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Calibrations

A Calibration on a manifold X is a smooth k -form ϕ ∈ Ek (X ) with dϕ = 0
such that

ϕ
∣∣
P ≤ dvolP

for all oriented tangent k -planes P on X .

Gl (ϕ) = {P ∈ Grassor(k ,X ) : ϕ
∣∣
P = dvolP}

An oriented k -dimensional submanifold M ⊂ X is a ϕ-submanifold if

TxM ∈ Gl (ϕ) ∀ x ∈ M.

Blaine Lawson The Special Lagrangian Potential Equation October 23, 2020 3 / 38



Calibrations

A Calibration on a manifold X is a smooth k -form ϕ ∈ Ek (X ) with dϕ = 0
such that

ϕ
∣∣
P ≤ dvolP

for all oriented tangent k -planes P on X .

Gl (ϕ) = {P ∈ Grassor(k ,X ) : ϕ
∣∣
P = dvolP}

An oriented k -dimensional submanifold M ⊂ X is a ϕ-submanifold if

TxM ∈ Gl (ϕ) ∀ x ∈ M.

Blaine Lawson The Special Lagrangian Potential Equation October 23, 2020 3 / 38



Calibrations

A Calibration on a manifold X is a smooth k -form ϕ ∈ Ek (X ) with dϕ = 0
such that

ϕ
∣∣
P ≤ dvolP

for all oriented tangent k -planes P on X .

Gl (ϕ) = {P ∈ Grassor(k ,X ) : ϕ
∣∣
P = dvolP}

An oriented k -dimensional submanifold M ⊂ X is a ϕ-submanifold if

TxM ∈ Gl (ϕ) ∀ x ∈ M.

Blaine Lawson The Special Lagrangian Potential Equation October 23, 2020 3 / 38



Calibrations

PROPOSITION. A ϕ-submanifold is homologically volume minimizing.

Proof. If M ′ is homologous to the ϕ-submanifold M, then

vol(M′) ≥
∫

M′
ϕ =

∫
M
ϕ = vol(M).

This Proposition extends from submanifolds to integral currents.
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Kähler Manifolds

Herb Federer: (using Wirtinger’s inequaity)

If ω is the Kähler form on a Kähler manifold X , then

1
k !
ωk is a calibration.

The 1
k!ω

k -submanifolds are complex submanifolds.

The (locally closed) 1
k!ω

k -currents are positive holomorphic chains.

Jim King

Blaine Lawson The Special Lagrangian Potential Equation October 23, 2020 5 / 38



Kähler Manifolds

Herb Federer: (using Wirtinger’s inequaity)

If ω is the Kähler form on a Kähler manifold X , then

1
k !
ωk is a calibration.

The 1
k!ω

k -submanifolds are complex submanifolds.

The (locally closed) 1
k!ω

k -currents are positive holomorphic chains.

Jim King

Blaine Lawson The Special Lagrangian Potential Equation October 23, 2020 5 / 38



Kähler Manifolds

Herb Federer: (using Wirtinger’s inequaity)

If ω is the Kähler form on a Kähler manifold X , then

1
k !
ωk is a calibration.

The 1
k!ω

k -submanifolds are complex submanifolds.

The (locally closed) 1
k!ω

k -currents are positive holomorphic chains.

Jim King

Blaine Lawson The Special Lagrangian Potential Equation October 23, 2020 5 / 38



The Special Lagrangian Calibration

In the late seventies Reese Harvey and I looked for more calibrations

with large sets of ϕ-submanifolds.

One which we found:

ϕ ≡ Re{dz1 ∧ · · · ∧ dzn} in Cn

I will work in Cn,

but we knew that everything carried over to Calabi-Yau manifolds.
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The Special Lagrangian Calibration

ϕ ≡ Re{dz1 ∧ · · · ∧ dzn} in Cn

This is a sum of 2n−1 orthogonal simple vectors.

Nevertheless, for a unit simple vector ξ = e1 ∧ · · · ∧ en

|{dz1 ∧ · · · ∧ dzn}(ξ)| ≤ 1

and |{dz1 ∧ · · · ∧ dzn}(ξ)| = 1 ⇐⇒ ξ is Lagrangian.
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The Special Lagrangian Calibration

Thus for a unit simple vector ξ = e1 ∧ · · · ∧ en

Re{dz1 ∧ · · · ∧ dzn}(ξ) = ±1 ⇐⇒

ξ is Lagrangian and Im{dz1 ∧ · · · ∧ dzn}(ξ) = 0

Blaine Lawson The Special Lagrangian Potential Equation October 23, 2020 8 / 38



The Special Lagrangian Calibration

Otherwise said, for an oriented real n-plane P

Re{dz1 ∧ · · · ∧ dzn}
∣∣
P = ±dvolP ⇐⇒

P is Lagrangian and Im{dz1 ∧ · · · ∧ dzn}
∣∣
P = 0
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Lagrangian Graphs

Let z = x + iy , and consider a submanifold of the form

Mn ≡ {(x , y) : y = F (x), x ∈ Ω}.

where Ω is a simply-connected domain.

Lemma.

Mn is Lagrangian ⇐⇒ ∃ u : Ω→ R s.t. F = ∇u.

The tangent space to Mn = graph(F ) at x is just the graph of (DF )x .

W.r.t. coordinates (x1, ..., xn, y1, ..., yn) the matrix is just((
∂2u
∂xi∂xj

))
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Lagrangian Graphs

This matrix is symmetric, so under a change of variables (gx ,gy) we get

((
∂2u
∂xi∂xj

))
=


λ1

·
·

λn


The graph of this in Cn = Rn ⊕ J Rn is spanned by

e1 + λ1Je1, ... ,en + λnJen

The corresponding simple vector is

ξ = (e1 + λ1Je1) ∧ · · · ∧ (en + λnJen).
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The SL Potential Equation

ξ = (e1 + λ1Je1) ∧ · · · ∧ (en + λnJen).

{dz1 ∧ · · · ∧ dzn}(ξ) =
n∏

k=1

(1 + iλk)

Im
[
{dz1 ∧ · · · ∧ dzn}(ξ)

]
=
∑
k≥0

(−1)k+1 σ2k+1(λ1, ... λn)

THE SPECIAL LAGRANGIAN POTENTIAL EQUATION∑
k≥0

(−1)k+1 σ2k+1(D2 u) = 0

Example (n = 3) tr(D2 u) = det(D2 u) i.e. ∆u = MA(u).
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Circular Symmetry

Note that there is an S1-symmetry

If we set

ϕ ≡ Re{e−iθdz1 ∧ · · · ∧ dzn},

Then we get the equation

Im
[
{e−iθdz1 ∧ · · · ∧ dzn}(ξ)

]
= 0, i.e.,

Im

{
e−iθ

n∏
k=1

(1 + iλk)

}
= 0
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A Different Way to Write the Equation

Caffarelli, Nirenberg and Spruck

Im

{
e−iθ

n∏
k=1

(1 + i λk )

}
= 0

Consider
1 + iλk ∈ C.

Then
λk = tan θk where − π

2
< θk <

π

2

Now

log
n∏

k=1

(1 + i λk ) =
n∑

k=1

log(1 + iλk ) = R + iΘ

Θ =
n∑

k=1

arg(1 + iλk ) =
n∑

k=1

θk =
n∑

k=1

arctan(λk ).
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The Special Lagrangian Potential Operator

Im

{
e−iθ

n∏
k=1

(1 + i λk )

}
= Im

{
e−iθeR+iΘ

}
= eRIm

{
e−iθeiΘ

}
= 0

So we have

Θ =
n∑

k=1

arctanλk = θ (modπ)

Definition. For A ∈ Sym2(Rn) we set

SL(A) ≡ tr {arctan(A)}

SL(A) takes values in (−nπ2 ,n
π
2 ).
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Some Things We Knew in the CG Paper

There exist many explicit and many families of solutions to these equations

The linearization at a solution is elliptic

Given a smooth solution to the Dirichlet Problem, there are solutions for all
nearby boundary values.

A Lagrangian of mean curvature 0 is Special Lagrangian
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The Dirichlet Problem

Caffarelli, Nirenberg and Spruck (1985)

tr
{

arctan
(
D2 u

)}
= θ

θ ≡ phase ∈
(
−n

π

2
, n

π

2

)
.

− n
π

2
− (n − 1)

π

2
0 (n − 1)

π

2
n
π

2
| − − −−| − −−−−−−−−−| − −−−−−−−− | − −−−|

The operator is concave on {A : tr(arctan,A) ≥ (n − 1)π2 }.
The operator is convex on {A : tr(arctan,A) ≤ −(n − 1)π2 }.
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The Dirichlet Problem

THEOREM. (CNS) Let |θ| ∈ ((n − 1)π2 ,n
π
2 ) and consider a domain Ω ⊂ Rn

with a smooth, strictly convex boundary.

Then for any smooth function
ϕ ∈ C∞(∂Ω) there exists a unique solution u ∈ C∞(Ω) to the Dirichlet
Problem for

tr
{

arctan
(
D2 u

)}
= θ

with u
∣∣
∂Ω

= ϕ.

What about solutions for other phases?
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Viscosity Solutions

Consider the subequation

Fθ ≡ {A ∈ Sym2(Rn) : tr(arctan A) ≥ θ}.

The dual subequation is

F̃θ ≡ ∼ {−IntFθ} = F−θ

For Ω ⊂ Rn let USC(Ω) denote the u.s.c. functions u : Ω→ [−∞,∞).

Def. Fix a domain Ω ⊂ Rn and u ∈ USC(Ω). By a test function for u at x ∈ Ω
we mean a C2-function φ in a neighborhood of x with

u ≤ φ near x and u(x) = φ(x).
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Viscosity Solutions

Fθ ≡ {A ∈ Sym2(Rn) : tr(arctan A) ≥ θ}.

F̃θ ≡ ∼ {−IntFθ} = F−θ

Def. Fix a domain Ω ⊂ Rn and u ∈ USC(Ω).

Then u is Fθ-subharmonic if for
every test function φ for u at any point x ∈ Ω, we have

D2
xφ ∈ Fθ.

Def. u ∈ C(Ω) is Fθ-harmonic, i.e., a viscosity solution of our equation, if

u is Fθ-subharmonic and −u is F̃θ-subharmonic
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Work of Wang and Yuan

These viscosity solutions are interesting.

Dake Wang and Yu Yuan found viscosity solutions in R3 to the SL potential
equation,

for each θ in the interior interval (−π2 ,
π
2 ).

These solutions are C∞ outside the origin, but only C1,α, and no more, across
the origin.

Graphing the gradients gives infinitely many Special Lagrangian
Varieties each with an isolated singularity
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Continuous Solutions to the (DP)
Definitions hold for any non-empty closed F ⊂ Sym2(Rn) satisfying

F + {A ≥ 0} ⊂ F

Theorem. (Harvey-L. 2009) Uniqueness for the (DP). For all bounded
domains Ω ⊂ Rn and u, v ∈ USC(Ω) with

u
∣∣
Ω

F− subharmonic and v
∣∣
Ω

F̃− subharmonic

one has that

u + v ≤ 0 on ∂Ω ⇒ u + v ≤ 0 on Ω.

Theorem. (Harvey-L. 2009) Existence for the (DP). Let Ω ⊂⊂ Rn be a
domain with smooth boundary ∂Ω. If at each point x ∈ ∂Ω the boundary is
both

strictly F-convex and strictly F̃-convex

then Perron existence holds for the (DP).
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Strict F-Convexity of ∂Ω

Def. The asymptotic interior of F is

Int
−→
F ≡ {A ∈ Sym2(Rn) : ∃ ε > 0 and t0 s.t . t(A− εI) ∈ F ∀ t ≥ t0}

This is an open cone with 0 as vertex.

Def. Let IIx be the second fundamental form of ∂Ω with respect to the
inward-pointing normal at x . Then ∂Ω is strictly F-convex if for all x ∈ ∂Ω(

IIx 0
0 t

)
∈ Int

−→
F ∀ t >> 1.
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Compute Int
−→
F θ

− n
π

2
− (n − 2)

π

2
0 (n − 2)

π

2
n
π

2
| − − −−| − −−−−−−−−−| − −−−−−−−− | − −−−|

F−θ = F̃θ and Fθ ⊂ F−θ = F̃θ for θ > 0

Yu Yuan showed Fθ is convex ⇐⇒ θ ≥ (n − 2)π2 .

Special Phases: θk = (n − 2k)π2

Phase Intervals: Ik = (θk , θk−1) for k = 1, ...,n − 1.
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Compute Int
−→
F θ

THEOREM.
−→
F θ (the closure of Int

−→
F θ) for θ ∈ (−nπ2 ,n

π
2 ) is:

(1) If θ ∈ Ik , k = 1, ...,n − 1,

−→
F θ = {A : λk (A) ≥ 0}

where λ1(A) ≤ λ2(A) ≤ · · · are the ordered eigenvalues of A.

(2) If θ = θk , k = 1, ...,n − 1,

−→
F θk = {A : λk (σn−1(A)) ≥ 0}.

where λk (σn−1(A)) are the ordered eigenvalues of the Gårding
polynomial σn−1 on A. These eigenvalues are - the roots of
σn−1(tI + A).
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Compute Int
−→
F θ

THEOREM. The interior of
−→
F θ is given as follows.

(1) If θ ∈ Ik (k = 1, ...,n), then

Int
−→
F θk = IntΛk ≡ {A ∈ Sym2(Rn) : λk (A) > 0}.

(2) If θk (k = 1, ...,n − 1) is a special value, then

Int
−→
F θk = {IntΛk+1 ∩ Λk} ∪ E?

k

where
E?

k ≡ (IntΛk+1 ∼ Λk ) ∩ {σn−1(A)σn(A) < 0}

Note: The subequations Λk are quite large. The first k − 1 eigenvalues can
be < 0.

This gives (probably) the best geometric condition on ∂Ω for existence
to the (DP) for

tr{arctan(D2 u)} = θ.
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A Simple Example

Consider the equation in R3. There are three phase intervals.

| − − −−−−−−| − −−−−−−−| − −−−−−−−|

The interior one is interesting. Here the boundary condition is 2-convexity, i.e.
One of the principle curvatures of the boundary must be positive.
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Many Generalizations

Our discussion of the equation
∑

i arctanλi (A) = θ is universal.

It applies to many related equations.

Example: Let G : Sym2(Rn)→ R be a Gårding-Dirichlet polynomial,

i.e., G(tI + A) has all real roots for every A ∈ Sym2(Rn).

The negatives of the roots are called the eigenvalues λi (A) of A.

Inserting them into our equation, the entire discussion holds.

Example: Let u : Ω→ R be smooth and let κ1 ≤ · · · ≤ κn

be the principle curvatures of the graph of u in Ω× R.

Parallel results hold for
∑

i arctanκi = θ

Example: Results on Riemannian manifolds.
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The Inhomogeneous Dirichlet Problem

tr
{

arctan(D2
x u)
}

= ψ(x) (∗)

THEOREM. (T. Collins, S. Picard and X. Wu). Let Ω ⊂⊂ Rn have a C4

boundary ∂Ω. Let
ϕ ∈ C4(∂Ω)

ψ : Ω→
(

(n − 2)
π

2
, n

π

2

)
be C2.

Suppose ∃u ∈ C4(Ω) s.t.

tr
{

arctan(D2
x u)
}
≥ ψ(x) and u

∣∣
∂Ω

= ϕ.

Then the (DP) for (*) admits a unique C3,α(Ω)-solution.

If all data are smooth, so is the solution.

Note 1. They also prove a complex version, replacing D2u by (D2u)C

Note 2. S. Dinew, H. Do and T. D. Tô have proved the continuous viscosity
version of this result.
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The Inhomogeneous Dirichlet Problem
Reese Harvey and I have a general theorem about the (IDP) for a constant
coefficient operator f defined on a subequation F.

Consider

f(D2
x u) = ψ(x) (∗)

on a domain Ω ⊂⊂ Rn where

ψ(Ω) ⊂ f(F).

Then this Dirichlet problem is uniquely solvable for all ϕ ∈ C(∂Ω) provided

(1) ∂Ω satisfies the boundary convexity condition,

(2) f is tamable.

Note 1. f is tamable if ∃ a strictly increasing function χ : f(F)→ R such that
g ≡ χ ◦ f is tame, where tame means that for all t > 0, ∃ c(t) > 0 s.t.

g(A + tI)− g(A) ≥ c(t) ∀A ∈ F.

Note 2. The SLP operator is tamable on Fθ for θ > (n − 2)π2 .
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The Work of Marco Cirant and Kevin Payne

Let Ω ⊂⊂ Rn be a domain and consider an inhomogeneous term ψ ∈ C(Ω)
with values in Ik , i.e.

ψ(Ω) ⊂ Ik =
(

(n − 2k)
π

2
, (n − 2(k − 1)

π

2

)
for some k with 1 ≤ k ≤ n.

Suppose ∂Ω is strictly min{k ,n − k + 1}-convex.

Then there exists a unique solution u ∈ C(Ω)

to the inhomogeneous Dirichlet problem

for all continuous boundary values ϕ ∈ C(∂Ω).
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A Geometric Interpretation of the Inhomogeneous DP

Let u be a smooth function on a domain Ω ⊂ Rn.

The graph

L ≡ {(x ,Du(x)) ∈ Rn × Rn = Cn : x ∈ Ω} is Lagrangian.

This gives a phase function

ψ : L→ R/2πZ

for the tangent planes of L by setting dz1 ∧ · · · ∧ dzn = eiψ, or

arctan D2u = ψ on Ω.

This phase function satisfies the equation

∇ψ = −JH on L

where H is the mean curvature vector of L.
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Some Nice Results

Theorem. (Simon Brendle and Micah Warren). Let Ω, Ω̃ ⊂ Rn be two
domains with smooth strictly convex boundaries (2nd Fund Forms > 0). Then
there exists a diffeomorphism

F : Ω −→ Ω̃

whose graph is Special Lagrangian.
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A Bernstein Theorem

Theorem. (Yu Yuan also Jost-Xin and for n = 2 Lei Fu).

Let u be a smooth solution, over all of Rn, to the equation

tr
{

arctan(D2 u)
}

= θ with |θ| > (n − 2)
π

2

(in the critical interval). Then u is a quadratic polynomial.
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Moment Conditions

Theorem. ( Lei Fu).

Boundaries of SL submanifolds are not characterized by a moment condition.
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The Degenerate Special Lagrangian Equation

There is a program, initiated by Jake Solomon in 2013, of studying his
geometry on the space of positive Lagrangians in Calabi-Yau manifolds.
Interestingly the equation which governs geodesics for the metric is a
degenerate form of the SLP-equation.

Here one works on (0,1)× X , and studies

Im{e−iθdet(In + i∇2u)} = 0, Re{e−iθdet(I + i∇2
xu)} > 0.

This is analogous to programs in the complex Monge-Ampére case.
(cf. Chen, Donaldson and Sun).

Much work has been done by Solomon, Yanir Rubinstein, Tamás Darvas, and
Matt Dellatorre.
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The SL Potential Equation and Mirror Symmetry

This began with a paper of A. Strominger, S.-T. Yau and E. Zaslow

which gave a very geometric picture of how mirror manifolds are connected.

Much has been done.

Now an analogue of the SL potential equation plays a big role.

There are very good articles by T. C. Collins, A. Jacob, N. C. Leung, D. Xie
and Y. Shi.
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A Small Insight
(X , ω) an n-dimensional Kähler manfold

a ∈ H1,1(X ,R) a fixed (1,1)-homology class.

One wants an element α ∈ a such that

Im
(

e−iθ(ω + iα)n
)

= 0.

The angle θ is determined topologically by

θ = arg
{∫

X
(ω + iα)n

}
.

This gives rise to a hermitian Yang-Mills equation

Θω(α) =
∑

k

arctan(λk ) ≡ θ (mod 2π)

where the λk ’s are eigenvalues of an endomorphism K : T 1,0X → T 1,0X given
by contracting by α and the dual of ω. Of course the elements in a all differ

from a given one α0 by ddcu for a function u on X .
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