THE SPECIAL LAGRANGIAN POTENTIAL EQUATION

with Reese Harvey

(日)

SOME HISTORY

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A Calibration on a manifold X is a smooth k-form $\varphi \in \mathcal{E}^k(X)$ with $d\varphi = 0$ such that

 $\varphi|_{P} \leq d \operatorname{vol}_{P}$

for all oriented tangent k-planes P on X.

A Calibration on a manifold X is a smooth k-form $\varphi \in \mathcal{E}^k(X)$ with $d\varphi = 0$ such that

 $\varphi|_{P} \leq d \operatorname{vol}_{P}$

for all oriented tangent k-planes P on X.

$$\mathbf{G}(\varphi) = \{ \boldsymbol{P} \in \operatorname{Grass}^{\operatorname{or}}(\boldsymbol{k}, \boldsymbol{X}) : \varphi \big|_{\boldsymbol{P}} = \boldsymbol{d} \operatorname{vol}_{\boldsymbol{P}} \}$$

A 30 A 4

A Calibration on a manifold X is a smooth k-form $\varphi \in \mathcal{E}^k(X)$ with $d\varphi = 0$ such that

$$\varphi|_{P} \leq d \operatorname{vol}_{P}$$

for all oriented tangent k-planes P on X.

$$\mathbf{G}(\varphi) = \{ \boldsymbol{P} \in \operatorname{Grass}^{\operatorname{or}}(\boldsymbol{k}, \boldsymbol{X}) : \varphi \big|_{\boldsymbol{P}} = \boldsymbol{d} \operatorname{vol}_{\boldsymbol{P}} \}$$

An oriented *k*-dimensional submanifold $M \subset X$ is a φ -submanifold if

$$T_{x}M \in \mathbf{G}(\varphi) \quad \forall x \in M.$$

PROPOSITION. A φ -submanifold is homologically volume minimizing.

PROPOSITION. A φ -submanifold is homologically volume minimizing.

Proof. If M' is homologous to the φ -submanifold M, then

$$\operatorname{vol}(\mathrm{M}') \geq \int_{\mathrm{M}'} \varphi = \int_{\mathrm{M}} \varphi = \operatorname{vol}(\mathrm{M}).$$

PROPOSITION. A φ -submanifold is homologically volume minimizing.

Proof. If M' is homologous to the φ -submanifold M, then

$$\operatorname{vol}(\mathrm{M}') \geq \int_{\mathcal{M}'} \varphi = \int_{\mathcal{M}} \varphi = \operatorname{vol}(\mathrm{M}).$$

This Proposition extends from submanifolds to integral currents.

Kähler Manifolds

Herb Federer: (using Wirtinger's inequality) If ω is the Kähler form on a Kähler manifold *X*, then

$$\frac{1}{k!}\omega^k$$
 is a calibration.

Kähler Manifolds

Herb Federer: (using Wirtinger's inequality) If ω is the Kähler form on a Kähler manifold *X*, then

$$\frac{1}{k!}\omega^k$$
 is a calibration.

The $\frac{1}{k!}\omega^k$ -submanifolds are **complex submanifolds**.

A 30 A 4

Kähler Manifolds

Herb Federer: (using Wirtinger's inequality) If ω is the Kähler form on a Kähler manifold *X*, then

 $\frac{1}{k!}\omega^k$ is a calibration.

The $\frac{1}{k!}\omega^k$ -submanifolds are complex submanifolds. The (locally closed) $\frac{1}{k!}\omega^k$ -currents are positive holomorphic chains. Jim King

In the late seventies Reese Harvey and I looked for more calibrations with large sets of φ -submanifolds.

In the late seventies Reese Harvey and I looked for more calibrations with large sets of φ -submanifolds. One which we found:

 $\varphi \equiv \operatorname{Re}\{\mathrm{d}\mathbf{z}_1 \wedge \cdots \wedge \mathrm{d}\mathbf{z}_n\} \quad \text{in } \mathbb{C}^n$

In the late seventies Reese Harvey and I looked for more calibrations with large sets of φ -submanifolds. One which we found:

 $\varphi \equiv \operatorname{Re}\{\mathbf{dz}_1 \wedge \cdots \wedge \mathbf{dz}_n\} \quad \text{in } \mathbb{C}^n$

I will work in \mathbb{C}^n ,

but we knew that everything carried over to Calabi-Yau manifolds.

$$\varphi \equiv \operatorname{Re}\{\mathrm{d} \mathbf{z}_1 \wedge \cdots \wedge \mathrm{d} \mathbf{z}_n\} \quad \text{in } \mathbb{C}^n$$

This is a sum of 2^{n-1} orthogonal simple vectors. Nevertheless, for a **unit simple** vector $\xi = e_1 \land \cdots \land e_n$

 $|\{dz_1 \wedge \cdots \wedge dz_n\}(\xi)| \leq 1$

$$\varphi \equiv \operatorname{Re}\{\mathrm{d} \mathbf{z}_1 \wedge \cdots \wedge \mathrm{d} \mathbf{z}_n\} \quad \text{in } \mathbb{C}^n$$

This is a sum of 2^{n-1} orthogonal simple vectors. Nevertheless, for a **unit simple** vector $\xi = e_1 \land \cdots \land e_n$

$$|\{dz_1 \wedge \cdots \wedge dz_n\}(\xi)| \leq 1$$

and $|\{dz_1 \wedge \cdots \wedge dz_n\}(\xi)| = 1 \iff \xi$ is Lagrangian.

Thus for a **unit simple** vector $\xi = e_1 \wedge \cdots \wedge e_n$

 $\operatorname{Re}\{dz_1 \wedge \cdots \wedge dz_n\}(\xi) = \pm 1 \qquad \Longleftrightarrow \qquad$

 ξ is Lagrangian and $\operatorname{Im} \{ dz_1 \wedge \cdots \wedge dz_n \}(\xi) = 0$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Otherwise said, for an oriented real *n*-plane *P* $\operatorname{Re}\{dz_1 \wedge \cdots \wedge dz_n\}|_P = \pm d\operatorname{vol}_P \iff$ **P** is Lagrangian and $\operatorname{Im}\{dz_1 \wedge \cdots \wedge dz_n\}|_P = 0$

Let z = x + iy, and consider a submanifold of the form

$$M^n \equiv \{(x,y): y = F(x), x \in \Omega\}.$$

where Ω is a simply-connected domain.

Let z = x + iy, and consider a submanifold of the form

$$M^n \equiv \{(x, y) : y = F(x), x \in \Omega\}.$$

where Ω is a simply-connected domain.

Lemma.

 M^n is Lagrangian $\iff \exists u : \Omega \to \mathbb{R}$ s.t. $F = \nabla u$.

.

Let z = x + iy, and consider a submanifold of the form

$$M^n \equiv \{(x, y) : y = F(x), x \in \Omega\}.$$

where Ω is a simply-connected domain.

Lemma.

 M^n is Lagrangian $\iff \exists u : \Omega \to \mathbb{R}$ s.t. $F = \nabla u$.

The tangent space to $M^n = \operatorname{graph}(F)$ at x is just the graph of $(DF)_x$.

W.r.t. coordinates $(x_1, ..., x_n, y_1, ..., y_n)$ the matrix is just

$$\left(\left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right)\right)$$

This matrix is symmetric, so under a change of variables (gx, gy) we get

$$\left(\left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right)\right) = \begin{pmatrix} \lambda_1 & \cdots \\ & \ddots & \\ & & \ddots \\ & & & \lambda_n \end{pmatrix}$$

The graph of this in $\mathbb{C}^n = \mathbb{R}^n \oplus J \mathbb{R}^n$ is spanned by

$$e_1 + \lambda_1 J e_1, \dots, e_n + \lambda_n J e_n$$

・ロト ・同ト ・ヨト ・ヨ

This matrix is symmetric, so under a change of variables (gx, gy) we get

$$\left(\left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right)\right) = \begin{pmatrix} \lambda_1 & \cdots \\ & \ddots & \\ & & \ddots \\ & & & \lambda_n \end{pmatrix}$$

The graph of this in $\mathbb{C}^n = \mathbb{R}^n \oplus J \mathbb{R}^n$ is spanned by

$$e_1 + \lambda_1 J e_1, \dots, e_n + \lambda_n J e_n$$

The corresponding simple vector is

$$\xi = (e_1 + \lambda_1 J e_1) \wedge \cdots \wedge (e_n + \lambda_n J e_n).$$

$$\xi = (e_1 + \lambda_1 J e_1) \wedge \cdots \wedge (e_n + \lambda_n J e_n).$$
$$\{ dz_1 \wedge \cdots \wedge dz_n \}(\xi) = \prod_{k=1}^n (1 + i \lambda_k)$$

・ロト ・日下・ ・ ヨト・

$$\xi = (e_1 + \lambda_1 J e_1) \wedge \cdots \wedge (e_n + \lambda_n J e_n).$$

$$\{ dz_1 \wedge \cdots \wedge dz_n \}(\xi) = \prod_{k=1}^n (1 + i \lambda_k)$$

$$\operatorname{Im}[\{ dz_1 \wedge \cdots \wedge dz_n \}(\xi)] = \sum_{k \ge 0} (-1)^{k+1} \sigma_{2k+1}(\lambda_1, \dots \lambda_n)$$

-

・ロト ・ 日 ・ ・ 日 ・ ・

$$\xi = (e_1 + \lambda_1 J e_1) \wedge \cdots \wedge (e_n + \lambda_n J e_n).$$

$$\{ dz_1 \wedge \cdots \wedge dz_n \}(\xi) = \prod_{k=1}^n (1 + i \lambda_k)$$

$$\operatorname{Im}[\{ dz_1 \wedge \cdots \wedge dz_n \}(\xi)] = \sum_{k \ge 0} (-1)^{k+1} \sigma_{2k+1}(\lambda_1, \dots \lambda_n)$$

THE SPECIAL LAGRANGIAN POTENTIAL EQUATION

$$\sum_{k \ge 0} (-1)^{k+1} \sigma_{2k+1} (\mathsf{D}^2 \, \mathsf{u}) \ = \ \mathbf{0}$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

$$\xi = (e_1 + \lambda_1 J e_1) \wedge \cdots \wedge (e_n + \lambda_n J e_n).$$

$$\{ dz_1 \wedge \cdots \wedge dz_n \}(\xi) = \prod_{k=1}^n (1 + i \lambda_k)$$

$$\operatorname{Im}[\{ dz_1 \wedge \cdots \wedge dz_n \}(\xi)] = \sum_{k \ge 0} (-1)^{k+1} \sigma_{2k+1}(\lambda_1, \dots \lambda_n)$$

THE SPECIAL LAGRANGIAN POTENTIAL EQUATION

$$\sum_{k\geq 0} (-1)^{k+1} \sigma_{2k+1} (D^2 u) = 0$$

Example (n = 3) $\operatorname{tr}(D^2 u) = det(D^2 u)$ i.e. $\Delta u = MA(u)$.

(I)

Circular Symmetry

Note that there is an S¹-symmetry If we set $\varphi \equiv \operatorname{Re} \{ e^{-i\theta} dz_1 \wedge \cdots \wedge dz_n \},$ Then we get the equation $\operatorname{Im} \left[\{ e^{-i\theta} dz_1 \wedge \cdots \wedge dz_n \}(\xi) \right] = 0, \quad \text{i.e.},$ $\operatorname{Im} \left\{ e^{-i\theta} \prod_{k=1}^{n} (1+i\lambda_k) \right\} = 0$

Blaine Lawson

October 23, 2020 13 / 38

< 同 > < 三 > < 三 >

A Different Way to Write the Equation

Caffarelli, Nirenberg and Spruck

$$\operatorname{Im}\left\{ e^{-i\theta} \prod_{k=1}^{n} (1+i\lambda_k) \right\} = 0$$

Consider

$$1 + i\lambda_k \in \mathbb{C}$$

Then

$$\lambda_k = \tan \theta_k$$
 where $-\frac{\pi}{2} < \theta_k < \frac{\pi}{2}$

A Different Way to Write the Equation

Caffarelli, Nirenberg and Spruck

$$\operatorname{Im}\left\{ e^{-i\theta} \prod_{k=1}^{n} (1+i\lambda_k) \right\} = 0$$

Consider

$$1 + i\lambda_k \in \mathbb{C}.$$

Then

$$\lambda_k = \tan \theta_k$$
 where $-\frac{\pi}{2} < \theta_k < \frac{\pi}{2}$

Now

$$\log \prod_{k=1}^{n} (1+i\lambda_k) = \sum_{k=1}^{n} \log(1+i\lambda_k) = R+i\Theta$$

A Different Way to Write the Equation

Caffarelli, Nirenberg and Spruck

$$\operatorname{Im}\left\{ e^{-i\theta} \prod_{k=1}^{n} (1+i\lambda_k) \right\} = 0$$

Consider

$$1 + i\lambda_k \in \mathbb{C}.$$

Then

$$\lambda_k = \tan \theta_k$$
 where $-\frac{\pi}{2} < \theta_k < \frac{\pi}{2}$

Now

$$\log \prod_{k=1}^{n} (1+i\lambda_k) = \sum_{k=1}^{n} \log(1+i\lambda_k) = R+i\Theta$$
$$\Theta = \sum_{k=1}^{n} \arg(1+i\lambda_k) = \sum_{k=1}^{n} \theta_k = \sum_{k=1}^{n} \arctan(\lambda_k).$$

$$\operatorname{Im}\left\{e^{-i\theta}\prod_{k=1}^{n}(1+i\lambda_{k})\right\} = \operatorname{Im}\left\{e^{-i\theta}e^{R+i\Theta}\right\} = e^{R}\operatorname{Im}\left\{e^{-i\theta}e^{i\Theta}\right\} = 0$$

$$\operatorname{Im}\left\{e^{-i\theta}\prod_{k=1}^{n}(1+i\lambda_{k})\right\} = \operatorname{Im}\left\{e^{-i\theta}e^{R+i\Theta}\right\} = e^{R}\operatorname{Im}\left\{e^{-i\theta}e^{i\Theta}\right\} = 0$$

So we have

$$\Theta = \sum_{k=1}^{n} \arctan \lambda_k = \theta \pmod{\pi}$$

Image: A matrix

$$\operatorname{Im}\left\{e^{-i\theta}\prod_{k=1}^{n}(1+i\lambda_{k})\right\} = \operatorname{Im}\left\{e^{-i\theta}e^{R+i\Theta}\right\} = e^{R}\operatorname{Im}\left\{e^{-i\theta}e^{i\Theta}\right\} = 0$$

So we have

$$\Theta = \sum_{k=1}^{n} \arctan \lambda_k = \theta \pmod{\pi}$$

Definition. For $A \in \text{Sym}^2(\mathbb{R}^n)$ we set

 $SL(A) \equiv tr \{arctan(A)\}$

$$\operatorname{Im}\left\{e^{-i\theta}\prod_{k=1}^{n}(1+i\lambda_{k})\right\} = \operatorname{Im}\left\{e^{-i\theta}e^{R+i\Theta}\right\} = e^{R}\operatorname{Im}\left\{e^{-i\theta}e^{i\Theta}\right\} = 0$$

So we have

$$\Theta = \sum_{k=1}^{n} \arctan \lambda_k = \theta \pmod{\pi}$$

Definition. For $A \in \text{Sym}^2(\mathbb{R}^n)$ we set

 $SL(A) \equiv tr \{arctan(A)\}$

SL(A) takes values in $(-n\frac{\pi}{2}, n\frac{\pi}{2})$.

(D) (A) (A) (A)

Some Things We Knew in the CG Paper

There exist many explicit and many families of solutions to these equations
Some Things We Knew in the CG Paper

There exist many explicit and many families of solutions to these equations The linearization at a solution is elliptic

Some Things We Knew in the CG Paper

There exist many explicit and many families of solutions to these equations The linearization at a solution is elliptic

Given a smooth solution to the Dirichlet Problem, there are solutions for all nearby boundary values.

Some Things We Knew in the CG Paper

There exist many explicit and many families of solutions to these equations The linearization at a solution is elliptic

Given a smooth solution to the Dirichlet Problem, there are solutions for all nearby boundary values.

A Lagrangian of mean curvature 0 is Special Lagrangian

Caffarelli, Nirenberg and Spruck (1985)

tr {arctan
$$(D^2 u)$$
} = θ
 $\theta \equiv$ phase $\in \left(-n\frac{\pi}{2}, n\frac{\pi}{2}\right).$

4 The b

Caffarelli, Nirenberg and Spruck (1985)

tr {arctan
$$(D^2 u)$$
} = θ
 $\theta \equiv$ phase $\in \left(-n\frac{\pi}{2}, n\frac{\pi}{2}\right).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Caffarelli, Nirenberg and Spruck (1985)

tr {arctan
$$(D^2 u)$$
} = θ
 $\theta \equiv$ phase $\in \left(-n\frac{\pi}{2}, n\frac{\pi}{2}\right).$

$$-n\frac{\pi}{2} - (n-1)\frac{\pi}{2} \qquad 0 \qquad (n-1)\frac{\pi}{2} \quad n\frac{\pi}{2}$$

The operator is concave on $\{A : tr(arctan, A) \ge (n-1)\frac{\pi}{2}\}$.

Caffarelli, Nirenberg and Spruck (1985)

tr {arctan
$$(D^2 u)$$
} = θ
 $\theta \equiv$ phase $\in \left(-n\frac{\pi}{2}, n\frac{\pi}{2}\right).$

$$-n\frac{\pi}{2} - (n-1)\frac{\pi}{2} \qquad 0 \qquad (n-1)\frac{\pi}{2} \quad n\frac{\pi}{2}$$

The operator is concave on $\{A : tr(arctan, A) \ge (n-1)\frac{\pi}{2}\}$. The operator is convex on $\{A : tr(arctan, A) \le -(n-1)\frac{\pi}{2}\}$.

THEOREM. (CNS) Let $|\theta| \in ((n-1)\frac{\pi}{2}, n\frac{\pi}{2})$ and consider a domain $\Omega \subset \mathbb{R}^n$ with a smooth, strictly convex boundary.

THEOREM. (CNS) Let $|\theta| \in ((n-1)\frac{\pi}{2}, n\frac{\pi}{2})$ and consider a domain $\Omega \subset \mathbb{R}^n$ with a smooth, strictly convex boundary. Then for any smooth function $\varphi \in C^{\infty}(\partial\Omega)$ there exists a unique solution $u \in C^{\infty}(\overline{\Omega})$ to the Dirichlet Problem for

$$\operatorname{tr}\left\{\operatorname{arctan}\left(D^{2}\,u
ight)
ight\}\ =\ heta$$

with $u\big|_{\partial\Omega} = \varphi$.

THEOREM. (CNS) Let $|\theta| \in ((n-1)\frac{\pi}{2}, n\frac{\pi}{2})$ and consider a domain $\Omega \subset \mathbb{R}^n$ with a smooth, strictly convex boundary. Then for any smooth function $\varphi \in C^{\infty}(\partial\Omega)$ there exists a unique solution $u \in C^{\infty}(\overline{\Omega})$ to the Dirichlet Problem for

$$\operatorname{tr}\left\{\operatorname{arctan}\left(D^{2}\,u
ight)
ight\}\ =\ heta$$

with $u\big|_{\partial\Omega} = \varphi$.

What about solutions for other phases?

Consider the subequation

$$\mathbf{F}_{\theta} \equiv \{ A \in \operatorname{Sym}^2(\mathbb{R}^n) : \operatorname{tr}(\operatorname{arctan} A) \geq \theta \}.$$

(4) (3) (4) (4) (4)

Consider the subequation

$$\mathbf{F}_{\theta} \equiv \{ A \in \operatorname{Sym}^2(\mathbb{R}^n) : \operatorname{tr}(\operatorname{arctan} A) \geq \theta \}.$$

The dual subequation is

$$\widetilde{\mathbf{F}}_{\theta} \equiv \sim \{-\mathrm{Int}\mathbf{F}_{\theta}\} = \mathbf{F}_{-\theta}$$

Consider the subequation

$$\mathbf{F}_{\theta} \equiv \{ A \in \operatorname{Sym}^2(\mathbb{R}^n) : \operatorname{tr}(\operatorname{arctan} A) \geq \theta \}.$$

The dual subequation is

$$\widetilde{\mathbf{F}}_{\theta} \equiv \sim \{-\mathrm{Int}\mathbf{F}_{\theta}\} = \mathbf{F}_{-\theta}$$

For $\Omega \subset \mathbb{R}^n$ let USC(Ω) denote the u.s.c. functions $u : \Omega \to [-\infty, \infty)$.

Consider the subequation

$$\mathbf{F}_{\theta} \equiv \{ A \in \operatorname{Sym}^2(\mathbb{R}^n) : \operatorname{tr}(\operatorname{arctan} A) \geq \theta \}.$$

The dual subequation is

$$\widetilde{\mathbf{F}}_{\theta} \equiv \sim \{-\mathrm{Int}\mathbf{F}_{\theta}\} = \mathbf{F}_{-\theta}$$

For $\Omega \subset \mathbb{R}^n$ let USC(Ω) denote the u.s.c. functions $u : \Omega \to [-\infty, \infty)$.

Def. Fix a domain $\Omega \subset \mathbb{R}^n$ and $u \in USC(\Omega)$. By a **test function** for u at $x \in \Omega$ we mean a C^2 -function ϕ in a neighborhood of x with

$$u \leq \phi$$
 near x and $u(x) = \phi(x)$.

$$\begin{aligned} \mathbf{F}_{\theta} &\equiv \{ \boldsymbol{A} \in \operatorname{Sym}^{2}(\mathbb{R}^{n}) : \operatorname{tr}(\arctan \boldsymbol{A}) \geq \theta \} \\ & \widetilde{\mathbf{F}}_{\theta} \equiv \sim \{ -\operatorname{Int} \mathbf{F}_{\theta} \} = \mathbf{F}_{-\theta} \end{aligned}$$

Def. Fix a domain $\Omega \subset \mathbb{R}^n$ and $u \in USC(\Omega)$.

$$\begin{aligned} \mathbf{F}_{\theta} &\equiv \{ \boldsymbol{A} \in \operatorname{Sym}^{2}(\mathbb{R}^{n}) : \operatorname{tr}(\operatorname{arctan} \boldsymbol{A}) \geq \theta \} \\ & \widetilde{\mathbf{F}}_{\theta} \equiv \sim \{ -\operatorname{Int} \mathbf{F}_{\theta} \} = \mathbf{F}_{-\theta} \end{aligned}$$

Def. Fix a domain $\Omega \subset \mathbb{R}^n$ and $u \in USC(\Omega)$. Then *u* is **F**_{θ}-subharmonic if for every test function ϕ for *u* at any point $x \in \Omega$, we have

 $\mathbf{D}_{\mathbf{x}}^{\mathbf{2}}\phi\in\mathbf{F}_{\theta}.$

$$\begin{aligned} \mathbf{F}_{\theta} &\equiv \{ \boldsymbol{A} \in \operatorname{Sym}^{2}(\mathbb{R}^{n}) : \operatorname{tr}(\operatorname{arctan} \boldsymbol{A}) \geq \theta \} \\ & \widetilde{\mathbf{F}}_{\theta} \equiv \sim \{ -\operatorname{Int} \mathbf{F}_{\theta} \} = \mathbf{F}_{-\theta} \end{aligned}$$

Def. Fix a domain $\Omega \subset \mathbb{R}^n$ and $u \in USC(\Omega)$. Then *u* is \mathbf{F}_{θ} -subharmonic if for every test function ϕ for *u* at any point $x \in \Omega$, we have

 $\mathbf{D}_{\mathbf{x}}^{\mathbf{2}}\phi\in\mathbf{F}_{\theta}.$

Def. $u \in C(\Omega)$ is F_{θ} -harmonic, i.e., a viscosity solution of our equation, if u is F_{θ} -subharmonic and -u is \widetilde{F}_{θ} -subharmonic Work of Wang and Yuan

These viscosity solutions are interesting.

Dake Wang and Yu Yuan found viscosity solutions in \mathbb{R}^3 to the SL potential equation,

for each θ in the interior interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Work of Wang and Yuan

These viscosity solutions are interesting.

Dake Wang and Yu Yuan found viscosity solutions in \mathbb{R}^3 to the SL potential equation,

for each θ in the interior interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

These solutions are C^{∞} outside the origin, but only $C^{1,\alpha}$, and no more, across the origin.

Work of Wang and Yuan

These viscosity solutions are interesting.

Dake Wang and Yu Yuan found viscosity solutions in \mathbb{R}^3 to the SL potential equation,

for each θ in the interior interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

These solutions are C^{∞} outside the origin, but only $C^{1,\alpha}$, and no more, across the origin.

Graphing the gradients gives infinitely many Special Lagrangian Varieties each with an isolated singularity

Definitions hold for any non-empty closed $\mathbf{F} \subset \operatorname{Sym}^2(\mathbb{R}^n)$ satisfying

 $\mathbf{F} + \{ A \ge \mathbf{0} \} \ \subset \ \mathbf{F}$

イロト イポト イヨト イヨト

Definitions hold for any non-empty closed $\mathbf{F} \subset \operatorname{Sym}^2(\mathbb{R}^n)$ satisfying

 $\textbf{F} + \{ A \geq 0 \} \ \subset \ \textbf{F}$

Theorem. (Harvey-L. 2009) Uniqueness for the (DP). For all bounded domains $\Omega \subset \mathbb{R}^n$ and $u, v \in \text{USC}(\overline{\Omega})$ with

 $\left. \boldsymbol{u} \right|_{\Omega} \left. \boldsymbol{\mathsf{F}} - \text{subharmonic} \right.$ and $\left. \boldsymbol{v} \right|_{\Omega} \left. \boldsymbol{\widetilde{\mathsf{F}}} - \text{subharmonic} \right.$

Definitions hold for any non-empty closed $\mathbf{F} \subset \operatorname{Sym}^2(\mathbb{R}^n)$ satisfying

 $\textbf{F} + \{ A \geq 0 \} \ \subset \ \textbf{F}$

Theorem. (Harvey-L. 2009) Uniqueness for the (DP). For all bounded domains $\Omega \subset \mathbb{R}^n$ and $u, v \in \text{USC}(\overline{\Omega})$ with

 $u|_{\Omega} \mathbf{F}$ – subharmonic and $v|_{\Omega} \mathbf{\widetilde{F}}$ – subharmonic one has that

$$u + v \leq 0$$
 on $\partial \Omega \Rightarrow u + v \leq 0$ on Ω .

Definitions hold for any non-empty closed $\mathbf{F} \subset \operatorname{Sym}^2(\mathbb{R}^n)$ satisfying

 $\textbf{F} + \{ A \geq 0 \} \ \subset \ \textbf{F}$

Theorem. (Harvey-L. 2009) Uniqueness for the (DP). For all bounded domains $\Omega \subset \mathbb{R}^n$ and $u, v \in \text{USC}(\overline{\Omega})$ with

 $u|_{\Omega} \mathbf{F}$ – subharmonic and $v|_{\Omega} \mathbf{\widetilde{F}}$ – subharmonic one has that

 $u + v \leq 0$ on $\partial \Omega \Rightarrow u + v \leq 0$ on Ω .

Theorem. (Harvey-L. 2009) Existence for the (DP). Let $\Omega \subset \mathbb{R}^n$ be a domain with smooth boundary $\partial \Omega$.

Definitions hold for any non-empty closed $\mathbf{F} \subset \operatorname{Sym}^2(\mathbb{R}^n)$ satisfying

 $\textbf{F} + \{ A \geq 0 \} \ \subset \ \textbf{F}$

Theorem. (Harvey-L. 2009) Uniqueness for the (DP). For all bounded domains $\Omega \subset \mathbb{R}^n$ and $u, v \in \text{USC}(\overline{\Omega})$ with

 $u|_{\Omega} \mathbf{F}$ – subharmonic and $v|_{\Omega} \mathbf{\widetilde{F}}$ – subharmonic one has that

 $u + v \leq 0$ on $\partial \Omega \implies u + v \leq 0$ on Ω .

Theorem. (Harvey-L. 2009) Existence for the (DP). Let $\Omega \subset \mathbb{R}^n$ be a domain with smooth boundary $\partial \Omega$. If at each point $x \in \partial \Omega$ the boundary is both

strictly \mathbf{F} -convex and strictly $\widetilde{\mathbf{F}}$ -convex

then Perron existence holds for the (DP).

Blaine Lawson

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Blaine Lawson

・ロト ・回ト ・ヨト ・ヨト

Def. The asymptotic interior of F is

Int
$$\overrightarrow{\mathbf{F}} \equiv \{\mathbf{A} \in \operatorname{Sym}^2(\mathbb{R}^n) : \exists \epsilon > 0 \text{ and } t_0 \ s.t. \ t(\mathbf{A} - \epsilon \mathbf{I}) \in \mathbf{F} \ \forall t \ge t_0\}$$

Def. The asymptotic interior of F is

Int
$$\overrightarrow{\mathbf{F}} \equiv \{\mathbf{A} \in \operatorname{Sym}^2(\mathbb{R}^n) : \exists \epsilon > 0 \text{ and } t_0 \ s.t. \ t(\mathbf{A} - \epsilon \mathbf{I}) \in \mathbf{F} \ \forall \ t \ge t_0\}$$

This is an **open cone** with 0 as vertex.

Def. The asymptotic interior of F is

Int
$$\overrightarrow{\mathbf{F}} \equiv \{\mathbf{A} \in \operatorname{Sym}^2(\mathbb{R}^n) : \exists \epsilon > 0 \text{ and } t_0 \ s.t. \ t(\mathbf{A} - \epsilon \mathbf{I}) \in \mathbf{F} \ \forall \ t \ge t_0\}$$

This is an **open cone** with 0 as vertex.

Def. Let II_x be the second fundamental form of $\partial \Omega$ with respect to the inward-pointing normal at *x*.

Def. The asymptotic interior of F is

Int
$$\overrightarrow{\mathbf{F}} \equiv \{\mathbf{A} \in \operatorname{Sym}^2(\mathbb{R}^n) : \exists \epsilon > 0 \text{ and } t_0 \ s.t. \ t(\mathbf{A} - \epsilon \mathbf{I}) \in \mathbf{F} \ \forall \ t \ge t_0\}$$

This is an **open cone** with 0 as vertex.

Def. Let II_x be the second fundamental form of $\partial \Omega$ with respect to the inward-pointing normal at *x*. Then $\partial \Omega$ is strictly **F-convex** if for all $x \in \partial \Omega$

$$\begin{pmatrix} II_x & 0\\ 0 & t \end{pmatrix} \in \operatorname{Int} \overrightarrow{\mathbf{F}} \qquad \forall t >> 1.$$

$$-n\frac{\pi}{2} - (n-2)\frac{\pi}{2} \qquad 0 \qquad (n-2)\frac{\pi}{2} \quad n\frac{\pi}{2}$$
$$|----|------|------|-----|$$
$$\mathbf{F}_{-\theta} = \widetilde{\mathbf{F}}_{\theta} \quad \text{and} \quad \mathbf{F}_{\theta} \subset \mathbf{F}_{-\theta} = \widetilde{\mathbf{F}}_{\theta} \text{ for } \theta > 0$$

・ロト ・回 ト ・ ヨ ト ・ ヨ

$$-n\frac{\pi}{2} - (n-2)\frac{\pi}{2} \qquad 0 \qquad (n-2)\frac{\pi}{2} \quad n\frac{\pi}{2}$$
$$|----|-----|-----|-----|-----|$$
$$\mathbf{F}_{-\theta} = \widetilde{\mathbf{F}}_{\theta} \quad \text{and} \quad \mathbf{F}_{\theta} \subset \mathbf{F}_{-\theta} = \widetilde{\mathbf{F}}_{\theta} \text{ for } \theta > 0$$
$$\mathbf{Yu} \text{ Yuan showed} \qquad \mathbf{F}_{\theta} \text{ is convex } \iff \theta \ge (n-2)\frac{\pi}{2}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$\begin{array}{rcl} & -n\frac{\pi}{2} & -(n-2)\frac{\pi}{2} & 0 & (n-2)\frac{\pi}{2} & n\frac{\pi}{2} \\ & |----|-----| & -----| & ------| & -----| \\ & & \mathbf{F}_{-\theta} \ = \ \widetilde{\mathbf{F}}_{\theta} & \text{and} & \mathbf{F}_{\theta} \subset \mathbf{F}_{-\theta} = \ \widetilde{\mathbf{F}}_{\theta} \text{ for } \theta > 0 \\ & & \mathbf{Y}_{\mathbf{U}} \text{ Yuan showed} & \mathbf{F}_{\theta} \text{ is convex } \iff \theta \ge (n-2)\frac{\pi}{2}. \end{array}$$

Special Phases: $\theta_k = (n-2k)\frac{\pi}{2}$

ъ

• • • • • • • • • • • •

Phase Intervals: $I_k = (\theta_k, \theta_{k-1})$ for k = 1, ..., n-1.

Yu

THEOREM. $\overrightarrow{\mathbf{F}}_{\theta}$ (the closure of Int $\overrightarrow{\mathbf{F}}_{\theta}$) for $\theta \in (-n\frac{\pi}{2}, n\frac{\pi}{2})$ is:

Compute Int $\overrightarrow{\mathbf{F}}_{\theta}$

THEOREM. $\overrightarrow{\mathbf{F}}_{\theta}$ (the closure of Int $\overrightarrow{\mathbf{F}}_{\theta}$) for $\theta \in (-n\frac{\pi}{2}, n\frac{\pi}{2})$ is: (1) If $\theta \in I_k$, k = 1, ..., n - 1,

$$\overrightarrow{\mathbf{F}}_{ heta} = \{ \mathbf{A} : \lambda_k(\mathbf{A}) \geq \mathbf{0} \}$$
THEOREM. $\overrightarrow{\mathbf{F}}_{\theta}$ (the closure of Int $\overrightarrow{\mathbf{F}}_{\theta}$) for $\theta \in (-n\frac{\pi}{2}, n\frac{\pi}{2})$ is: (1) If $\theta \in I_k$, k = 1, ..., n - 1,

$$\overrightarrow{\mathbf{F}}_{ heta} = \{ \mathbf{A} : \lambda_k(\mathbf{A}) \geq \mathbf{0} \}$$

where $\lambda_1(A) \leq \lambda_2(A) \leq \cdots$ are the ordered eigenvalues of A.

THEOREM. $\overrightarrow{\mathbf{F}}_{\theta}$ (the closure of Int $\overrightarrow{\mathbf{F}}_{\theta}$) for $\theta \in (-n\frac{\pi}{2}, n\frac{\pi}{2})$ is: (1) If $\theta \in I_k$, k = 1, ..., n - 1,

$$\overrightarrow{\mathbf{F}}_{ heta} = \{ \mathbf{A} : \lambda_k(\mathbf{A}) \geq \mathbf{0} \}$$

where $\lambda_1(A) \leq \lambda_2(A) \leq \cdots$ are the ordered eigenvalues of A.

(2) If
$$\theta = \theta_k$$
, $k = 1, ..., n - 1$,
 $\overrightarrow{\mathbf{F}}_{\theta_k} = \{\mathbf{A} : \lambda_k(\sigma_{n-1}(\mathbf{A})) \ge \mathbf{0}\}.$

where $\lambda_k(\sigma_{n-1}(A))$ are the ordered eigenvalues of the Gårding polynomial σ_{n-1} on A.

THEOREM. $\overrightarrow{\mathbf{F}}_{\theta}$ (the closure of Int $\overrightarrow{\mathbf{F}}_{\theta}$) for $\theta \in (-n\frac{\pi}{2}, n\frac{\pi}{2})$ is: (1) If $\theta \in I_k$, k = 1, ..., n - 1,

$$\overrightarrow{\mathbf{F}}_{ heta} = \{ \mathbf{A} : \lambda_k(\mathbf{A}) \geq \mathbf{0} \}$$

where $\lambda_1(A) \leq \lambda_2(A) \leq \cdots$ are the ordered eigenvalues of A.

(2) If
$$\theta = \theta_k$$
, $k = 1, ..., n - 1$,
 $\overrightarrow{\mathbf{F}}_{\theta_k} = \{ \mathbf{A} : \lambda_k(\sigma_{n-1}(\mathbf{A})) \ge \mathbf{0} \}.$

where $\lambda_k(\sigma_{n-1}(A))$ are the ordered eigenvalues of the Gårding polynomial σ_{n-1} on A. These eigenvalues are - the roots of $\sigma_{n-1}(tI + A)$.

THEOREM. The interior of $\overrightarrow{\mathbf{F}}_{\theta}$ is given as follows.

(1) If
$$\theta \in I_k$$
 $(k = 1, ..., n)$, then
 $\operatorname{Int} \overrightarrow{\mathbf{F}}_{\theta_k} = \operatorname{Int} \Lambda_k \equiv \{ \mathbf{A} \in \operatorname{Sym}^2(\mathbb{R}^n) : \lambda_k(\mathbf{A}) > 0 \}.$

THEOREM. The interior of $\overrightarrow{\mathbf{F}}_{\theta}$ is given as follows.

(1) If
$$\theta \in I_k$$
 $(k = 1, ..., n)$, then
 $\operatorname{Int} \overrightarrow{\mathbf{F}}_{\theta_k} = \operatorname{Int} \Lambda_k \equiv \{ \mathbf{A} \in \operatorname{Sym}^2(\mathbb{R}^n) : \lambda_k(\mathbf{A}) > 0 \}.$

(2) If
$$\theta_k$$
 ($k = 1, ..., n - 1$) is a special value, then
Int $\overrightarrow{\mathbf{F}}_{\theta_k} = \{ Int \Lambda_{k+1} \cap \Lambda_k \} \cup E_k^*$

where

$$E_k^{\star} \equiv (\operatorname{Int} \Lambda_{k+1} \sim \Lambda_k) \cap \{\sigma_{n-1}(A) \sigma_n(A) < 0\}$$

THEOREM. The interior of $\overrightarrow{\mathbf{F}}_{\theta}$ is given as follows.

(1) If
$$\theta \in I_k$$
 $(k = 1, ..., n)$, then
 $\operatorname{Int} \overrightarrow{\mathbf{F}}_{\theta_k} = \operatorname{Int} \Lambda_k \equiv \{\mathbf{A} \in \operatorname{Sym}^2(\mathbb{R}^n) : \lambda_k(\mathbf{A}) > 0\}.$

(2) If
$$\theta_k$$
 ($k = 1, ..., n - 1$) is a special value, then
Int $\overrightarrow{\mathbf{F}}_{\theta_k} = \{ Int \Lambda_{k+1} \cap \Lambda_k \} \cup E_k^*$

where

$$E_k^{\star} \equiv (\operatorname{Int} \Lambda_{k+1} \sim \Lambda_k) \cap \{\sigma_{n-1}(A) \sigma_n(A) < 0\}$$

Note: The subequations Λ_k are **quite large**. The first k - 1 eigenvalues can be < 0.

THEOREM. The interior of $\overrightarrow{\mathbf{F}}_{\theta}$ is given as follows.

(1) If
$$\theta \in I_k$$
 $(k = 1, ..., n)$, then
 $\operatorname{Int} \overrightarrow{\mathbf{F}}_{\theta_k} = \operatorname{Int} \Lambda_k \equiv \{ \mathbf{A} \in \operatorname{Sym}^2(\mathbb{R}^n) : \lambda_k(\mathbf{A}) > 0 \}.$

(2) If
$$\theta_k$$
 ($k = 1, ..., n - 1$) is a special value, then

$$\operatorname{Int} \overrightarrow{\mathbf{F}}_{\theta_k} = \{\operatorname{Int} \Lambda_{k+1} \cap \Lambda_k\} \cup E_k^*$$

where

$$E_k^{\star} \equiv (\operatorname{Int} \Lambda_{k+1} \sim \Lambda_k) \cap \{\sigma_{n-1}(A) \sigma_n(A) < 0\}$$

Note: The subequations Λ_k are **quite large**. The first k - 1 eigenvalues can be < 0.

This gives (probably) the best geometric condition on $\partial \Omega$ for existence to the (DP) for

$$tr\{arctan(D^2 u)\} = \theta.$$

A Simple Example

Consider the equation in \mathbb{R}^3 . There are three phase intervals.

|----|

・ロット (母) ・ ヨ) ・ ヨ)

A Simple Example

Consider the equation in \mathbb{R}^3 . There are three phase intervals.

|-----|

The interior one is interesting. Here the boundary condition is 2-convexity, i.e. One of the principle curvatures of the boundary must be positive.

A Simple Example

Consider the equation in \mathbb{R}^3 . There are three phase intervals.

|-----|

The interior one is interesting. Here the boundary condition is 2-convexity, i.e. One of the principle curvatures of the boundary must be positive.

・ ・ 同 ・ ・ 三 ・ ・ 三 ・

Our discussion of the equation $\sum_{i} \arctan \lambda_i(A) = \theta$ is **universal**.

It applies to many related equations.

Our discussion of the equation $\sum_{i} \arctan \lambda_i(A) = \theta$ is **universal**. It applies to many related equations.

Example: Let $\mathbf{G} : \operatorname{Sym}^2(\mathbb{R}^n) \to \mathbb{R}$ be a Gårding-Dirichlet polynomial, i.e., $\mathbf{G}(tl + A)$ has all real roots for every $A \in \operatorname{Sym}^2(\mathbb{R}^n)$.

Our discussion of the equation $\sum_{i} \arctan \lambda_i(A) = \theta$ is **universal**. It applies to many related equations.

Example: Let $\mathbf{G} : \operatorname{Sym}^2(\mathbb{R}^n) \to \mathbb{R}$ be a Gårding-Dirichlet polynomial, i.e., $\mathbf{G}(t + A)$ has all real roots for every $A \in \operatorname{Sym}^2(\mathbb{R}^n)$.

The negatives of the roots are called the **eigenvalues** $\lambda_i(A)$ of A.

Our discussion of the equation $\sum_{i} \arctan \lambda_i(A) = \theta$ is **universal**. It applies to many related equations.

Example: Let $\mathbf{G} : \operatorname{Sym}^2(\mathbb{R}^n) \to \mathbb{R}$ be a Gårding-Dirichlet polynomial, i.e., $\mathbf{G}(tI + A)$ has all real roots for every $A \in \operatorname{Sym}^2(\mathbb{R}^n)$. The negatives of the roots are called the **eigenvalues** $\lambda_i(A)$ of A. Inserting them into our equation, the entire discussion holds.

Our discussion of the equation $\sum_{i} \arctan \lambda_i(A) = \theta$ is **universal**. It applies to many related equations.

Example: Let $\mathbf{G} : \operatorname{Sym}^2(\mathbb{R}^n) \to \mathbb{R}$ be a Gårding-Dirichlet polynomial, i.e., $\mathbf{G}(tI + A)$ has all real roots for every $A \in \operatorname{Sym}^2(\mathbb{R}^n)$. The negatives of the roots are called the **eigenvalues** $\lambda_i(A)$ of A. Inserting them into our equation, the entire discussion holds.

Example: Let $u : \Omega \to \mathbb{R}$ be smooth and let $\kappa_1 \leq \cdots \leq \kappa_n$ be the **principle curvatures** of the graph of u in $\Omega \times \mathbb{R}$.

Our discussion of the equation $\sum_{i} \arctan \lambda_i(A) = \theta$ is **universal**. It applies to many related equations.

Example: Let $\mathbf{G} : \operatorname{Sym}^2(\mathbb{R}^n) \to \mathbb{R}$ be a Gårding-Dirichlet polynomial, i.e., $\mathbf{G}(tI + A)$ has all real roots for every $A \in \operatorname{Sym}^2(\mathbb{R}^n)$. The negatives of the roots are called the **eigenvalues** $\lambda_i(A)$ of A. Inserting them into our equation, the entire discussion holds.

Example: Let $u : \Omega \to \mathbb{R}$ be smooth and let $\kappa_1 \leq \cdots \leq \kappa_n$ be the **principle curvatures** of the graph of u in $\Omega \times \mathbb{R}$. Parallel results hold for $\sum_i \arctan \kappa_i = \theta$

Our discussion of the equation $\sum_{i} \arctan \lambda_i(A) = \theta$ is **universal**. It applies to many related equations.

Example: Let G : Sym²(ℝⁿ) → ℝ be a Gårding-Dirichlet polynomial,
i.e., G(tl + A) has all real roots for every A ∈ Sym²(ℝⁿ).
The negatives of the roots are called the eigenvalues λ_i(A) of A.
Inserting them into our equation, the entire discussion holds.

Example: Let $u : \Omega \to \mathbb{R}$ be smooth and let $\kappa_1 \leq \cdots \leq \kappa_n$ be the **principle curvatures** of the graph of u in $\Omega \times \mathbb{R}$. Parallel results hold for $\sum_i \arctan \kappa_i = \theta$ **Example:** Results on Riemannian manifolds.

$$\operatorname{tr}\left\{\operatorname{arctan}(D_{x}^{2}u)\right\} = \psi(x) \qquad (*$$

THEOREM. (T. Collins, S. Picard and X. Wu). Let $\Omega \subset \mathbb{R}^n$ have a C^4 boundary $\partial \Omega$. Let

$$arphi \in C^4(\partial\Omega)$$

 $\psi: \overline{\Omega} o \left((n-2)rac{\pi}{2}, \, nrac{\pi}{2}
ight) \quad ext{be} \ \ C^2.$

$$\mathrm{tr}\{\mathrm{arctan}(D_x^2 u)\} = \psi(x) \qquad (*$$

THEOREM. (T. Collins, S. Picard and X. Wu). Let $\Omega \subset \mathbb{R}^n$ have a C^4 boundary $\partial \Omega$. Let

$$arphi \in C^4(\partial\Omega)$$

 $\psi: \overline{\Omega} o \left((n-2) rac{\pi}{2}, \ nrac{\pi}{2}
ight) \quad ext{be} \ C^2.$

Suppose $\exists \underline{u} \in C^4(\overline{\Omega})$ s.t.

 $\operatorname{tr}\left\{\operatorname{arctan}(D_{x}^{2}\underline{u})\right\} \geq \psi(x) \quad \text{and} \quad \underline{u}|_{\partial\Omega} = \varphi.$

$$\mathrm{tr}\{\mathrm{arctan}(D_x^2 u)\} = \psi(x) \qquad (*$$

THEOREM. (T. Collins, S. Picard and X. Wu). Let $\Omega \subset \mathbb{R}^n$ have a C^4 boundary $\partial \Omega$. Let

$$arphi \in C^4(\partial\Omega)$$

 $\psi: \overline{\Omega} o \left((n-2) rac{\pi}{2}, \ nrac{\pi}{2}
ight) \quad ext{be} \ C^2.$

Suppose $\exists \underline{u} \in C^4(\overline{\Omega}) \ s.t.$

 $\operatorname{tr}\left\{\operatorname{arctan}(D_{x}^{2}\underline{u})\right\} \geq \psi(x) \quad \text{and} \quad \underline{u}|_{\partial\Omega} = \varphi.$

Then the (DP) for (*) admits a unique $C^{3,\alpha}(\overline{\Omega})$ -solution.

If all data are smooth, so is the solution.

$$\mathrm{tr}\{\mathrm{arctan}(D_x^2 u)\} = \psi(x) \qquad (*$$

THEOREM. (T. Collins, S. Picard and X. Wu). Let $\Omega \subset \mathbb{R}^n$ have a C^4 boundary $\partial \Omega$. Let

$$arphi \in C^4(\partial\Omega)$$

 $\psi: \overline{\Omega} o \left((n-2) rac{\pi}{2}, \ nrac{\pi}{2}
ight) \quad ext{be} \ C^2.$

Suppose $\exists \underline{u} \in C^4(\overline{\Omega}) \ s.t.$

 $\operatorname{tr}\left\{\operatorname{arctan}(D_{x}^{2}\underline{u})\right\} \geq \psi(x) \quad \text{and} \quad \underline{u}\big|_{\partial\Omega} = \varphi.$

Then the (DP) for (*) admits a unique $C^{3,\alpha}(\overline{\Omega})$ -solution.

If all data are smooth, so is the solution.

Note 1. They also prove a complex version, replacing $D^2 u$ by $(D^2 u)_{\mathbb{C}}$

$$\mathrm{tr}\{\mathrm{arctan}(D_x^2 u)\} = \psi(x) \qquad (*$$

THEOREM. (T. Collins, S. Picard and X. Wu). Let $\Omega \subset \mathbb{R}^n$ have a C^4 boundary $\partial \Omega$. Let

$$arphi \in C^4(\partial\Omega)$$

 $\psi: \overline{\Omega} o \left((n-2) rac{\pi}{2}, \ nrac{\pi}{2}
ight) \quad ext{be} \ C^2.$

Suppose $\exists \underline{u} \in C^4(\overline{\Omega}) \ s.t.$

 $\operatorname{tr}\left\{\operatorname{arctan}(D_x^2\underline{u})\right\} \geq \psi(x) \quad \text{and} \quad \underline{u}\Big|_{\partial\Omega} = \varphi.$

Then the (DP) for (*) admits a unique $C^{3,\alpha}(\overline{\Omega})$ -solution.

If all data are smooth, so is the solution.

Note 1. They also prove a complex version, replacing $D^2 u$ by $(D^2 u)_{\mathbb{C}}$

Note 2. S. Dinew, H. Do and T. D. Tô have proved the continuous viscosity version of this result.

Reese Harvey and I have a general theorem about the (IDP) for a constant coefficient operator f defined on a subequation F.

Reese Harvey and I have a general theorem about the (IDP) for a constant coefficient operator **f** defined on a subequation **F**. Consider

$$\mathbf{f}(D_x^2 u) = \psi(x) \tag{(*)}$$

on a domain $\Omega \subset \subset \mathbb{R}^n$ where

 $\psi(\overline{\Omega}) \subset \mathbf{f}(\mathbf{F}).$

Reese Harvey and I have a general theorem about the (IDP) for a constant coefficient operator **f** defined on a subequation **F**. Consider

$$\mathbf{f}(D_x^2 u) = \psi(x) \tag{(*)}$$

on a domain $\Omega \subset \subset \mathbb{R}^n$ where

 $\psi(\overline{\Omega}) \subset \mathbf{f}(\mathbf{F}).$

Then this Dirichlet problem is uniquely solvable for all $\varphi \in C(\partial \Omega)$ provided

(1) $\partial \Omega$ satisfies the boundary convexity condition,

Reese Harvey and I have a general theorem about the (IDP) for a constant coefficient operator **f** defined on a subequation **F**. Consider

$$\mathbf{f}(D_x^2 u) = \psi(x) \tag{(*)}$$

on a domain $\Omega \subset \subset \mathbb{R}^n$ where

 $\psi(\overline{\Omega}) \subset \mathbf{f}(\mathbf{F}).$

Then this Dirichlet problem is uniquely solvable for all $\varphi \in C(\partial \Omega)$ provided

- (1) $\partial \Omega$ satisfies the boundary convexity condition,
- (2) **f** is tamable.

Reese Harvey and I have a general theorem about the (IDP) for a constant coefficient operator **f** defined on a subequation **F**. Consider

$$\mathbf{f}(D_x^2 u) = \psi(x) \tag{(*)}$$

on a domain $\Omega \subset \subset \mathbb{R}^n$ where

 $\psi(\overline{\Omega}) \subset \mathbf{f}(\mathbf{F}).$

Then this Dirichlet problem is uniquely solvable for all $\varphi \in C(\partial \Omega)$ provided

- (1) $\partial \Omega$ satisfies the boundary convexity condition,
- (2) **f** is tamable.

Note 1. f is tamable if \exists a strictly increasing function $\chi : \mathbf{f}(\mathbf{F}) \to \mathbb{R}$ such that $\mathbf{g} \equiv \chi \circ \mathbf{f}$ is tame,

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Reese Harvey and I have a general theorem about the (IDP) for a constant coefficient operator **f** defined on a subequation **F**. Consider

$$\mathbf{f}(D_x^2 u) = \psi(x) \tag{(*)}$$

on a domain $\Omega \subset \subset \mathbb{R}^n$ where

 $\psi(\overline{\Omega}) \subset \mathbf{f}(\mathbf{F}).$

Then this Dirichlet problem is uniquely solvable for all $\varphi \in C(\partial \Omega)$ provided

- (1) $\partial \Omega$ satisfies the boundary convexity condition,
- (2) **f** is tamable.

Note 1. f is tamable if \exists a strictly increasing function $\chi : \mathbf{f}(\mathbf{F}) \to \mathbb{R}$ such that $\mathbf{g} \equiv \chi \circ \mathbf{f}$ is tame, where tame means that for all t > 0, $\exists c(t) > 0$ s.t.

$$\mathbf{g}(\mathbf{A}+t\mathbf{I})-\mathbf{g}(\mathbf{A}) \geq \mathbf{c}(t) \quad \forall \mathbf{A} \in \mathbf{F}.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Reese Harvey and I have a general theorem about the (IDP) for a constant coefficient operator **f** defined on a subequation **F**. Consider

$$\mathbf{f}(D_x^2 u) = \psi(x) \tag{(*)}$$

on a domain $\Omega \subset \subset \mathbb{R}^n$ where

 $\psi(\overline{\Omega}) \subset \mathbf{f}(\mathbf{F}).$

Then this Dirichlet problem is uniquely solvable for all $\varphi \in C(\partial \Omega)$ provided

- (1) $\partial \Omega$ satisfies the boundary convexity condition,
- (2) **f** is tamable.

Note 1. f is tamable if \exists a strictly increasing function $\chi : \mathbf{f}(\mathbf{F}) \to \mathbb{R}$ such that $\mathbf{g} \equiv \chi \circ \mathbf{f}$ is tame, where tame means that for all t > 0, $\exists c(t) > 0$ s.t.

$$\mathbf{g}(\mathbf{A}+t\mathbf{I})-\mathbf{g}(\mathbf{A}) \geq \mathbf{c}(t) \qquad \forall \mathbf{A} \in \mathbf{F}.$$

Note 2. The SLP operator is tamable on \mathbf{F}_{θ} for $\theta > (n-2)\frac{\pi}{2}$.

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Work of Marco Cirant and Kevin Payne

Let $\Omega \subset \mathbb{R}^n$ be a domain and consider an inhomogeneous term $\psi \in C(\overline{\Omega})$ with values in I_k , i.e.

$$\psi(\overline{\Omega}) \subset I_k = \left((n-2k)\frac{\pi}{2}, (n-2(k-1)\frac{\pi}{2})\right)$$

for some *k* with $1 \le k \le n$.

The Work of Marco Cirant and Kevin Payne

Let $\Omega \subset \mathbb{R}^n$ be a domain and consider an inhomogeneous term $\psi \in C(\overline{\Omega})$ with values in I_k , i.e.

$$\psi(\overline{\Omega}) \subset I_k = \left((n-2k)\frac{\pi}{2}, (n-2(k-1)\frac{\pi}{2})\right)$$

for some *k* with $1 \le k \le n$. Suppose $\partial \Omega$ is strictly min{k, n - k + 1}-convex.

The Work of Marco Cirant and Kevin Payne

Let $\Omega \subset \mathbb{R}^n$ be a domain and consider an inhomogeneous term $\psi \in C(\overline{\Omega})$ with values in I_k , i.e.

$$\psi(\overline{\Omega}) \subset I_k = \left((n-2k)\frac{\pi}{2}, (n-2(k-1)\frac{\pi}{2})\right)$$

for some *k* with $1 \le k \le n$.

Suppose $\partial \Omega$ is strictly min{k, n-k+1}-convex.

Then there exists a unique solution $u \in C(\overline{\Omega})$

to the inhomogeneous Dirichlet problem

for all continuous boundary values $\varphi \in C(\partial \Omega)$.

Let *u* be a smooth function on a domain $\Omega \subset \mathbb{R}^n$.

Let *u* be a smooth function on a domain $\Omega \subset \mathbb{R}^n$. The graph

 $L \equiv \{(x, Du(x)) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{C}^n : x \in \Omega\}$ is Lagrangian.

Let *u* be a smooth function on a domain $\Omega \subset \mathbb{R}^n$. The graph $L \equiv \{(x, Du(x)) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{C}^n : x \in \Omega\}$ is Lagrangian. This gives a **phase function**

 $\psi: L o \mathbb{R}/2\pi \mathbf{Z}$

for the tangent planes of *L* by setting $dz_1 \wedge \cdots \wedge dz_n = e^{i\psi}$,

Let *u* be a smooth function on a domain $\Omega \subset \mathbb{R}^n$. The graph $L \equiv \{(x, Du(x)) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{C}^n : x \in \Omega\}$ is Lagrangian. This gives a **phase function**

 $\psi: L \to \mathbb{R}/2\pi \mathbf{Z}$

for the tangent planes of *L* by setting $dz_1 \wedge \cdots \wedge dz_n = e^{i\psi}$, or

 $\arctan \mathbf{D}^2 \mathbf{u} = \psi$ on Ω .
A Geometric Interpretation of the Inhomogeneous DP

Let *u* be a smooth function on a domain $\Omega \subset \mathbb{R}^n$. The graph $L \equiv \{(x, Du(x)) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{C}^n : x \in \Omega\}$ is Lagrangian. This gives a **phase function**

 $\psi: L \to \mathbb{R}/2\pi \mathbf{Z}$

for the tangent planes of *L* by setting $dz_1 \wedge \cdots \wedge dz_n = e^{i\psi}$, or

 $\arctan \mathbf{D}^2 \mathbf{u} = \psi$ on Ω .

This phase function satisfies the equation

 $\nabla \psi = -\mathbf{J}\mathbf{H}$ on \mathbf{L}

where H is the mean curvature vector of L.

Some Nice Results

Theorem. (Simon Brendle and Micah Warren). Let $\Omega, \widetilde{\Omega} \subset \mathbb{R}^n$ be two domains with smooth strictly convex boundaries (2nd Fund Forms > 0). Then there exists a diffeomorphism

$$F: \Omega \longrightarrow \widetilde{\Omega}$$

whose graph is Special Lagrangian.

A Bernstein Theorem

Theorem. (Yu Yuan also Jost-Xin and for n = 2 Lei Fu).

Let u be a smooth solution, over all of \mathbb{R}^n , to the equation

tr {arctan(
$$D^2 u$$
)} = θ with $|\theta| > (n-2)\frac{\pi}{2}$

(in the critical interval). Then u is a quadratic polynomial.

Moment Conditions

Theorem. (Lei Fu).

Boundaries of SL submanifolds are **not** characterized by a moment condition.

There is a program, initiated by Jake Solomon in 2013, of studying his geometry on the space of positive Lagrangians in Calabi-Yau manifolds. Interestingly the equation which **governs geodesics** for the metric is a **degenerate form of the SLP-equation**.

There is a program, initiated by Jake Solomon in 2013, of studying his geometry on the space of positive Lagrangians in Calabi-Yau manifolds. Interestingly the equation which **governs geodesics** for the metric is a **degenerate form of the SLP-equation**.

Here one works on $(0, 1) \times X$, and studies

$$\operatorname{Im} \{ e^{-i\theta} \det(I_n + i\nabla^2 u) \} = 0, \qquad \operatorname{Re} \{ e^{-i\theta} \det(I + i\nabla_x^2 u) \} > 0.$$

There is a program, initiated by Jake Solomon in 2013, of studying his geometry on the space of positive Lagrangians in Calabi-Yau manifolds. Interestingly the equation which **governs geodesics** for the metric is a **degenerate form of the SLP-equation**.

Here one works on $(0, 1) \times X$, and studies

$$\operatorname{Im} \{ e^{-i\theta} \det(I_n + i\nabla^2 u) \} = 0, \qquad \operatorname{Re} \{ e^{-i\theta} \det(I + i\nabla_x^2 u) \} > 0.$$

This is analogous to programs in the complex Monge-Ampére case. (cf. Chen, Donaldson and Sun).

There is a program, initiated by Jake Solomon in 2013, of studying his geometry on the space of positive Lagrangians in Calabi-Yau manifolds. Interestingly the equation which **governs geodesics** for the metric is a **degenerate form of the SLP-equation**.

Here one works on $(0, 1) \times X$, and studies

$$\operatorname{Im} \{ e^{-i\theta} \det(I_n + i\nabla^2 u) \} = 0, \qquad \operatorname{Re} \{ e^{-i\theta} \det(I + i\nabla_x^2 u) \} > 0.$$

This is analogous to programs in the complex Monge-Ampére case. (cf. Chen, Donaldson and Sun).

Much work has been done by Solomon, Yanir Rubinstein, Tamás Darvas, and Matt Dellatorre.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The SL Potential Equation and Mirror Symmetry

This began with a paper of A. Strominger, S.-T. Yau and E. Zaslow which gave a very geometric picture of how mirror manifolds are connected.

Much has been done.

The SL Potential Equation and Mirror Symmetry

This began with a paper of A. Strominger, S.-T. Yau and E. Zaslow which gave a very geometric picture of how mirror manifolds are connected.

Much has been done.

Now an analogue of the SL potential equation plays a big role.

The SL Potential Equation and Mirror Symmetry

This began with a paper of A. Strominger, S.-T. Yau and E. Zaslow which gave a very geometric picture of how mirror manifolds are connected.

Much has been done.

Now an analogue of the SL potential equation plays a big role.

There are very good articles by T. C. Collins, A. Jacob, N. C. Leung, D. Xie and Y. Shi.

 (X, ω) an *n*-dimensional Kähler manfold

 $a \in H^{1,1}(X, \mathbb{R})$ a fixed (1,1)-homology class.

 (X, ω) an *n*-dimensional Kähler manfold $a \in H^{1,1}(X, \mathbb{R})$ a fixed (1,1)-homology class.

One wants an element $\alpha \in a$ such that

$$\operatorname{Im}\left(\boldsymbol{e}^{-i\theta}(\omega+i\alpha)^{n}\right) = \mathbf{0}$$

 (X, ω) an *n*-dimensional Kähler manfold $a \in H^{1,1}(X, \mathbb{R})$ a fixed (1,1)-homology class.

One wants an element $\alpha \in a$ such that

$$\operatorname{Im}\left(\boldsymbol{e}^{-i\theta}(\omega+i\alpha)^{n}\right) = \mathbf{0}$$

The angle $\boldsymbol{\theta}$ is determined topologically by

$$\theta = \arg \left\{ \int_X (\omega + i\alpha)^n \right\}.$$

 (X, ω) an *n*-dimensional Kähler manfold $a \in H^{1,1}(X, \mathbb{R})$ a fixed (1,1)-homology class.

One wants an element $\alpha \in a$ such that

$$\operatorname{Im}\left(\boldsymbol{e}^{-i\theta}(\omega+i\alpha)^{n}\right) = \mathbf{0}$$

The angle $\boldsymbol{\theta}$ is determined topologically by

$$\theta = \arg \left\{ \int_X (\omega + i\alpha)^n \right\}.$$

This gives rise to a hermitian Yang-Mills equation

$$\Theta_{\omega}(\alpha) = \sum_{k} \arctan(\lambda_k) \equiv \theta \pmod{2\pi}$$

where the λ_k 's are eigenvalues of an endomorphism $K : T^{1,0}X \to T^{1,0}X$ given by contracting by α and the dual of ω . Of course the elements in *a* all differ from a given one α_0 by $dd^c u$ for a function *u* on *X*.