s0)(s− s0) + f(s0) (5.9)

on s0 ≤ s ≤ 0. Since the graph of a(s) is a supporting line for the epigraph of f over
(−∞, s0), this extension f is convex and increasing on (−∞, 0].

Observe now that by translating our original ψ by a suitable additive constant, we
can insure that f < 0 on (−∞, 0]. Now set ψ(t) ≡ f(K(t)), where 0 < t ≤ 1 if p = 2 and
0 < t ≤ ∞ if 2 < p. Finally, by (5.7b) where ψ(1) is finite, and (5.7c) where ψ(∞) is finite,
the fact that K(0) = −∞ implies that limr→0 ψ(r)/K(r) = Θψ.

Remark 5.5. The subequation Rp : ψ′′ + p−1
r ψ′(r) ≥ 0 is linear and could have been

interpreted in the distributional sense as well as the viscosity sense.
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6. Monotonicity and Stability of Averages for F-Subharmonic Functions.

In this section we discuss three of the basic ways of taking an average of an F -
subharmonic function, and show that each average produces a radial F -subharmonic. Since
the radial F -subharmonics are just one-variable Rp-subharmonics (Proposition 3.3), they
are well understood and enjoy all the properties of Lemma 5.1. In particular, they satisfy
the double monotonicity described in Theorem 6.4 below, which provides the vehicle for
defining the densities explored in the next section. Finally, the stability of these averages
under the tangential flow is established in Lemma 6.5.

We assume as always that the subequation F is an ST-invariant cone with invariance
group G ⊂ O(n). We further assume that the Riesz characteristic p of F is finite. This is

because when p = ∞, the increasing radial subequation R↑F is simply g′(t) ≥ 0 (Proposi-
tion 3.3 and Definition 3.1). Thus, when p = ∞, all increasing functions g(t) determine
increasing radial subharmonics g(|x|), and no sensible notion of density is possible.

To begin we set some notation. Let Br(x0) = {x : |x − x0| ≤ r} denote the ball of
radius r about x0, and set Sr(x0) ≡ ∂Br(x0). Let A(a, b;x0) ≡ {x : a < |x − x0| < b}
denote an annular region centered at x0. Here and elsewhere, when x0 = 0, reference to
it will be dropped from the notation. Thus, Br = Br(0) and Sr = ∂Br. Similarly we set
B = B1 and S = ∂B.

The first average only requires that F be an ST-invariant cone (not necessarily convex).
We denote the (spherical) maximum for an F -subharmonic function u defined on a region
containing Sr(x0) by

M(u, x0; r) ≡ sup
S
u(x0 + rx), (6.1a)

Note that if u is F -subharmonic on BR(x0), then by the maximum principle

M(u, x0; r) = sup
B
u(x0 + rx) = sup

Br(x0)

u

and hence is increasing for 0 ≤ r ≤ R.
(6.1b)

By the ST-invariance of F

M(u, x0; |x|) ≡ sup
g∈G

u(x0 + gx). (6.2)

We now simplify by setting x0 = 0 and using the abbreviated notation M(r) ≡
M(u; r) = M(u, 0; r) when the meaning is obvious.

Lemma 6.1. If u is F -subharmonic on an annular region A(a, b), then M(|x|) is a radial
F -subharmonic function on A(a, b). If u is F -subharmonic on BR, then M(r) is also
increasing in r.

Proof. Let ug(x) ≡ u(gx) with g ∈ G. Then M(|x|) = supg∈G ug(x). Since F is G-
invariant, each ug is F -subharmonic. Therefore, by the standard “families locally bounded
above” property for F , it suffices to prove that

M(t) is upper semi-continuous.
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This is done as follows. For each δ > 0, Nδ ≡ {x : u(x) < M(t) + δ} is an open set
containing ∂Bt. Hence the annulus A(t− ε, t+ ε) is contained in Nδ for ε > 0 small. Thus
M(r) < M(t) + δ if t − ε ≤ r ≤ t + ε, proving that M(t) is upper semi-continuous, and
hence M(|x|) is F -subharmonic.

For the other averages we make the further standing assumption that F is convex. In
this case we note the following.

F is an ST− invariant convex cone ⇒ F ⊂ ∆ ≡ {trA = 0} (6.3)

Proof. If F ∩ {trA = c < 0} is non-empty, then invariance plus convexity implies that
− c
nI ∈ F . Now by the cone property, −λI ∈ F for all λ > 0. This along with positivity

implies that F = Sym2(Rn). Since tr(Pe⊥−(p−1)Pe) = n−p, the condition F ⊂ {trA ≥ 0}
implies pF ≤ n. Therefore,

F is an ST− invariant convex cone ⇒ 1 ≤ pF ≤ n. (6.4)

We now define the spherical and volume averages of u at x0 by

S(u, x0; r) ≡ 1

|S|

∫
σ∈S

u(x0 + rσ) dσ ≡
∫
S

− u(x0 + rσ) dσ, (6.5a)

V (u, x0; r) ≡ 1

|B|

∫
x∈B

u(x0 + rx) dx ≡
∫
B

− u(x0 + rx) dx. (6.5b)

Note that for any upper semi-continuous function u, each of these functions is jointly
upper semi-continuous in (x0, r) since u(x0 + rx) is the infimum of ϕ(x0 + rx) taken over
continuous functions ϕ ≥ u.

Lemma 6.2. Suppose that u is F -subharmonic on the annulus A(a, b). Then S(u; |x|)
is a radial F -subharmonic on A(a, b). If u is F -subharmonic on the ball BR, then both
S(u; |x|) and V (u; |x|) are increasing radial F -subharmonic functions on BR (with limiting
values S(u, 0) = V (u, 0) = u(0) at x = 0).

Proof. As noted above S(u; r) and V (u; r) are upper semi-continuous in r, and hence so
are the functions S(u; |x|) and V (u; |x|) of x defined on BR. The statement about their
limiting values at x = 0 is a standard fact about ∆-subharmonic functions. It remains to
show that S(u; |x|) and V (u; |x|) are F -subharmonic on BR. Note that

S(|x|) =

∫
G

u(gx) dg (6.6)

for a suitably normalized invariant measure dg on G, and that

V (|x|) = n

∫ 1

0

S(ρ|x|)ρn−1 dρ since |B| =
1

n
|S|. (6.7)
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To prove (6.7), set |x| = r and compute V (r) = 1
|B|
∫
B
u(ry) dy using polar coordi-

nates. Now since F is a convex cone subequation, averages such as (6.6) and (6.7) preserve
F -subharmonicity. This is explained further by Theorem 9.5 and Remark 9.6.

Remark 6.3. By Theorem 2.4 and Theorem 2.7 the lemmas above could have been
restated by concluding that the functions M(r), S(r) and V (r) are R↑F -subharmonic on
(0, R), or Rp-subharmonic on (a, b) in the annular cases.

The properties of upper semi-continuous functions ψ(r) satisfying Rp have been pre-
sented in detail in Section 5. We make full use of those results by applying them to
the three functions M(u, x0, r), S(u, x0, r) and V (u, x0, r), where u is an F -subharmonic
function. This includes the Kp-convexity, the Kp-monotonicity and the Rp-comparison
properties of Lemma 5.1.

In particular, the Kp-monotonicity, part (3) of Lemma 5.1, gives the following basic
result.

THEOREM 6.4. (Double Monotonicity). Let u be F -subharmonic in an annular
region about the origin in Rn. Then

M(u, r)−M(u, s)

K(r)−K(s)
is increasing in r and s. (1.4)

for all 0 < s < r where M is defined.
Furthermore, if F is convex, the same statement holds with M(u, r) replaced by

S(u, r); or by V (u, r) provided that u is F -subharmonic on a ball about the origin.

It is an important fact that each of these averages is stable under limits in L1. This
basic classical fact can be found in [Ho2, Sec III.3.2]. We state it here in slightly different
form needed later for tangents.

Lemma 6.5. (Stability of Averages). Suppose uj is a sequence of ∆-subharmonic
functions on BR converging in L1(BR) to a ∆-subharmonic function U . Then for 0 < r <
R,

(1) M(U, r) = limj→∞M(uj , r),

(2) S(U, r) = limj→∞ S(uj , r),

(3) V (U, r) = limj→∞ V (uj , r),

Proof. Taking K ≡ Br in (3.2.7) of Theorem 3.2.1 in [Ho2] gives us that

lim sup
j→∞

M(uj , r) ≤ M(u, r).

Suppose there exists C < M(u, r) such that M(uj , r) ≤ C for all j sufficiently large.
Then in the L1-limit we would have u − C ≤ 0 a.e. on Br. However, for ∆-subharmonic
functions, this implies that u − C ≤ 0 everywhere on Br, contrary to the definition of
M(u, r). We conclude that lim supj→∞M(uj , r) = M(u, r). The fact that this is also true
for all subsequences proves (1).
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As discussed in the paragraph prior to Proposition 3.2.14 in [Ho2], the Theorem 3.2.13
can be applied to spherical measure σr on ∂Br. Thus ujσr converges to Uσr in the weak
topology of measures, yielding (2). Finally, (3) is implied directly by the hypothesis of
L1(Br)-convergence.

7. Densities for F -subharmonic Functions – Upper Semi-Continuity.

From the results of the last section and Corollary 5.3 we have three densities,

ΘM (u, x) ΘS(u, x) and ΘV (u, x)

associated to an F -subharmonic function u defined in a neighborhood of the origin. For the
second two densities, we must assume that F is convex. Under this convexity assumption
there exists a fourth , even more classical density.

The Mass Density

Note that by (6.3) u is classically ∆-subharmonic. Thus ∆u is a measure µ ≥ 0, which
means ∆u has a “mass density”. Given a measure µ ≥ 0 defined in a neighborhood of a
point x0 ∈ Rn, and 0 < k ≤ n, the limit

Θk(µ, x0) ≡ lim
r↓0

µ (Br(x0))

α(k)rk
, (7.1)

if it exists, is called the k-dimensional mass density of µ at x0. (See, for example, [F,
2.10.19] for discussion and definition of the constants α(k).) When k is an integer, α(k) =
|Bk|, the volume of the unit ball in Rk. Suppose Θk(µ, x) exists everywhere or replace
lim by lim sup in (7.1). Fix an open set X, a constant c > 0, and define Ec ≡ {x ∈ X :
Θk(µ, x) ≥ c}. Then the Hausdorff k-measure satisfies (cf. [Si, page 11])

cHk(Ec) ≤ µ(X).

Comparing Densities

The next proposition states that: All densities but ΘM “agree”, where “agree” means
“are equal up to universal factors”.

Proposition 7.1. Suppose that u is F -subharmonic near x0 where F is convex with
characteristic p, and set µ = ∆u. Then when p 6= 2,

ΘS(u, x0) =
n− p+ 2

n
ΘV (u, x0) =

α(n− p)
n|p− 2|α(n)

Θn−p(µ, x0), (7.2)

and when p = 2 we have that

ΘS(u, x0) = ΘV (u, x0) =
α(n− 2)

nα(n)
Θn−2(µ, x0). (7.3)
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The discussion of all densities is completed by showing that the maximum density and
the spherical density are in general “comparable”, and in fact equal when p = 2.

Proposition 7.2. Suppose that u is F -subharmonic near x0 where F is convex and of
characteristic p. Then there exists a constant C = C(p, n) > 1 such that

ΘM (u, x0) ≤ ΘS(u, x0) ≤ CΘM (u, x0) if 2 < p <∞, and (7.4)

ΘS(u, x0) ≤ ΘM (u, x0) ≤ CΘS(u, x0) if 1 < p < 2, while (7.5)

ΘM (u, x0) = ΘS(u, x0) if p = 2. (7.6)

Remark 7.3. Kiselman proved the equality in (7.6) in the plurisubharmonic case where
F = PC on Cn (see page 161, line 2 ff. in [K1]) by using Harnak’s Inequality for ∆-
subharmonic functions. The same proof works for any convex F of characteristic p = 2.
Note that for p = 1 the left inequality in (7.5) holds but the right inequality fails, even for
linear functions.

Proof of Proposition 7.1. We give the proof of the first equality for all p using (6.7).
Taking x0 = 0 and dropping u and x0 from the notation, it says that

V (r) = n

∫ 1

0

S(rt)tn−1 dt (7.7)

Hence, we have
V (r)

K(r)
= n

∫ 1

0

S(rt)

K(rt)

K(rt)

K(r)
tn−1 dt.

When p 6= 2, K(rt)/K(r) = 1/tp−2, so that letting r ↓ 0 and integrating yields the first
equality in (7.2). When p = 2,

K(rt)

K(r)
= 1 +

log t

log r
,

so letting r ↓ 0 and integrating yields the first equality ΘV (u) = ΘS(u) in (7.3).
For the proof of the second equalities we show that the mass density Θn−p(µ) (µ = ∆u)

is the desired multiple of the spherical density ΘS(u). Recall the classical fact that

µ(Br) = (n− 2)|S|
S′−(r)

K ′n(r)
. (7.8)

(See (3.2.13)′ in [Ho2, Thm. 3.2.16] for a proof.) Since

n− 2

K ′n(r)
= rn−1 =

|p− 2|rn−p

K ′p(r)
when p 6= 2,

we have

rp−nµ(Br) = |p− 2||S|
S′−(r)

K ′n(r)
when p 6= 2. (7.8)′
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If p = 2, this holds with |p − 2| replaced by 1. Finally, letting r ↓ 0 and using (5.6)
completes the proof.

Proof of Proposition 7.2 For simplicity let x0 = 0. Note that for all p and r we have
S(u, r) ≤ M(u, r). On the other hand, K(r) < 0 when p ≥ 2 and K(r) > 0 when p < 2.
Dividing by K(r) and letting r ↓ 0 then gives the inequalities on the left as well as the
inequality ΘM (u) ≤ ΘS(u) when p = 2 (since u and u + c have the same density, we can
assume that u(0) = 0 when p < 2.)

The remainder of the proof is a consequence of Harnak’s inequality. The standard
form of this inequality is for a function v ≤ 0 which is ∆-subharmonic on Bρ. It says, with
ϕ defined by

ϕ(λ) ≡ 1− λ
(1 + λ)n−1

for 0 < λ < 1,

that
M(v, λr) ≤ ϕ(λ)S(v, r) for all 0 < r ≤ ρ. (7.9)

(See, for example, Prop. 4.2.2 in [D].) For an arbitrary ∆-subharmonic function v, the
function v −M(v, r) is ≤ 0 on Br. Hence, (7.9) gives the following more general form of
Harnak’s inequality

M(v, λr)−M(v, r) ≤ ϕ(λ)
(
S(v, r)−M(v, r)

)
for all 0 < r ≤ ρ. (7.10)

for functions not necessarily ≤ 0.
Suppose first that p > 2. We may assume u(0) = −∞ since otherwise the assertion is

trivial. Then u is negative near 0, and we can apply the standard form (7.9) of Harnak’s
inequality to obtain

M(u, λr)

K(λr)
≥ λp−2ϕ(λ)

S(u, r)

K(r)
.

Letting r ↓ 0 gives ΘM (u, 0) ≥ cΘS(u, 0) where c = λp−2ϕ(λ) > 0. This gives (7.4) with
C = 1/c. (Note that c ≡ supλ λ

p−2ϕ(λ) provides the best constant C.)
Suppose now that 1 < p < 2. Replace u by u(x) − u(0) so that u(0) = 0. Since

densities are unchanged by adding a constant, we have ΘM (u, 0) = limr↓0M(u, r)/K(r)
and ΘS(u, 0) = limr↓0 S(u, r)/K(r) by Corollary 5.4. Since u may not be ≤ 0, we must
use the general form (7.10) of Harnak. Dividing by K(r) gives

(1 + λ)n−1

1− λ

(
M(u, λr)

K(r)
− M(u, r)

K(r)

)
≤ S(u, r)

K(r)
− M(u, r)

K(r)
. (7.11)

Using the fact that K(λr) = λ2−pK(r) and letting r ↓ 0 gives

ψ(λ)ΘM (u, 0) ≤ ΘS(u, 0) with ψ(λ) = 1 +
(1 + λ)n−1

1− λ
(λ2−p − 1).

Now direct calculation shows that limλ↓0 ψ
′(λ) =∞, and so c ≡ sup0<λ<1 ψ(λ) > 0. This

gives the desired result with C = 1/c.

34



It remains to prove that ΘS(u) ≤ ΘM (u) when p = 2. Set λ = 1/e in (7.11) and note
the fact that K(r) = log r = log r

e + 1 = K(λr) + 1 = K(λr)(1 + o(r)). Then taking the
limit as r → 0 in (7.11) yields 0 = ΘM (u)−ΘM (u) ≤ ΘS(u)−ΘM (u) by Lemma 5.4. This
completes the proof of Proposition 7.2.

The Upper Semi-Continuity of Density.

THEOREM 7.4. Each of the densities ΘM (u, x), ΘS(u, x), and ΘV (u, x) considered
above is an upper semi-continuous function of x.

Proof. Because of Proposition 7.1 there are only two cases to consider. We must show
that

lim sup
x→ x0

x 6= x0

Θ(u, x) ≤ Θ(u, x0). (7.12)

Set x0 = 0. Assume 0 < |x| < r < t. Then

Θψ(u, x) ≤ ψ(u, x, t)− ψ(u, x, r)

K(t)−K(r)
. (7.13)

Case 1. ψ = M . By using the facts that Bt(x) ⊂ Bt+|x|(0) and Br−|x|(0) ⊂ Br(x), we
see that the last quantity above is

≤
supBt+|x|(0) u− supBr−|x|(0) u

K(t)−K(r)
.

The function M(u, 0, r) ≡ supBr(0) u is continuous (see Corollary 5.2(a)) and increasing.
Therefore,

lim sup
x→ 0

x 6= 0

ΘM (u, x) ≤
supBt(0) u− supBr(0) u

K(t)−K(r)
0 < r < t.

Finally, the limit of the RHS as r, t→ 0 equals ΘM (u, 0). This proves the first case.

Case 2. ψ = V . It suffices to note that limx→0 V (u, x, t) = V (u, 0, t), which follows since
V (u, x, t) =

∫
B
− u(x+ ty) dy and u converges in L1(B) to u(ty) as x→ 0.

Note. By using Theorem 3.2.13 in [Ho2], one can show that u(x+ tσ) dσ converges weakly
in measure to u(tσ) dσ as x→ 0. This gives a direct proof that S(u, x, t) is continuous in
x at x = 0 without using Proposition 7.1).

Corollary 7.5. For all c > 0, the set

Ec ≡ {x : Θ(u, x) ≥ c} is closed.

Note 7.6. When p = 1 the set where Θ(u) = 0 is just the set of differentiability points of
u (see (5.5) in Part II).
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8. Maximality of Subharmonics with Harmonic Averages.

In this section we extend the standard notion of maximality in pluripotential theory
to each F -potential theory. This notion extends the notion of being F -harmonic, but is
still very close to it. In fact, a maximal function is harmonic if and only if it is continuous.
Our main result, Theorem 8.2, is key for the study of tangents. It provides a new criterion
for an F -subharmonic function to be F -maximal. An excellent reference for pluripotential
theory is [Kl].

Definition 8.1. An F -subharmonic function u on an open set X ⊂ Rn is said to be
F -maximal on X if for each F -subharmonic function v on X and each compact subset
K ⊂ X,

v ≤ u on X −K ⇒ v ≤ u on X (8.1)

Note that by replacing v with max{u, v}, condition (8.1) is equivalent to

v ≥ u on X and v = u on X −K ⇒ v = u on X (8.1)′

Most of the previous results come together in the proof of the next result.

THEOREM 8.2. (The Maximality Criterion). Suppose that F is an ST-invariant
convex cone subequation, and U is an F -subharmonic function on the annulus A = {x :
a < |x| < b}. If the spherical average

S(U, t) ≡
∫
S

− U(tσ) dσ determines an increasing F harmonic S(U, |x|) on A(a, b), (8.2)

then the function
U is F maximal on A. (8.3)

Proof. The hypothesis on U can be restated as the condition

S(U, t) is R↑F harmonic on (a, b), (8.2)′

by Theorem 2.7. By Proposition 3.3, R↑F = R↑p, so by Proposition 3.5 this proves that
(8.2)′ is equivalent to

S(U, t) = ΘK(t) + c on (a, b) (8.2)′′

for constants Θ ≥ 0 and c ∈ R. Now by the homogeneity of S and K, this is equivalent to

S(U, t)− S(U, r)

K(t)−K(r)
= Θ ≥ 0 for all r < t in (a, b) (8.2)′′′

for some constant Θ ≥ 0.
As in (8.1)′ assume that v is F -subharmonic on A with v ≥ U and that outside

a compact subset K ⊂ A we have v = U . By the fundamental double monotonicity
Theorem 6.4 we have that for a < r < t < b,

S(v, t)− S(v, r)

K(t)−K(r)
is increasing in r and t. (8.4)
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Since v = U outside K, this quotient equals Θ if both r and t are sufficiently close to a or
sufficiently close to b. Hence, this quotient equals Θ for all r < t in (a, b). That is, S(v, t)
satisfies (8.2)′′′. It follows that S(v, t), in addition to S(U, t), satisfies (8.2)′′. Therefore,

S(v, t) = S(U, t) + c ∀ t ∈ (a, b) (8.5)

Taking t close to a shows that c = 0. Now the fact that S(v, t) = S(U, t) for all t ∈ (a, b)
combined with the inequality U ≤ v implies that U = v on A, thus proving that U is
F -maximal on A.

The following additional facts about F -maximal functions are standard in pluripo-
tential theory, where F = PC. The proofs easily adapt to the more general subequation
F , but since these results are not part of the viscosity literature, we inlcude them for the
convenience of the reader. Throughout the remainder of this section F is an arbitrary
subequation, i.e., a closed set F ⊂ Sym2(Rn) which satisfies F + P ⊂ F .

Proposition 8.3.

If u is F harmonic on X, then u is F maximal on X (8.6)

This is immediate since comparison holds for F (cf. [HL4, Thm. 6.5]). The only thing
standing in the way of the converse is the continuity of u.

Example 8.4. The subequation F = PC of pluripotential theory has many functions,
such as log|z1| on C2, which are maximal but not F -harmonic. In fact any function u(z1),
which is ∆-subharmonic on a domain X0 ⊂ C, when considered as a function u(z) ≡ u(z1)
on X = X0 × Cn−1 with n ≥ 2, is PC-maximal. (If v(z) ≤ u(z1) on X − K, then by
applying the maximum principle to v on slices z1 = constant, we get v(z) ≤ u(z) on
X.) Now u(z) ≡ u(z1) is PC-harmonic if and only if u is continuous, however, u is not
necessarily continuous even if it is bounded.

Proposition 8.5.

If u is F -maximal and continuous on X, then u is F -harmonic on X.

Proof. This is the standard “bump-function” argument which occurs for example as far
back as [BT] or in [I]. It goes as follows. Suppose u is not F -harmonic but is F -maximal,

and therefore F -subharmonic. Then v ≡ −u is not F̃ -subharmonic. Therefore, by Lemma
2.4 in [HL6], there exist x ∈ X, ε > 0 and a quadratic polynomial Q(y) such that v(y) <

Q(y)− ε|y−x|2 on Br(x)−{x} with equality at y = x, but D2
xQ /∈ F̃ , i.e., −D2

xQ ∈ IntF .
Thus, w ≡ −Q + δ is strictly F -subharmonic at x, and hence in a neighborhood Br(x).
Pick δ > 0 sufficiently small that v(y) < Q(y)− δ = −w(y) on ∂Br(x). Then w(y) < u(y)
on ∂Br(x), but w(x) = u(x) + δ. This proves that u is not maximal.

F -harmonic functions may not be closed under decreasing limits. For instance in
Example 8.4 each u(z1) which is ∆-subharmonic is the decreasing limit of functions uj(z1)
which are smooth and ∆-subharmonic. The extensions uj → u to Cn give an example for
the case F = PC.

This defect is corrected by enlarging the space of F -harmonic functions to the space
of F -maximal functions. (This is the smallest such enlargement by Theorem 8.7 below.)
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Proposition 8.6.

If u is the decreasing limit of a sequence of F -maximal functions, then u is F -maximal.

Proof. Suppose {uj} are F -maximal and uj ↓ u on an open set X. Fix a compact set
K ⊂ X. Then v ≤ u on X −K ⇒ v ≤ uj on X −K ⇒ v ≤ uj on X ⇒ v ≤ u on X.

This fact has a strong converse.

THEOREM 8.7.

If u is locally F -maximal, then u is locally the decreasing limit
u = limj→∞ uj of F -harmonic functions uj .

The proof of this fact requires a lemma.

Lemma 8.8. Suppose u is F -subharmonic on X, Ωopen ⊂⊂ X, and v ∈ USC(Ω) is
F -subharmonic on Ω. If v ≤ u on ∂Ω, then

v ≡
{

max{u, v} on Ω
u on X − Ω

is F -subharmonic on X.

Proof. Sup-convolution provides a decreasing sequence uε ↓ u of continuous F -subharmonic
functions which are defined on subdomains which contain Ω and increase to X. Set

vεδ ≡
{

max{uε + δ, v} on Ω
uε + δ on X − Ω.

Since {v < uε + δ} is a relatively open subset of Ω containing ∂Ω, the function vεδ is F -
subharmonic on domains containing Ω which increase to X as ε ↓ 0. Finally, vεδ ↓ v as
ε, δ ↓ 0, proving that v is F -subharmonic on X.

Using this Lemma 8.8 the definitions (8.1) and (8.1)′ of F -maximality on X can be
further refined as follows:

For each domain Ω ⊂⊂ X and v ∈ USC(Ω) which is F -subharmonic on Ω,

v ≤ u on ∂Ω ⇒ v ≤ u on Ω (8.1)′′

Using this definition of F -maximality together with the fact that on balls B ⊂ Rn the
Dirichlet problem is uniquely solvable by the Perron function, it is easy to prove Theorem
8.7.

Proof of Theorem 8.7. Suppose u is maximal on X and B ⊂ X is a closed ball. Choose
ϕj ∈ C(∂B) such that ϕj ↓ u

∣∣
∂Ω

. Let uj ∈ C(Ω) denote the solution to the Dirichlet

Problem on B with uj
∣∣
∂Ω

= ϕj and uj F -harmonic on B. Since uj is the Perron function
for boundary values ϕj , we have u ≤ uj for all j and uj ↓ v is decreasing. Thus u ≤ v.
Also v

∣∣
∂B

= limuj
∣∣
∂B

= limϕj = u
∣∣
∂B

, and v is F -subharmonic on B. Thus, by (8.1)′′

above, v ≤ u on B. Hence, u = v = limuj .
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9. Tangents to Subharmonics.

Now we come to the main topic of the paper – introducing the notion of tangents to
F -subharmonics. In this section the ST-invariant cone subequation F on Rn is assumed to
be convex. We shall work at a fixed point, which for simplicity is assumed to be the origin.
That is, given an F -subharmonic function u defined in a neighborhood of 0, we define the
notion of tangent functions to u at 0. A required clarification is given by Proposition 9.4.
The basic properties of a tangent U to u at 0 are then established in Theorems 10.4 and
11.2.

Definition 9.1. Suppose that u is F -subharmonic on the ball about the origin of radius ρ.
The tangential p-flow (or p-homothety) determined by the Riesz characteristic p = pF
of F is defined as follows.

(a) ur(x) = rp−2u(rx) if p > 2,

(b) ur(x) = 1
r2−p [u(rx)− u(0)] if 1 ≤ p < 2, and

(c) ur(x) = u(rx)−M(u, r) if p = 2

Remark 9.2. Suppose 1 ≤ p < 2. Since u(0) = M(u, 0) is finite, some readers may prefer
to assume once and for all in part (b) that u(0) = 0 so that the p-flows for all p 6= 2 are
the same, namely that

ur(x) = rp−2u(rx) if p 6= 2. (9.1)

Others may wish to make this assumption in the proofs.

Note that
The functions ur are F subharmonic on Bρ/r,

and as r → 0, these balls expand to Rn.

An upper semi-continuous function U(x) on Rn taking values in [−∞,∞) is invariant
under this flow if and only if there exists an u.s.c. function g on the unit sphere S such
that

U(x) = |x|p−2g

(
x

|x|

)
in the cases where p 6= 2,

while in the case where p = 2, we leave it to the reader to prove that

U(x) = Θlog|x|+ g

(
x

|x|

)
with sup

Sn−1

g = 0 and Θ ≥ 0 a constant.

Functions of this form will be said to have Riesz homogeneity p.
Under our assumptions on F each F -subharmonic function u is L1

loc since it is ∆-
subharmonic by (6.3).

Definition 9.3. (Tangents). Suppose that u is an F -subharmonic function defined in a
neighborhood of the origin. For each sequence rj ↘ 0 such that

U ≡ lim
j→∞

urj converges in L1
loc(Rn), (9.2)
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the point-wise defined function

U(x) ≡ lim
r→0

ess sup
Br(x)

U (9.3)

is called a tangent to U at 0. We let T0(u) denote the set of all such tangents U . (We will
refer to U , satisfying (9.2), as an L1

loc-tangent when the distinction between the function
U and the equivalence class of functions U is important.)

Our first result clarifies this Definition.

Proposition 9.4. Each tangent U to u at 0 is an entire F -subharmonic function on Rn.
Moreover, U belongs to the L1

loc-class U ∈ L1
loc(Rn) and is the unique F -subharmonic

function in this L1
loc-class.

To prove Propostion 9.4 we use the following result established in [HL5, Cor. 5.4] (see
[HL12] for generalizations.) We say that a subequation F can be defined using fewer
of the variables in Rn if there exist an (n − 1)-dimensional subspace W ⊂ Rn and a
subequation F ′ ⊂ Sym2(W ) which determines F by: A ∈ F ⇐⇒ A

∣∣
W
∈ F ′.

An important point here is that the same representative u of the L1
loc-class u (given

by (9.4)) is the correct representative, no matter which subequation F is being considered.

THEOREM 9.5. (Distributional versus Viscosity Subharmonics). Suppose F is
a convex cone subequation which cannot be defined using fewer of the variables in Rn.

(a) If u is F -subharmonic in the viscosity sense, then u is L1
loc and F -subharmonic in the

distributional sense.

(b) If u is an F -subharmonic distribution, then u ∈ L1
loc and the limit

u(x) = lim
r→0

ess sup
Br(x)

u exists at each point (9.4)

and defines an upper semi-continuous function u in the L1
loc-class u which is F -subhar-

monic in the viscosity sense. Moreover, u is the unique such representative of u.

Remark 9.6. We refer the reader to Sections 3,4, and 5 of [HL5] for a fuller discussion
of this result and the definition of an F -subharmonic distribution (Definition 4.1 and
Proposition 4.3). However, the terminology used in [HL5] is somewhat different. Here we
use the terminology emplyed in [HL12]. In [HL5] a convex cone subequation F is called
a “positive cone” and denoted P+. The polar cone is denoted by P+. A convex cone
subequation which cannot be defined using fewer of the variables in Rn is called an elliptic
cone”.

From the distributional point of view it is straightforward to see that averages, or more
generally convolution, of an F -subharmonic function u with any non-negative measure is
again F -subharmonic.

Proof of Proposition 9.4. We use these facts about the ST-invariant convex cone
subequation F :

(1) F ⊂ ∆ (2) 1 ≤ pF ≤ n
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(3) F cannot be defined using fewer of the variables in Rn.

Proof. Properties (1) and (2) have already been noted in (6.3) and (6.4). For Property
(3) note that the ST-invariance of F rules out the possibility that F could be defined using
fewer of the variables in Rn. Because of (3) one can apply Theorem 9.5.

Suppose U = limj→∞ urj in L1
loc(Rn) is an L1

loc tangent to u at 0. Since F is a cone,
each ur is viscosity F -subharmonic, and hence in L1

loc and distributionally F -subharmonic
by Part (a) of Theorem 9.5. Hence, in the limit, U is distributionally F -subharmonic. Now
apply Part (b) of Theorem 9.5 to U to complete the proof.

In light of Proposition 9.4 we frequently drop the distinction between U and U .

10. Uniqueness of Averages of Tangents and of Flows.

Most of the properties of tangents can be deduced from the following result, which
proves that averages of tangents are always unique by showing that they are radial har-
monics.

THEOREM 10.1. (Averages of Tangents). Suppose that u is an F -subharmonic
function defined in a neighborhood of the origin in Rn. Let p = pF be the Riesz charac-
teristic of F .

If p 6= 2, then each tangent U to u at 0 has averages

M(r) ≡ sup
S
U(rσ) = ΘM (u)K(r), S(r) ≡

∫
S

− U(rσ) dσ = ΘS(u)K(r),

and V (r) ≡
∫
B

− U(rx) dx = ΘV (u)K(r)

(10.1)

In particular,
ΘΨ(U) = ΘΨ(u) for Ψ = M,S, or V (10.2)

When p = 2, all the densities of u and any tangent U to u at 0, agree, and will be
simply denoted by Θ = Θ(u). Specifically, we have

Θ(u) = ΘM (U) = ΘS(U) = ΘV (U) = ΘM (u) = ΘS(u) = ΘV (u). (10.3)

Moreover, the averages of a tangent U to u are given by

M(r) = Θ log r, S(r) = Θ log r +

∫
S

− U, and V (r) = Θ log r +

∫
B

− U, (10.4)

with

−CΘ ≤
∫
S

− U ≤ 0 and − (C + 1)Θ ≤
∫
B

− U, where C =
1

ϕ
(

1
e

) > 1. (10.5)

and where ϕ(λ) = (1− λ)/(1 + λ)n−1.
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When p 6= 2, these formulas show that any two tangents have the same maxima M(r)
and the same spherical averages S(r) and volume averages V (r), all being the appropriate
density times K(r). When p = 2, M(r), S(r) and V (r) all agree with Θlog r modulo an
additive constant, but the constant depends on the tangent U , not just on u.

In all cases, for each tangent U , the function S(U, |x|) is F -harmonic on Rn − {0}
since ΘK(|x|) + C is F -harmonic there (Proposition 3.5).

Combining Theorem 8.2 and Theorem 10.1 is one of the main ingredients of the paper
and has the following immediate consequence.

THEOREM 10.2. Every tangent to an F -subharmonic function is F -maximal.

Applying Proposition 8.5 yields the following.

Corollary 10.3. Every continuous tangent to an F -subharmonic function is F -harmonic.

Theorem 10.1, the uniqueness of averages of tangents, follows from the stability of
averages (Lemma 6.5) and the uniqueness of the averages of a flow. Its proof is given at
the end of this section.

We may assume that u(0) = 0 if 1 ≤ p < 2 (Remark 9.2), and that u(0) = −∞ if
2 ≤ p <∞.

THEOREM 10.4. (Averages of Flows). For p 6= 2 and Ψ = M,S or V ,

lim
s↓0

Ψ(us, r) = ΘΨ(u)K(r). (10.6)

For p = 2, if Ψ = M we also have

lim
s↓0

M(us, r) = ΘM (u)K(r) = ΘM (u)log r. (10.6a)

In this case the limit is decreasing and uniform in r ≤ R. For Ψ = S or V we have

lim inf
s↓0

S(us, r) ≥ ΘM (u)(log r − C), and (10.6b)

lim inf
s↓0

V (us, r) ≥ ΘM (u)(log r − C − 1) (10.6c)

with C as in (10.5).

Direct calculations from the definitions of the flow and the averages establish the next
result.

Lemma 10.5. For Ψ = M,S, or V :

Ψ(us, r) = sp−2Ψ(u, sr) =
Ψ(u, sr)

K(sr)
K(r) when p 6= 2, and (10.7)

Ψ(us, r) = Ψ(u, sr)−M(u, s) =
Ψ(u, sr)−M(u, s)

K(sr)−K(s)
K(r) when p = 2 (10.8)
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Proof. For example, when Ψ is the volume average V and p 6= 2, we have

V (us, r) =
1

|B|

∫
B

us(rx) dx =
sp−2

|B|

∫
B

u(rsx) dx = sp−2V (u, rs).

The remaining calculations are left to the reader.

Proof of Theorem 10.4. By Lemma 5.4 the identity (10.7) implies (10.6) for p 6= 2. In
the case where p = 2 the limit (10.6a) for the maximum follows from (10.8) by the double
monotonicity Theorem 6.5. The limit (10.6c) for V follows from the limit (10.6b) for S

since V (us, r) = n
∫ 1

0
S(us, t) t

n−1 dt by (6.7), and n
∫ 1

0
(log rt−C) tn−1 dt = log r−C − 1.

It remains to prove (10.6b). Harnak’s inequality in the form (7.10) with v = us and
λ = 1/e states that

C
(
M
(
us,

r
e

)
−M(us, r)

)
+M(us, r) ≤ S(us, r).

We know the limit of the terms involving M as s ↓ 0. This gives

CΘM (u)
(
log r

e − log r
)

+ ΘM (u)log r ≤ lim inf
s↓0

S(us, r)

as desired.

Proof of Theorem 10.1. The density statements for u are contained in Propositions
7.1 and 7.2. The density statements for U follow from the formulas in Theorem 10.1 and
the density statements for u. The formulas in Theorem 10.1 follow immediately from the
formulas in Theorem 10.4 for the averages of flows and the stability of averages (Lemma
6.5), with the exception of (10.4) for S and V , and the estimates in (10.5).

The estimates (10.6b) and (10.6c) and the Stability Lemma 6.5 show that for any
tangent U to u at 0,

ΘM (u) (log r − C) ≤ S(U, r) and ΘM (u) (log r − C − 1) ≤ V (U, r)

for all 0 < r <∞. Also we have that V (U, r) ≤ S(U, r) ≤M(U, r) = ΘM (u)log r.
Since V (U, et) and S(U, et) are entire convex functions of t, the linear inequalities

Θ(t− C) ≤ S(U, et) ≤ Θt and Θ(t− C − 1) ≤ V (U, et) ≤ Θt

imply that S(U, et) = Θ(t + k) and V (U, et) = Θ(t + k′ − 1) where k and k′ satisfy
−C ≤ k, k′ ≤ 0.
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11. Existence of Tangents.

We now address the basic existence question. Again F is assumed here to be convex.
However, in the case where 1 ≤ p < 2 much stronger results are true even if F is just a
cone and not necessarily convex. These stronger results are established in Section 15.

THEOREM 11.1. (Existence of Tangents). Suppose that u is F -subharmonic on a
ball Bρ. For each R > 0 there exists δ > 0 such that the family {ur}0<r≤δ is unformly
bounded above and bounded in norm in L1(BR). In particular, the set {ur}0<r≤δ is
precompact in L1(BR).

Proof. An upper bound for u can be chosen to be any number greater than ΘM (u)K(R)
by (10.6) if p 6= 2 and by (10.6a) if p = 2. Consequently the boundedness in L1(BR) is
equivalent to a lower bound for V (us, R) which is uniform in s. This lower bound can be
chosen to be any number less than ΘV (u)K(R) if p 6= 2, or ΘM (u)(logR−C− 1) if p = 2,
by (10.6) and (10.6c) respectively in Theorem 10.4.

The basic properties of the tangent set T0(u) are contained in the following theorem.
Again see Section 15 for the stronger versions of parts (2) and (4) using the Hölder topology
instead of the L1

loc-topology. when 1 ≤ p < 2.

THEOREM 11.2. Suppose that u is an F -subharmonic function defined in a neighbor-
hood of the origin in Rn. Then the tangent set T0(u) to u at 0 satisfies:

(1) T0(u) is non-empty.

(2) T0(u) is a compact subset of L1
loc(Rn).

(3) T0(u) is invariant under the homothety U → Ur.

(4) T0(u) is a connected subset of L1
loc(Rn).

Proof. Parts (1) and (2) are immediate from Theorem 11.1. The arguments for parts (3)
and (4) are given in [S, Proposition 1.1.1]. We include them here for completeness. To
prove (3) note that U(x) = limrj↓0 urj (x) implies Ur(x) = limsj↓0 usj (x) with sj = rrj . To
prove (4) suppose urj → U0 and utj → U1 with U0 and U1 elements of disjoint open sets
N0 and N1 which cover T0(u). We can assume rj < tj for all j and choose sj between rj
and tj with usj /∈ N0∪N1. (Note that s 7→ us is a continuous map into L1

loc.) By Theorem
11.1 the sequence usj has a convergent subsequence, and its limit is in neither N0 nor N1,
a contradiction.
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12. Uniqueness of Tangents.

In this section we discuss some basic situations where tangents are unique. Our main
uniqueness results are are stated and proved in subsequent sections. As in Sections 9-11we
assume that F is convex with finite Riesz characteristic p.

Definition 12.1. Suppose u is an F -subharmonic function defined in a neighborhood of
the origin.

(a) If T0(u) = {U} is a singleton, then we say that uniqueness of tangents holds
for u. If uniqueness of tangents holds for all such u, we say the that uniqueness of
tangents holds for F .

(b) If T0(u) = {ΘK(|x|)} with Θ ≥ 0 a constant, then we say that strong uniqueness
of tangents holds for u. If strong uniqueness of tangents holds for all such u, then
we say that strong uniqueness of tangents holds for F .

(c) If every tangent U to u satisfies Ur = U ∀ r, then we say that homogeneity of
tangents holds for u. If homogeneity of tangents holds for all such u, then we say
that homogeneity of tangents holds for F .

Now (b) ⇒ (a) ⇒ (c). The first implication is obvious. For the second, note that (a)
can be rephrased since

T0(u) = {U} ⇐⇒ lim
r→0

ur exists in L1
loc(Rn) and equals U. (12.1)

Thus by (a), urj and urrj have the same limit U , but urrj has limit Ur, which proves (c).
In general, S(u, r) ≤M(u, r). Therefore,

For 2 ≤ p ≤ n, ΘM (u) ≤ ΘS(u), and for 1 ≤ p < 2, ΘS(u) ≤ ΘM (u) (12.2)

by (5.7) since K > 0 in the first case and K < 0 in the second case. However, if strong
uniqueness holds for u, then all densities “agree” because of Proposition 7.1 and the fol-
lowing.

If for some Θ ≥ 0, T0(u) = {ΘK}, then ΘM (u) = ΘS(u) = Θ. (12.3)

This follows from (10.2) and the fact that ΘM (K) = ΘS(K) = 1.
There are two classical cases where strong uniqueness holds, that will prove useful

later. For the sake of completeness we include proofs.

Proposition 12.2. (Radial Subharmonics). Suppose that u(x) = f(|x|) is a radial
F -subharmonic function defined on a neighborhood of 0. Then

lim
r→0

ur = Θ(u)Kp(|x|)

in L1
loc(Rn) and uniformly on compact subsets in Rn − {0}. Thus, T0(u) = {ΘKp}.

Proof. Since u is radial, we have that ur(x) = M(ur, |x|), but by Theorem 10.4 we know
that limr↓0M(ur, |x|) = ΘKp(|x|) uniformly in 0 < |x| ≤ R.

45



Remark 12.3. The conclusion of convergence in C(Rn − {0}) only requires F to be an
ST-invariant cone subequation with finite characteristic. It does not require convexity.

Proposition 12.4. (Newtonian Case). Suppose u is a ∆-subharmonic function defined
on a neighborhood of 0. Then

lim
r→0

ur(x) = − Θ(u)

|x|n−2
in L1

loc(Rn) when n ≥ 3, and

lim
r→0

ur(x) = Θ(u)log |x| in L1
loc(Rn) when n = 2

Proof. Each such u is of the form u = v+h where v = K ∗v is a Newtonian potential and
h is harmonic near the origin. (Take the measure ν to be a cut-off of the measure µ = ∆u
in a small ball about the origin.) This reduces the proof to the case v ≡ K ∗ ν. (In the
n = 2 case ur and vr + hr differ by M(v, r) + M(h, r) −M(u, r), but this error has limit
zero.)

Now one checks that: for n ≥ 3, (K∗ν)r = K∗(( 1
r )∗ν) and for n = 2, (K∗ν)(rx) = K∗

(( 1
r )∗ν)(x)+ν(1)log r, so that M(K ∗ν, r) = M(K ∗( 1

r )∗ν, 1)+ν(1)log r. Now limr→0( 1
r )∗ν

always exists weakly in the space of measures and equals Θ[0], where Θ = limr→0 ν(Br)
is the zero-dimensional density of ν at 0. Since K ∈ L1

loc(Rn), the limit of (K ∗ ν)r exists
in L1

loc(Rn) and equals K ∗ (Θ[0]) = ΘK. (Note that for n = 2, M(K ∗ ( 1
r )∗ν, 1) has limit

M(Θlog |x|, 1) = 0.)

In the n = 2 case there is a different proof following Kiselman [K1]. Note that by (10.4)
we have M(U, r) = Θlog r for any tangent U to u at 0. In particular, U(x)−Θlog |x| is ≤ 0
on R2 and ∆-subharmonic on R2−{0}. Hence, it can be extended to R2 as a subharmonic
function, and then by Liouville’s Theorem it must be constant. Since M(ur, 1) = 0 for all
r small, M(U, r) = 0, proving that the constant is zero.

Proposition 12.4 can be partly generalized.

Proposition 12.4′. (Riesz Potentials, p > 2)). Suppose u = Kp ∗ ν where ν ≥ 0 is a
compactly supported measure. Then

lim
r→0

ur = − Θ(ν)

|x|p−2
in L1

loc(Rn)

where, up to a universal constant, Θ(ν) = limr→0 ν(Br)

Proof. Ignoring constants, we have (cf. [L])

∆u = (∆Kp) ∗ ν = Kp+2 ∗ ν ≡ µ.

Note that
Kn ∗ µ = Kn ∗Kp+2 ∗ ν = Kp ∗ ν = u.

We compute that

ur(x) = rp−2u(rx) = rp−2(Kp ∗ ν)(rx) is equal to Kp ∗
{(

1
r

)
∗ ν
}
,
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and observe that limr↓0
(

1
r

)
∗ ν = Θ(ν)[0].

We complete this section with a final case where strong uniqueness holds.

Proposition 12.5. (Zero Density). Suppose that u is F -subharmonic in a neighborhood
of the origin and F is convex with p > 1. If any of the densities of u is zero at 0, then all
the densities of u vanish at 0, and in this case

lim
r→0

ur = 0 in L1
loc(Rn). (12.4)

If F is not convex but 1 ≤ p < 2, then ΘM (u, 0) = 0 implies that

lim
r→0

ur = 0 locally in α Holder norm, α = 2− p. (12.5)

Proof. The equality of zero densities is a direct consequence of Propositions 7.1 and 7.2,
while (12.4) follows from Theorem 10.4.

The proof of the final assertion of Proposition 12.5 is postponed as it follows immedi-
ately from (15.9).

13. The Strong Uniqueness Theorem I.

In this section we give two proofs of one of our two main results concerning strong
uniqueness. Recall that every O(n)-invariant subequation F has complex and quaternionic
analogues FC and FH, which are invariant under U(n) and Sp(n) respectively (see Example
4.7).

THEOREM 13.1. Suppose that F is O(n)-invariant and convex with finite Riesz char-
acteristic p. Then, except for the case F = P, strong uniqueness of tangents holds for F .
Furthermore, except for the cases PC and PH, strong uniqueness of tangents also holds
for the complex and quaternionic analogues FC and FH of F .

Remark 13.2. For the subequations P,PC and PH, strong uniqueness fails dramatically.
Nonetheless, tangents are classified in these cases. This is discussed in Part II of this paper.

Proof. Let u be F -subharmonic in a neighborhood of the origin and choose U ∈ T0(u).
Then

U(x) = lim
j→∞

urj (x)

for a sequence rj ↓ 0, where the flow urj (x), given in Definition 9.1, depends on p.
Theorem 10.2 states that

U ∈ T0(u) ⇒ U is F maximal on Rn − {0}, and (13.1)

U ∈ T0(u) and U ∈ C(Rn − {0}) ⇒ U is F harmonic on Rn − {0}. (13.2)

We first prove the theorem under the additional assumption that F is uniformly elliptic.
(Note, however, from Section 4 that there many examples of subequations F which are
not uniformly elliptic, but for which the theorem still applies.)
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Proposition 13.3. If, in addition to the hypotheses of Theorem 13.1, F is uniformly
elliptic, then strong uniqueness of tangents holds for F .

Proof. Two regularity results are needed for F . They can be stated as follows.

Fact 13.4. A sequence {uj} of F -harmonics on Xopen ⊂ Rn, which is bounded in L∞(K)
for each compact K ⊂ X, is precompact in C(X).

Fact 13.5. Each F -harmonic function is C1.

The reader is referred to [CC] and [T] for these results. Also for Fact 13.4 one can use
the Krylov-Safanov Hölder Estimate 4 in [E] which holds with f = 0 because of the First
Linearization on page 107.

Recall that F is assumed to be invariant under a subgroup G ⊆ O(n) which acts
transitively on Sn.

Lemma 13.6.

(a) Suppose U ∈ T0(u). Then g∗U ∈ T0(g∗u) for each g ∈ G, and the densities
ΘS(g∗U) = ΘS(U) = ΘS(u) = ΘS(g∗u) are all equal.

(b) If U ∈ T0(u) and V ∈ T0(v), then max{U, V } ∈ T0(max{u, v}).
(c) If U ∈ T0(u) and g ∈ G, then max{U, g∗U} ∈ T0(max{u, g∗u}).

The straightforward proofs are omitted.

The proof of Proposition 13.3 will progress in three stages. First we establish strong
uniqueness for continuous tangents, then for tangents which are locally bounded, and
finally for general tangents.

The proof that U = ΘKp for U ∈ C(Rn − {0}) is as follows. Note that for g ∈ G,
max{U, g∗U} ∈ C(Rn − {0}), and therefore by Lemma 13.6 and (13.2),

max{U, g∗U} is F harmonic on Rn − {0} for each g ∈ G. (13.3)

By the C1-regularity result Fact 13.5 we have that

max{U, g∗U} is C1 on Rn − {0} for each g ∈ G. (13.4)

Although the maximum of two F -subharmonics is always subharmonic, it is unusual
for the maximum of two distinct F -harmonics to be F -harmonic. In fact we have the
following.

Lemma 13.7. Let f be a function on the unit sphere in S ⊂ Rn with the property that
max{f, g∗f} ∈ C1(S) for all g ∈ G. Then f = constant.

Proof. We begin with the case G = O(n). If we can prove constancy on every great circle
in Sn−1, we are done. So we are immediately reduced to the case n = 2. Lifting to the
covering R→ S1 we are then reduced to the following elementary fact:

Let f : R→ R be a 2π-periodic function with the property that for all a ∈ R,
the function Fa(x) ≡ max{f(x), f(x+ a)} is differentiable. Then f ≡ constant.
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We see this as follows. If f is not constant, there exists a point x with f ′(x) > 0. Since it
is periodic, there must also exist a point y with f ′(y) < 0. Set a = y − x. Then the left
hand derivative of Fa is < 0 (if it exists), and the right hand one is > 0. This completes
the argument for G = O(n).

Consider now the general case of a closed subgroup G ⊂ O(n). Fix x ∈ Sn−1 and
decompose the Lie algebra as g = k ⊕ h (orthogonal with respect to the Killing form of
so(n)), where k = g∩ so(n− 1) is the Lie algebra of the subgroup K ≡ {g ∈ G : g(x) = x}.
Now the differential of the G-action at x gives an isomorphism g ∼= Tx(Sn−1) and every
1-parameter subgroup ϕt ⊂ G generated by an element of g, the orbit is a great circle.
The argument made above for O(n) now applies, and Lemma 13.7 is proved.

Taken together, these two lemmas prove that the punctured harmonic U(x) is radial
(constant on spheres about the origin). Therefore, by Proposition 3.5, U = ΘK + C, and
by (10.1), C = 0. This completes the proof of Proposition 13.3 if U ∈ C(Rn − {0}).

For the next step we establish the following strengthening of Proposition 8.5 which
reduces the case U ∈ L∞loc(Rn − {0}) to the case U ∈ C(Rn − {0}).

Proposition 13.8. Suppose F is uniformly elliptic. Then each locally bounded F -
maximal function is F -harmonic.

Proof. Suppose u is an F -maximal L∞loc-function on a domain X ⊂ Rn. By Theorem 8.7
for any compact set K ⊂ X, u is the decreasing limit of a sequence {uj}j of F -harmonic
functions on a neighborhood of K. By Fact 13.4, the limit u is continuous, and hence
F -harmonic by Proposition 8.5.

This completes the second stage of the proof of Proposition 13.3 where U ∈ L∞loc(Rn−
{0}). It remains to prove the last stage where U is a general tangent.

By Lemma 13.6(b), for eachN > 0 we have UN ≡ max{U,NKp} ∈ T0(max{u,NKp}).
Since UN ∈ L∞loc(Rn − {0}), UN is a multiple of Kp. We now observe that UN decreases
down to U as N → ∞. Hence, if each UN is a multiple of the Riesz kernel, then so is U .
This completes the proof of Proposition 13.3.

The last result needed for the proof of Theorem 13.1 in the O(n)-invariant case is the
following Proposition, which reduces the case of our general F of characteristic p, to a
specific maximal such equation, which is uniformly elliptic.

Proposition 13.9. The subequation

P largest
p

def
=

{
A : A+

p− 1

n− p
(trA)I ≥ 0

}
contains all the O(n)-invariant convex cone subequations F of Riesz characteristic p, and
has Riesz characteristic p itself. Since

P largest
p = P(δ) with δ =

(p− 1)n

n− p

(see Example 4.3), the subequation P largest
p is uniformly elliptic when p > 1.
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Proof. Suppose A = λ1Pe1 + · · · + λnPen is in diagonal form with λ1 ≤ · · · ≤ λn. Then
by definition (4.5) we know that

A /∈ P(δ) ⇐⇒ 〈A,Pe1 + δ
nI〉 = λ1 + δ

n (λ1 + · · ·+ λn) < 0.

If µ′ = π(λ′) is a permutation of λ′ = (λ2, ..., λn), then Aπ ≡ λ1Pe1 + µ2Pe2 + · · ·+ µnPen
also belongs to the open half-space H defined by 〈A,Pe1 + δ

nI〉 < 0, and H is disjoint

from P(δ). Averaging A over these permutations yields B ≡ λ1Pe1 + Σ
n−1pe⊥1 where

Σ ≡ λ2 + · · · + λn. Since B ∈ H we have B /∈ P(δ). Hence setting e ≡ e1 and using the
fact that P(δ) is a cone, we can rescale to obtain B′ ≡ Pe⊥ − (p′ − 1)Pe /∈ P(δ). Since the
characteristic of P(δ) is equal to p, this proves that p′ > p.

Now if A ∈ F , then since F is O(n)-invariant and convex, the average B ∈ F . Finally
since F is a cone, B′ ∈ F . Since p′ > p, this proves that F has Riesz characteristic > p,
contrary to assumption.

Proposition 13.9 says that if U is a tangent to an F -subharmonic function, where
F satisfies the hypotheses, then U is P largest

p -tangent. Since the subequation P largest
p is

uniformly elliptic, Proposition 13.3 applies, which completes the proof of Theorem 13.1 in
the orthogonally invariant case.

Note 13.10. Some (in fact, many) readers may be uncomfortable with the assertion that
P(δ)-harmonics have the regularity of viscosity solutions to equations which are convex
and uniformly elliptic in the conventional sense. A discussion of this point is given in
Appendix B.

Consider now the complex analogue FC of F on Cn. Then we have FC ⊂ PC(δ),
the complex analogue of the subequation defined in Proposition 13.9. Now for any A ∈
Sym2

R(Cn) one has that tr(A) = 2trC(AC) and λ1(A) ≤ λC1 (AC). Hence, P( δ2 ) ⊂ PC(δ)

as subsets of Sym2(R2n) = Sym2
R(Cn). It follows that PC(δ) is uniformly elliptic (for

p > 1). The arguments given above now go through to establish the theorem in this case.
The case of the quaternionic analogue FH is proved in exactly the same way. This

completes the proof of Theorem 13.1.

For the interested reader we present a second argument for Theorem 13.1 where the
passage from maximal to harmonic is based on regularization via the group G – a technique
which is discussed, for example, in [HS].

A Slightly Different Proof of Theorem 13.1 Let u be F -subharmonic in a neighbor-
hood of the origin and choose U ∈ T0(u). For clarity of exposition we work in the case
p > 2. Then

U(x) = lim
j→∞

rp−2
j u(rjx)

for a sequence rj ↓ 0. Let χ = χε : G→ [0,∞) be a family of smooth functions converging
to the δ-function at the identity in G, and for any function f which is L1

loc in Rn − {0}
and in L1(Sn−1(r)) for all r, define

f ε(x) ≡
∫
G

f(gx)χ(g) dg
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where dg is Haar measure with unit volume on G. The following lemma is proved below.

Lemma 13.11.
U ε(x) = lim

j→∞
rp−2
j uε(rjx)

Now by the Fubini Theorem, U ε satisfies

S(U ε, r) =

∫
|x|=1

U ε(rx) dx =

∫
|x|=1

{∫
G

U(grx)χ(g) dg

}
dx

=

∫
G

{∫
|x|=1

U(rgx) dx

}
χ(g) dg =

∫
G

S(U, r)χ(g) dg

= S(U, r) = ΘSK(r).

From this we conclude that U ε is maximal by Theorem 8.2. The next lemma is also proved
below.

Lemma 13.12. U ε is continuous and converges to U in L1
loc(Rn − {0}) as ε→ 0.

Note that the continuity of U ε implies that it is F -harmonic (Proposition 8.5).
We now fix g0 ∈ G and define

V ε(x) ≡ U ε(g0x) = lim
j→∞

rp−2
j uε(rjg0x)

where the second equality comes from Lemma 13.11. Clearly V ε is a tangent, and it
satisfies S(V ε, r) = S(U ε, r) = ΘSK(r). In particular, V ε is also maximal. Furthermore,
note that

max{U ε(x), V ε(x)} ≡ lim
j→∞

rp−2
j max{uε(rjx), uε(rjg0x)}

is also a tangent and hence maximal. We have proved the following.

Proposition 13.13. For all g ∈ G and all ε > 0 the function max{U ε, g∗U ε} is F -
harmonic.

As in the first proof we now apply elliptic regularity and Lemma 13.7 to conclude
that each function max{U ε, g∗U ε} is C1, and therefore that U ε is constant on each sphere.
Then by Corollary 10.3 U ε is an increasing radial harmonic and therefore a multiple of
the Riesz kernel. Since U ε → U in L1

loc, we conclude that U = ΘS(u)K(|x|). This
completes our second proof in the orthogonally invariant case. Arguments for the complex
and quaternionic analogous proceed as above.

Proof of Lemma 13.11. Let Uj(x) ≡ rp−2
j u(rjx), so that Uj → U in L1

loc(Rn − {0}).
Set A = {r ≤ |x| ≤ R}. Then∥∥U εj − U ε∥∥L1(A)

=

∫
A

∣∣∣∣∫
G

{Uj(gx)χ(g)− U(gx)χ(g)} dg
∣∣∣∣ dx

≤
∫
G

∫
A

|Uj(gx)− U(gx)| dxχ(g) dg

=

∫
G

‖g∗Uj − g∗U‖L1(A) χ(g) dg

=

∫
G

‖Uj − U‖L1(A) χ(g) dg = ‖Uj − U‖L1(A)
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Thus limj→∞ U εj = {limj→∞ Uj}ε as claimed.

Proof of Lemma 13.12. It is standard that the restriction of U ε to each sphere {|x| = r}
is continuous (in fact, smooth). We see this as follows. Suppose xj → x in {|x| = r}. By
transitivity we can write xj = gjx where gj → 1 in G. Then

|U ε(xj)− U ε(x)| =

∣∣∣∣∫
G

U(gxj)χ(g) dg −
∫
G

U(gx)χ(g) dg

∣∣∣∣
=

∣∣∣∣∫
G

U(ggjx)χ(g) dg −
∫
G

U(gx)χ(g) dg

∣∣∣∣
=

∣∣∣∣∫
G

U(hx)χ(hg−1
j ) dh−

∫
G

U(gx)χ(g) dg

∣∣∣∣
=

∣∣∣∣∫
G

U(gx)
{
χ(gg−1

j )− χ(g)
}
dg

∣∣∣∣
≤
∫
G

|U(gx)|
∣∣χ(gg−1

j )− χ(g)
∣∣ dg

≤

{∫
{|x|=r}

|U(x)| dg

}
sup
g∈G

∣∣χ(gg−1
j )− χ(g)

∣∣ → 0

We also know that U ε is maximal, and in particular upper semi-continuous with S(U ε, t) ≡
ΘK(t) for all t.

Now for |x| = r, g0 ∈ G, and any r1 < r < r2, the calculation above also shows that

|U ε(g0x)− U ε(x)| ≤ sup
r1≤t≤r2

{∫
{|x|=t}

|U(x)| dg

}
sup
g∈G

∣∣χ(gg−1
0 )− χ(g)

∣∣
Now every y with |y| = t and |y − x| < δ can be written as y = g0x with d(g0, 1) < ε(δ)
where ε(δ)→ 0 as δ → 0. Thus we have

|U ε(y)− U ε(x)| ≤ sup
r1≤t≤r2

{∫
{|x|=t}

|U(x)| dg

}
sup

d(g0,1)<ε(δ)

sup
g∈G

∣∣χ(gg−1
0 )− χ(g)

∣∣ ≤ Cϕ(δ)

for all |x| = t, |y| = t, |y − x| < δ and r1 ≤ t ≤ r2. This shows that the family of functions

Vt ≡ U ε(tx) is uniformly equicontinuous on the sphere Sn−1 = {|x| = 1}

Claim: limt→t0 supSn−1 |Vt − Vt0 | = 0.

Proof. Let tj → t0 be any sequence. Then by the equicontinuity above, there is a subse-

quence such that Vtj converges uniformly to a limit Ṽ on Sn−1. We are done if we show

that Ṽ = Vt0 .

52



Now by the upper semi-continuity of U ε we have

Ṽ (x) = lim
j→∞

Vtj (x) = lim
j→∞

U ε(tjx) ≤ U ε(t0x).

However, we also have that∫
Sn−1

Ṽ (x) dx = lim
j→∞

∫
Sn−1

Vtj (x) dx = lim
j→∞

∫
Sn−1

U ε(tjx) dx =

∫
Sn−1

U ε(t0x) dx.

since the last two terms are just the averages S(U ε, tj) = ΘK(tj) → ΘK(t0) = S(U ε, t0).

By the inequality (2) we conclude that Ṽ (x) = U ε(t0x) = Vt0(x) for all x ∈ Sn−1. Thus
we have shown that U ε is continuous for all ε.

Now it is a general fact that f ε → f in L1
loc. The proof is easy and the convergence is

uniform when f ∈ C∞0 . The general case follows from the fact that C∞0 is dense in L1 on
compact domains. This completes the proof of Lemma 13.12.

Example 13.14. If one drops the convexity hypothesis in Theorem 13.1, then in dimen-
sions n ≥ 3 there are orthogonally invariant subequations of every finite Riesz characteristic
for which strong uniqueness fails. To see this we consider the largest such subequation of
characteristic p:

Pmin/max
p ≡ {A : λmin(A) + (p− 1)λmax(A) ≥ 0} .

(See Appendix A in Part II for a proof that there exists a largest and it is the one above.)

To see that strong uniqueness fails for Pmin/max
p we consider the following functions. Write

Rn = Rm ×Rn−m,m < n with coordinates z = (x, y), and consider the function

u(x, y) ≡ Kp(|x|)

where Kp is given by (3.8). Then D2
zu = 1

|x|p (Px⊥ − (p− 1)Px) has ordered eigenvalues

− (p− 1)

|x|p
, 0, ... , 0,

1

|x|p
, ... ,

1

|x|p
,

from which it is clear that u is Pmin/max
p -subharmonic on Rn and, in fact, Pmin/max

p -
harmonic for x 6= 0. Note that u has Riesz homogeneity p and is therefore its own tangent

at points of the form (0, y). Hence strong uniqueness fails for Pmin/max
p .

Straightforward calculation shows, however, that these “partial Riesz kernels” are not
subharmonic for the largest convex subequation of characteristic p given in Proposition
13.9 above.
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14. The Structure of the Sets Ec where the Density is ≥ c.

In this section we assume the subequation F on Rn is convex with finite Riesz char-
acteristic p ≥ 2. Fix u ∈ F (X) where X is an open subset in Rn. Let Θ = ΘV : X → R
be the density function (for the volume function). For c > 0 define

Ec(u) ≡ {x ∈ X : Θ(x) ≥ c}.

For classical plurisubharmonic functions in Cn (where F = PC), these sets have been
of central importance. A deep theorem, due to L. Hörmander, E. Bombieri and in its final
form by Siu ([Ho1], [B], [Siu]), states that in this case Ec is a complex analytic subvariety.
One straightforwardly deduces from this result that for the subequation P2 in R2n the set
Ec is discrete, since PC(J) ⊂ P2 for all parallel complex structures J on R2n.

This strong corollary has a quite general extension.

THEOREM 14.1. Suppose strong uniqueness of tangents holds for F (e.g., F = Pp).
Then for any F -subharmonic function u the set Ec(u) is discrete.

This result is essentially sharp. See Remark 14.2 below.
We will prove Theorem 14.1 in the following equivalent form. Consider an F -subharmonic

function u where F has Riesz characteristic p with 2 < p <∞.

THEOREM 14.1′. Suppose strong uniqueness of tangents holds for u at a point x0,
that is, suppose that the p-flow of u has limit

lim
r↓0

ur(x0;x) = ΘK(|x− x0|) in L1
loc(Rn), for some Θ ≥ 0. (14.1)

Then
lim

x→ x0

x 6= x0

Θ(u, x) = 0.

Proof. Suppose the conclusion fails. Then there exists a sequence xj → x0 with Θ(u, xj) ≥
c > 0 for all j. Assume x0 = 0, and set xj = rjσj with rj = |xj |. Then rj → 0, and
passing to a subsequence we can assume that σj → σ ∈ Sn−1. The idea now is to apply
the sequence of rj-homotheties to u. This will give a sequence urj of F -subharmonics with
Θ(urj , σj) ≥ c. With appropriate estimates from monotonicity, this will contradict (14.1).

To begin pick ρ > 0 small, and note that

V
(
urj , σj , ρ

)
K(ρ)

=
V (u, xj , rjρ)

K(rjρ)
(14.2)

since

V
(
urj , σj , ρ

)
=

∫
B

− urj (σj + ρx) dx = rp−2
j

∫
B

− u (xj + rjρx) dx

and
rp−2
j

K(ρ)
=

1

K(rjρ)
.
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Next we show that for all j

V (u, xj , rjρ)

K(rjρ)
≥ c

2
. (14.3)

In fact, this uniform bound from below, on the convergence of
V (u,xj ,t)
K(t) to Θ(u, xj), inde-

pendent of xj , is obtained from the monotonicity property (Theorem 6.4) as follows. Set

α ≡ 2
1
p−2 . Fix xj and abbreviate notation by setting t = rjρ and V (t) = V (u, xj , t) =

V (u, xj , rjρ). We now apply the identity

V (t)

K(t)
=

[
V (αt)− V (t)

K(αt)−K(t)

] (1− K(αt)
K(t)

)
(

1− V (αt)
V (t)

) , (14.4)

with the constant α > 0 chosen so that K(αt)
K(t) = α−(p−2) = 1

2 . We assume u and hence V (t)

is ≤ 0 which can be obtained by subtracting a constant, or noting that limx→0 u(x) = −∞
since Θ(u, 0) ≥ c by Theorem 7.4.)

Then V (t) ≤ V (αt) ≤ 0 since V (t) is increasing in t, which implies that the reciprocal

of 1− V (αt)
V (t) is ≥ 1.

By Theorem 6.4 this proves that, as desired,

V (t)

K(t)
≥ c

2
. (14.3)′

Combining (14.2) and (14.3) we have

V
(
urj , σj , ρ

)
K(ρ)

≥ c

2
. (14.5)

By the hypothesis (14.1) we have

lim
rj↓0

V
(
urj , σj , ρ

)
= lim

rj↓0

∫
−
Bρ(σj)

urj = Θ

∫
−
Bρ(σ)

K(|y|) dy.

Therefore, by (14.5)

−ρp−2Θ

∫
−
Bρ(σ)

K(|y|) dy ≥ c

2
.

Since

lim
ρ→0

∫
−
Bρ(σ)

K(|y|) dy = K(1) = −1,

this implies that c = 0, a contradiction.

Remark 14.2. For F as above, any finite set can occur as the set Ec for an F -subharmonic
function. In fact, more is true. In a separate paper [HL15] we construct F -subharmonics
with prescribed asymptotics at a finite set of points and prescribed boundary values.
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THEOREM 14.3. [HL15]. Let Ω ⊂ Rn be a domain with smooth boundary ∂Ω which is
strictly convex (or more generally strictly F -convex (cf. [HL4]). Let E = {xj}Nj=1 ⊂ Ω be

a finite subset, and {Θj}Nj=1 any set of positive real numbers. Then given any ϕ ∈ C(∂Ω),

there exists a unique u ∈ USC(Ω) such that:

(1) u is F -harmonic in Ω− E,

(2) u
∣∣
∂Ω

= ϕ, and

(3) Θ(u, xj) = Θj for j = 1, ..., N .

15. Subequations with Riesz characteristic 1 ≤ p < 2.

When the Riesz characteristic satisfies 1 ≤ p < 2, the behavior and study of F -
subharmonics differs greatly from the case p ≥ 2.

C0,α Regularity of Subharmonics

To begin, all F -subharmonics (not just the F -harmonics) are regular.
To be completely clear we formulate two hypotheses on a function u.

Hypothesis A: u ∈ F (X) where F is a (not necessarily convex) ST-invariant cone
subequation with characteristic p <∞.

Hypothesis B. u ∈ USC(X) satisfies the (MP) and Kp double monotonicity, that is,
for all y ∈ X

M(u, y, t)−M(u, y, s)

Kp(t)−Kp(s)
is non decreasing in s and t (15.1)

for all 0 ≤ s < t < dist(y, ∂X).

By Theorem 2.7 and Theorem 6.4

Hypothesis A ⇒ Hypothesis B. (15.2)

Note that under Hypothesis B the density Θ(u, y) exists with 0 ≤ Θ(u, y) < ∞ for each
point y ∈ X. For an arbitrary function u, we abbreviate the Hölder norm on a compact
set K (allowing the value +∞) by

‖u‖α(K) ≡ ‖u‖C0,α(K). (15.3)

THEOREM 15.1. Assume Hypothesis B. Then u is locally Hölder continuous on X with
exponent α ≡ 2− p.

More specifically, if B3ρ(x0) ⊂ X, then

‖u‖α (Bρ(x0)) ≤
[

Rα

(R− ρ)α − ρα

]
M(u, x0, R)− u(x0)

Rα
(15.4)
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for all 0 < 3ρ ≤ R < dist(x0, ∂X). (In particular, u(x0) > −∞, i.e., u is finite-valued at
each point x0 ∈ X.)

Proof. Assume x, y ∈ Bρ(x0). Note that x ∈ ∂B|x−y|(y). Hence,

u(x)− u(y)

|x− y|α
≤ M(u, y, |x− y|)− u(y)

|x− y|α
.

Choose R ≥ 3ρ. Since x, y ∈ Bρ(x0), we have |x − y| ≤ 2ρ and hence R ≥ |x − y| + ρ, or
R− ρ ≥ |x− y|. Therefore, by the monotonicity Hypothesis B

M(u, y, |x− y|)− u(y)

|x− y|α
≤ M(u, y,R− ρ)−M(u, y, ρ)

(R− ρ)α − ρα
. (15.5)

Now BR−ρ(y) ⊂ BR(x0) since y ∈ Bρ(x0). This proves that

(1) M(u, y,R− ρ) ≤ M(u, x0, R).

Also x0 ∈ Bρ(y) and hence u(x0) ≤M(u, y, ρ), or equivalently

(2) −M(u, y, ρ) ≤ −u(x0).

Now (1) and (2) imply that M(u, y,R− ρ)−M(u, y, ρ) ≤M(u, x0, R)− u(x0) and (15.4)
follows from (15.5).

Define the infinitesimal Hölder norm of u at x0 to be

‖u‖α(x0) ≡ lim
ρ→∞

‖u‖α (Bρ(x0)) . (15.6)

Proposition 15.2. Under Hypothesis B,

‖u‖α(x0) ≤ M(u, x0, R)− u(x0)

Rα
≤ ‖u‖α (BR(x0)) . (15.7)

for all 0 < R < dist(x0, ∂X).

Proof. For the first inequality, let ρ→ 0 on both sides of the inequality (15.4) in Theorem
15.1.

By the (MP) there exists y ∈ ∂BR(x0) such that M(u, x0, R) = u(y), and hence

M(u, x0, R)− u(x0)

Rα
=

u(y)− u(x0)

|y − x|α
≤ ‖u‖α (BR(x0)) .

Now it is easy to prove that the infinitesimal Hölder norm and the density are the same
thing.

Corollary 15.3.
‖u‖α(x0) = Θ(u, x0).
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Proof. Take the limit as R→ 0 in (15.7) and apply the definition of the density.

Remark 15.4. (Hypothesis A). Lemma A.1 in part II states that Pmin/max
p ≡ {A :

λmin(A)+(p−1)λmax(A) ≥ 0} is the maximal subequation of characteristic p – it contains
every other subequation F of characteristic p. Thus the relevance of Theorem 15.1 for
pure second-order subequations can be stated as follows.

Theorem 15.1 holds under

Hypothesis A′ (0 < α ≤ 1): The function u satisfies the subequation

λmin(D2u) + (1− α)λmax(D2u) ≥ 0 on X

in the viscosity sense. Said differently, Hypothesis A and Hypothesis A′ are the same.

Remark 15.5. The subequations Pmin/max
p are never convex unless p = 1. In addition

we have

Pmin/max
p ⊂ ∆ ⇐⇒ p ≤ 1 +

1

n− 1
⇐⇒ n− 2

n− 1
≤ α ≤ 1.

To see this note that λ1 + (p − 1)λn ≥ 0 ⇒ λ1 + · · · + λn ≥ 0 if and only if p − 1 ≤ 1
n−1

since λ1 + · · ·+ λn ≥ (n− 1)λ1 + λn = (n− 1)(λ1 + 1
n−1λn).

Existence of Tangents

In the range 1 ≤ p < 2 the arguments for the existence and structure of tangents have
a different flavor from the case p ≥ 2. Recall that in this range the tangent flow

ur(x) =
1

rα
(u(rx)− u(0)) where α = 2− p,

is defined by (9.1b).
Tangents to subharmonics have only been defined when F is convex (see Definition

9.3). However, because of the Hölder continuity when 1 ≤ p < 2, the definition can be
extended to the more general cone case in Hypothesis A. In fact, Hypothesis B is enough.
Give C(Rn) the topology of uniform convergence on compact subsets.

Definition 15.6. (Tangents). Suppose that u satisfies Hypothesis B in a neighborhood
of the origin in Rn. For each sequence rj ↘ 0 such that

U ≡ lim
j→∞

urj converges in C(Rn), (15.8)

the limit function U is called a tangent to u at 0, and T0(u) denotes the space of all such
tangents.

The version of Theorem 11.1 for 1 ≤ p < 2 is given as follows.
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THEOREM 15.7. (Existence of Tangents). Suppose u satisfies Hypothesis B on
a ball about the origin. Then for each ρ > 0 there exists a δ > 0 such that the family
{ur}0<r≤δ is bounded in norm in C0,α(Bρ). In fact,

lim sup
r↓0

‖ur‖ (Bρ) ≤ ΘM (u, 0) ∀ ρ > 0. (15.9)

In particular, the set {ur}0<r≤δ is precompact in C(Rn).

Proof. Note that ur(0) = 0 so that Theorem 15.1 states that the α-Hölder norm of ur on
Bρ satisfies

‖ur‖ (Bρ) ≤
Rα

(R− ρ)α − ρα
M(ur, 0, R)

Rα

if rR is small and 0 < 3ρ ≤ R. Now by the definition of ur

M(ur, 0, R) =
M(u, 0, rR)− u(0)

rα
,

and therefore

‖ur‖ (Bρ) ≤
Rα

(R− ρ)α − ρα
M(u, 0, rR)− u(0)

(rR)α
.

Taking the lim sup as r ↓ 0 yields

lim sup
r↓0

‖ur‖ (Bρ) ≤
Rα

(R− ρ)α − ρα
ΘM (u, 0).

Finally we can let R→∞, proving (15.9).
By the standard compact embedding theorem this proves that (taking the topology

of Hölder norms on compact subsets)

{ur}0<r≤δ is precompact in C0,β(Rn) for each 0 ≤ β < α, (15.10)

where C0,β(Rn) = C(Rn) when β = 0.

Note. If F is convex, then our previous L1
loc Definition 9.3 of a tangent U to u at 0 is

also applicable. It agrees with Definition 15.6 because of the precompactness.

The analogue of Theorem 11.2 is the same except that L1
loc(Rn) is replaced by C(Rn).

THEOREM 15.8. The tangent set T0(u) to an F -subharmonic function u satisfies:

(1) T0(u) is non-empty.

(2) T0(u) is a compact subset of C(Rn).

(3) T0(u) is invariant under the tangent flow U → Ur.

(4) T0(u) is a connected subset of C(Rn).

The proof is similar to that of Theorem 11.2 and is omitted.
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As a consequence of Theorem 15.8 the Hólder norm of a tangent is finite on all of Rn.

Corollary 15.9. If U ∈ T0(u), then

‖U‖α(Rn) = Θ(u, 0) = ‖u‖α(x0).

Uniqueness, Strong Uniqueness, and Homogeneity of Tangents

The three concepts are defined exactly as in Definition 12.1. For instance, uniqueness
of tangents holds for u at 0 if T0(u) = {U} is a singleton, or equivalently (cf. (12.1))

lim
r→0

ur exists in C(Rn) and equals U. (15.11)

Strong uniqueness holds for u at 0 if this limit U = ΘKp where Θ = ΘM (u, 0). In
this setting strong uniqueness for u is equivalent to the notion of asymptotic equivalence
u ∼ Θ|y|α defined by (15.13) below.

Lemma 15.10. Strong uniqueness of tangents for u at 0 holds, i.e.,

lim
r→0

ur = ΘKp = Θ|x|α in C(Rn) with Θ ≥ 0 (15.12)

if and only if u(y) ∼ Θ|y|α, i.e.,

lim
y→0

u(y)− u(0)

|y|α
= Θ ≥ 0. (15.13)

Proof. Actually, the equivalence of (15.12) and (15.13) is an elementary fact which holds
for any continuous function defined in a neighborhood of the origin.

We can assume u(0) = 0. We first show that (15.13) ⇒ (15.12). The inequality∣∣∣∣u(y)

|y|α
−Θ

∣∣∣∣ ≤ ε

can be rewritten, with y = rx, as

|ur(x)−Θ|x|α| ≤ ε|x|α.

If the first holds for |y| ≤ δ, then the second holds for |x| ≤ R and r ≤ δ/R. Thus we have
|ur(x)−Θ|x|α| ≤ εRα, for all |x| ≤ R and r ≤ δ/R, which is enough to prove (15.13).

For the converse we need only assume that ur → ΘK uniformly on some sphere ∂BR.
The inequality

|ur(x)−Θ|x|α| ≤ ε

can be rewritten, with y = rx, as ∣∣∣∣u(y)

|y|α
−Θ

∣∣∣∣ ≤ ε

|x|α
.
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If the first holds for all |x| = R and r ≤ δ, then the second holds for all |y| ≤ δR with the
right-hand side replaced by ε/Rα. This is enough to prove that limy→0 u(y)/|y|α = 0.

Note 15.11. We say that strong uniqueness holds for a subequation F if it holds for
all F -subharmonics at 0. Recall that by Theorem 13.1 Strong Uniqueness of Tangents
to subharmonics holds for every convex O(n)-invariant subequation F with finite Riesz
characteristic except F = P. This section is only concerned with the cases 1 ≤ p < 2,
or 1 < p < 2 when P is excluded. This includes the subequations: Pp (1 < p < 2), Σk
(p ≡ n

k < 2), P(δ) (δ < n
n−2 ), and others.

Harmonicity of Tangents when F is convex.

If F is a convex cone ST-invariant subequation with finite characteristic, then by
Theorem 10.2 every tangent to a subharmonic is maximal, and by Proposition 10.5, every
continuous maximal function is F -harmonic. Thus the regularity result Theorem 15.1
implies the following for 1 ≤ p < 2..

THEOREM 15.12. Let F be as above. Then for u F -subharmonic in a neighborhood
of 0, every tangent U ∈ T0(u) is F -harmonic in Rn − {0}.

Removable Point Singularities .

The next result should be compared with Theorem 1.9 (the case α∗ < 0) in [ASS],
where F is assumed to be uniformly elliptic.

THEOREM 15.13. Suppose that F is a cone subequation with a Riesz characteristic p
and 1 < p < 2. Suppose Strong Uniqueness of Tangents holds for F and F+Pp ⊂ F (i.e., F
is Pp-monotone). For each function H which is F -harmonic in a punctured neighborhood
of x0 and F -subharmonic across x0, one has that

H is F -harmonic across x0 ⇐⇒ the density ΘM (H,x0) = 0.

Proof. Assume that x0 = 0. By Proposition A.5 in [HL15], the strong uniqueness hypoth-

esis can be restated as an asymptotic equivalence limx→0
(H(x)−H(0))

|x|α = Θ ≥ 0, which was

denoted there as H(x) ∼ Θ|x|α, at x0 = 0.
Suppose Θ = 0. Then for all ε > 0, ∃δ > 0 such that H(x)−H(0) ≤ ε|x|α if |x| ≤ δ.

Set Vε(x) ≡ −(H(x)−H(0)) + 2ε|x|α. Then ε|x|α ≤ Vε(x) on |x| ≤ δ, which implies that

Vε has no test functions at 0. Since F̃ + Pp ⊂ F̃ , the Addition Theorem (cf. [HL13])

implies that Vε is F̃ -subharmonic on Bδ −{0}. Thus Vε is F̃ -subharmonic on Bδ. Since Vε
decreases to −H(x) + H(0) as ε → 0, this proves that −H is F̃ -subharmonic on Bδ, and
hence H is F -harmonic.

Suppose Θ > 0. Then for 0 < ε < Θ there exists 0 < δ < 1 with ε|x|α ≤ H(x)−H(0)
on Bδ. Therefore, −(H(x)−H(0)) ≤ −ε|x|α ≤ −ε|x|2 if |x| ≤ δ, which proves that −ε|x|2
is a test function for −H(x) at 0, and hence −H is not subaffine. Finally, 0 ∈ F ⇒ P ⊂
F ⇒ F̃ ⊂ P̃, which proves that −H is not F̃ -subharmonic.
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Appendix A. Subaffine Functions and a Dichotomy.

For punctured radial subharmonics, i.e., a radial F -subharmonic function defined on
a ball, there is a useful dichotomy between those which are increasing and those which
are decreasing, which we now discuss. The subaffine equation P̃ = {λmax ≥ 0} is an
important special case, since it contains every subequation F (including itself) for which
the maximum principle holds. It is also a special case in that the radial subequation RP̃
on (0,∞) is constant coefficient. Using the jet variables (λ, a), we have

RP̃ = ˜R+ ×R+ ≡ {(λ, a) : either λ ≥ 0 or a ≥ 0}. (A.1)

It is important to note that the maximum principle holds for this one-variable subequation.

This dual subequation ˜R+ ×R+ is more restrictive than one might guess. The next
result shows that near the left endpoint of (a, b) there is a dichotomy for a subharmonic.
It is either increasing or it is convex and decreasing.

Lemma A.1. (Increasing/Decreasing). Suppose that ψ is a general upper semi-

continuous ˜R+ ×R+-subharmonic function on an open interval (a, b). Then either

(1) ψ is increasing on (a, b), or

(2) ψ is decreasing and convex on (a, b), or

(3) ∃ c ∈ (a, b) such that ψ is decreasing and convex on (a, c) and increasing on (c, b).

Proof. Suppose that ψ is not increasing on all of (a, b), that is, ψ(r) > ψ(s) for some
a < r < s < b. We claim that ψ is decreasing on (a, r). If not, there exist r1, r2 with
a < r1 < r2 < r and ψ(r1) < ψ(r2). If ψ(r2) < ψ(r), then since ψ(r) > ψ(s), ψ has a
strict maximum on (r2, s). Thus ψ(r2) ≥ ψ(r) > ψ(s), and since ψ(r1) < ψ(r2), we must
have a strict maximum on (r1, s).

Suppose further that ψ is not decreasing on all of (a, b), that is, ψ(s) < ψ(t) for some
r < s < t < b. The argument above shows that there exists a maximal c ∈ (s, t) so that ψ
is decreasing on (a, c). Now ψ must be increasing on (c, b) for if not, it would have a strict
interior maximum on that interval.

When ψ is decreasing on (a, c), it must be convex there. To see this let ϕ be a test
function for ψ at t0 ∈ (a, c). Then 0 ≤ ψ(t)−ψ(t0) ≤ ϕ(t)−ϕ(t0) for t < t0. This implies
that ϕ′(t0) ≤ 0. If ϕ′(t0) = 0, then the same inequality implies that ϕ′′(t0) ≥ 0. On the

other hand, if ϕ′(t0) < 0, then ϕ′′(t0) ≥ 0 because ψ is ˜R+ ×R+-subharmonic.

We say that the maximum principle (MP) holds for a subequation F if it holds for all
F -subharmonic functions.

THEOREM A.2. The following conditions on a subequation F ⊂ Sym2(Rn) are equiv-
alent.

(1) The maximum principle holds for F .

(2) F ⊂ P̃ (i.e., the subequation P̃ is universal for (MP)).

(3) 0 /∈ IntF .
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(4) RF ⊆ ˜R+ ×R+.

Proof. Parts (1) – (3) were proved in [HL4, Lemma 2.2 and Proposition 4.8]. For part

(4) note that F ⊂ P̃ ⇒ (RF )t ⊂ (RP̃)t = ˜R+ ×R+. If F is not contained in P̃ ≡ {A :
λmax(A) ≥ 0}, then there exists B < 0 with B ∈ F . By positivity −εI ∈ F for some ε > 0,

which implies that (RP̃)t is not contained in ˜R+ ×R+.

These two results can be combined as follows.

Corollary A.3. If the (MP) holds for F , then the conclusions (1), (2) and (3) of the
Increasing/Decreasing Lemma A.1 hold for any radial F -subharmonic function u(x) =
ψ(|x|) defined on an annulus. (In particular, if u is F -subharmonic on a ball, then ψ(t)
must be increasing.)

Proof. By Theorem 2.4 and Theorem A.2, ψ is ˜R+ ×R+-subharmonic, and hence Lemma
A.1 applies to ψ.

Appendix B. Uniform Ellipticity and P(δ).

The point of this section is to make clear that viscosity harmonics for the subequation

P(δ′) =
{
A ∈ Sym2(Rn) : A+ δtr(A) ≥ 0

}
δ =

δ′

n

are solutions to a uniformly elliptic equation F (D2u) = 0 as defined in [CC], [T], [CIL],
etc. We define the operator

F : Sym2(Rn) −→ R by F (A) ≡ λmin(A) + δtr(A).

It is straightforward to verify that for all P ≥ 0 one has

δ tr(P ) ≤ F (A+ P )− F (A) ≤ (1 + δ) tr(P ).

which is one of the standard equivalent versions of uniform ellipticity for the operator F
appearing in the sources above.

Now since

P(δ′) = {A : F (A) ≥ 0} and IntP(δ′) = {A : F (A) > 0}

it is completely straightforward to verify that a continuous function u is a viscosity solution
of F (D2u) = 0 if and only if (in our terminology) u is P(δ′)-harmonic.
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