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The Classical Theory of Minimal Surfaces

Riemann, Weierstrauss

In particular we have:

d
dt

A (Σt )

∣∣∣∣
t=0

= 0.
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A Geometric Characterization
THE GAUSS MAP

N : Σ −→ S2

The Gauss map associates to each point x ∈ Σ, the normal vector N(x) to Σ
at x , i.e., the vector perpendicular to the tangent plane to Σ at x .

r
J

I
f'.

\

Σ is minimal if and only if the Gauss map is (anti)-conformal.
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Σ is minimal if and only if the Gauss map is (anti)-conformal.

Angles are preserved (but direction is reversed).

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 8 / 41



Complex Anaysis Enters the Picture
Take Stereographic Projection

Complex Analysis is

a rich and deep subject

with many beautiful results.

We will return to this later.Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 9 / 41



Elementary Question

Suppose our surface Σ is the graph of a function z = f (x , y)
over a domain D in the (x , y)-plane

.

When is this graph a minimal surface?

ANSWER: It must satisfy the differential equation

(1 + f 2
y )fxx + (1 + f 2

x )fyy − 2fx fy fxy = 0.
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The Dirichlet Problem

Let D be the round disk of radius R.
Let ϕ be an arbitrary continuous function on the boundary circle.

.

Theorem. There exists a unique function f (x , y) continuous on D and smooth
in its interior, such that f = ϕ on ∂D and in the interior it satisfies the minimal
surface equation:

(1 + |∇f |2)∆f − (∇f )tH(f )∇f = 0

x
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The Bernstein Theorem

This gives us a wildly abundant family of minimal surfaces
which are graphs over disks of radius R.

Now imagine letting R →∞
and making clever choices for boundary curves ϕ.

.

One would expect to produce many functions f (x , y)
defined over the entire (x , y)-plane and satisfying the M.S.Eqn.

Surprise!!

The Bernstein Theorem (1918). Any solution of the minimal surface
equation which is defined for all (x , y) in the plane must be is linear, i.e., its
graph is an affine 2-plane.
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This is a beautiful and astonishing result.

If we remove a tiny disk from the plane,
there is a function defined everywhere outside that disk

whose graph is a minimal surface.

This is also true if we remove a half-line from the plane,

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 13 / 41



This is a beautiful and astonishing result.

If we remove a tiny disk from the plane,
there is a function defined everywhere outside that disk

whose graph is a minimal surface.

This is also true if we remove a half-line from the plane,

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 13 / 41



Is this a special case – a quirk of nature?

Or – is there something deeper hidden behind this result?
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Bob Osserman

In 1959 Bob gave a wonderful geometric generalization
of Bernstein’s Theorem.

In fact a significant body of his subsequent research
revolved around the mathematical questions

engendered by this initial result.

To understand his theorem
we must return to the Gauss Map.
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Notice: If
Σ = {(x , y , f (x , y)) : (x , y) ∈ D}

is a the graph of a function, then

the image of the Gauss map lies in the upper hemisphere

1"
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Theorem (Osserman – 1959).

Let Σ ⊂ E3 be a complete minimal surface whose Gauss image misses a
neighborhood of some point in S2. Then Σ is a plane.

Complete means there is no curve of finite length in Σ which gets to the “end”
or “boundary” of the surface (i.e., which exits every compact subset).

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 17 / 41



Theorem (Osserman – 1959).

Let Σ ⊂ E3 be a complete minimal surface whose Gauss image misses a
neighborhood of some point in S2. Then Σ is a plane.

Complete means there is no curve of finite length in Σ which gets to the “end”
or “boundary” of the surface (i.e., which exits every compact subset).

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 17 / 41



Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 18 / 41



Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 19 / 41



Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 20 / 41



Idea of Proof.

By passing to the universal covering we can assume that Σ is parameterized
(perhaps redundantly) by a conformal mapping

ψ : R −→ E3

of a simply connected Riemann surface R.

By the Koebe Uniformization Theorem R is conformally equivalent to either
the unit disk ∆ or the complex plane C.

Recall that the Gauss map gives a conformal mapping

N : C −→ S2 = C ∪ {∞}

We may assume that N misses a neighbothood of the north pole.
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Thus after stereographic projection,

the Gauss map becomes a bounded holomorphic function. If R ∼= C, then
Liouville’s Theorem implies that the Gauss map must be constant, which
immediately implies that Σ is a plane.
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We are reduced to the case where R is conformally the unit disk.

Applying the Weierstrauss Representation Theorem and a clever complex
analysis argument, Bob Osserman showed that the induced metric could not
be complete.

The argument boils down to the following assertion. Let f : ∆→ C be a
holomorphic function which is nowhere zero. Then the riemannian metric

ds2 = |f (z)|2|dz|2

is not complete. To see this set

F (z) ≡
∫ z

0
f (ζ) dζ.

By Liouville’s Theorem there is a maximal disk {|w | < r} of finite radius on
which the inverse function G(w) = F−1(w) is defined (with G(0) = 0), and
there is a point w0 with |w0| = r such that G cannot be analytically continued
into any neighborhood of w0.

Now the path Γ = G({tw0 : 0 ≤ t < 1}) has finite length (≤ r ) and must go to
the boundary in ∆.
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Theorem (Osserman – 1961).

Let Σ ⊂ E3 be a complete minimal surface whose Gauss image misses a set
of positive logarithmic capacity in S2. Then Σ is a plane.
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Gauss Curvature

Gauss curvature is a function K : Σ→ R which is characterized in several
ways.

K>
l<=o t<

On a minimal surface K ≤ 0.
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Theorem (Osserman – 1961).

Let Σ ⊂ E3 be a complete minimal surface whose Gauss image misses a set
of logarithmic capacity zero in S2. Then Σ is a plane.

Theorem (Osserman – 1964).

Let Σ ⊂ E3 be a complete minimal surface.

1. Suppose
∫

Σ
K dA = −∞, then the normals assume every direction

infinitely often except for a set of logarithmic capacity zero.

2. Suppose
∫

Σ
K dA is finite but not zero. Then the normals assume all but at

most three directions.

3. If
∫

Σ
K dA = 0, then Σ is a plane.

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 26 / 41



Theorem (Osserman – 1961).

Let Σ ⊂ E3 be a complete minimal surface whose Gauss image misses a set
of logarithmic capacity zero in S2. Then Σ is a plane.

Theorem (Osserman – 1964).

Let Σ ⊂ E3 be a complete minimal surface.

1. Suppose
∫

Σ
K dA = −∞, then the normals assume every direction

infinitely often except for a set of logarithmic capacity zero.

2. Suppose
∫

Σ
K dA is finite but not zero. Then the normals assume all but at

most three directions.

3. If
∫

Σ
K dA = 0, then Σ is a plane.

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 26 / 41



Theorem (Osserman – 1961).

Let Σ ⊂ E3 be a complete minimal surface whose Gauss image misses a set
of logarithmic capacity zero in S2. Then Σ is a plane.

Theorem (Osserman – 1964).

Let Σ ⊂ E3 be a complete minimal surface.

1. Suppose
∫

Σ
K dA = −∞, then the normals assume every direction

infinitely often except for a set of logarithmic capacity zero.

2. Suppose
∫

Σ
K dA is finite but not zero. Then the normals assume all but at

most three directions.

3. If
∫

Σ
K dA = 0, then Σ is a plane.

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 26 / 41



Theorem (Osserman – 1961).

Let Σ ⊂ E3 be a complete minimal surface whose Gauss image misses a set
of logarithmic capacity zero in S2. Then Σ is a plane.

Theorem (Osserman – 1964).

Let Σ ⊂ E3 be a complete minimal surface.

1. Suppose
∫

Σ
K dA = −∞, then the normals assume every direction

infinitely often except for a set of logarithmic capacity zero.

2. Suppose
∫

Σ
K dA is finite but not zero. Then the normals assume all but at

most three directions.

3. If
∫

Σ
K dA = 0, then Σ is a plane.

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 26 / 41



Conjectures of Nirenberg

Prior to Bob’s first work on minimal surfaces, Louis Nirenberg made the
following conjectures. They were based (I imagine) on taking seriously the
analogy between the Gauss map of a complete minimal surface in E3 and a
holomorphic function on C.

Conjecture 1 (Liouville-type theorem). If the Gauss map of a complete minimal
surface in E3 misses a neighborhood of some point, the surface is a plane.

(Proved by Bob)

Conjecture 2 (Picard-type theorem). If the Gauss map of a complete minimal
surface in E3 misses three points, the surface is a plane.

(Proved to be wrong by Bob!)
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Subsequent Spectacular Work

Theorem.(F. Xavier – 1982).

If the Gauss map of a complete minimal surface omits 7 points of the sphere,
the surface is a plane

Theorem.(H. Fugimoto – 1988).

If the Gauss map of a complete minimal surface omits 5 points of the sphere,
the surface is a plane

Theorem.(Osserman and Mo – 1990).

If the Gauss map of a complete minimal surface assumes five distinct values
only a finite number of times, then the surface has finite total curvature.
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Minimal Surfaces in En

Consider now a minimal surface

Σ ⊂ En

for a general dimension n ≥ 3.

At each x ∈ Σ the vectors normal to Σ form a vector space of dimension n− 2.

Theorem. (Osserman – 1964).

Suppose all the normals to Σ (at all points) make an angle ≥ α > 0 with
respect to some fixed direction. Fix x ∈ Σ and let d be the distance from x to
the boundary of Σ. Then the Gauss curvature of Σ at x satisfies

|K (x)| ≤ 16(n − 1)

d2 sin4 α

Corollary If Σ is complete and all the normals to Σ make an angle ≥ α > 0
with respect to some fixed direction, then Σ is a plane.
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Minimal Surfaces in En – Another View
Let Σ ⊂ En be a minimal surface. Choosing isothermal coordinates z = x + iy
gives a local conformal parameterization

ψ : ∆ −→ Σ ⊂ En.

where ψ = (ψ1, .̇., ψn).

Conformality is equivalent to

|ψx |2 = |ψy |2 and 〈ψx , ψy 〉 = 0.

Setting
ϕ ≡ ∂ψ

∂z = 1
2 (ψx − iψy )

this conformality becomes

ϕ2 =
n∑

k=1

ϕ2
k ≡ 0.

The minimal surface equation is equivalent to ψ being harmonic.

4∆ψ =
∂

∂z
∂ψ

∂z
=

∂ϕ

∂z
= 0.

Thus φ is holomorphic.
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If we make a conformal change of coordinates w = w(z),

the new function ϕ̃ is simply

ϕ̃(w) = ϕ(z)
dz
dw

and so we have a well defined point

Φ(z) ≡ [ϕ(z)] ∈ Pn−1(C)

in complex projective space.This gives a holomorphic mapping

Φ : Σ −→ Qn−2 ⊂ Pn−1(C)

where Qn−2 is the algebraic variety defined by

Qn−2 ≡
{

[Z ] ∈ Pn−1(C) : Z 2
1 + · · ·+ Z 2

n = 0
}

This is just the Grassmannian of oriented 2-planes in Rn.

Φ is the Generalized Gauss Mapping.
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Theorem. (S. S. Chern – 1965)

Let Σ ⊂ En be a complete minimal surface. Suppose the Gauss image Φ(Σ)
misses a neighborhood of some hyperplane Pn−2 ⊂ Pn−1.

Then Σ is an affine 2-plane.

This result is essentially the same as the Corollary of Bob’s Theorem above.

At this point Chern and Osserman began a collaboration which led to a
wonderful series of results about complete minimal surfaces in En.

This was followed by a long collaboration of Hoffman and Osserman who
obtained beautiful generalizations of many of the results I have discussed to
more general surfaces in En
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Graphs in En

Some years later Bob and I addressed the elementary question:

What can one say about the Dirichlet problem for the minimal surface
equation in En?

In E3 there is a beautiful and complete theory.

This is also true for hypersurfaces in En.

The general setting is the following.

Write
En = Ep × Eq

and consider a strictly convex domain

Ω ⊂ Ep

with smooth boundary.

Consider the graph

Γ(f ) = {(x , f (x)) : x ∈ Ω} = Ep+q

of a smooth function
f : Ω→ Eq .
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Then Γ ⊂ Ep+q is a minimal submanifold

if and only if f satisfies the following system of differential equations:

p∑
i,j=1

∂

∂xi

(
√

gg ij ∂f
∂xj

)
= 0

where
gij = δij + 〈fxi , fxj 〉, ((g ij )) = ((gij ))−1 and g = det((gij )).

For functions f which are only Lipschitz these equations can be replaced by
the requirement that the the area of the graph be stationary.
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The Dirichlet Problem:

Given a continuous function

ϕ : ∂Ω → Eq ,

does there exist a function
f : Ω → Eq

which satisfies the minimal surface equation in Ω and agrees with ϕ on the
boundary?

Theorem. (Morrey – 1954)

Any C1 function which satisfies the minimal surface equation is real analytic.

Theorem. (Allard – 1975)

Boundary regularity holds for solutions to the Dirichlet Problem.

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 36 / 41



The Dirichlet Problem:

Given a continuous function

ϕ : ∂Ω → Eq ,

does there exist a function
f : Ω → Eq

which satisfies the minimal surface equation in Ω and agrees with ϕ on the
boundary?

Theorem. (Morrey – 1954)

Any C1 function which satisfies the minimal surface equation is real analytic.

Theorem. (Allard – 1975)

Boundary regularity holds for solutions to the Dirichlet Problem.

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 36 / 41



The Dirichlet Problem:

Given a continuous function

ϕ : ∂Ω → Eq ,

does there exist a function
f : Ω → Eq

which satisfies the minimal surface equation in Ω and agrees with ϕ on the
boundary?

Theorem. (Morrey – 1954)

Any C1 function which satisfies the minimal surface equation is real analytic.

Theorem. (Allard – 1975)

Boundary regularity holds for solutions to the Dirichlet Problem.

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 36 / 41



The Dirichlet Problem:

Given a continuous function

ϕ : ∂Ω → Eq ,

does there exist a function
f : Ω → Eq

which satisfies the minimal surface equation in Ω and agrees with ϕ on the
boundary?

Theorem. (Morrey – 1954)

Any C1 function which satisfies the minimal surface equation is real analytic.

Theorem. (Allard – 1975)

Boundary regularity holds for solutions to the Dirichlet Problem.

Blaine Lawson () Reflections on the Early Mathematical Life of Bob Osserman April 21, 2012 36 / 41



My Work with Bob:

Theorem. (L and O – 1977)

Existence fails for solutions to the Dirichlet problem.

Theorem. (L and O – 1977)

Uniqueness fails for solutions to the Dirichlet problem.

Theorem. (L and O – 1977)

Regularity fails for solutions to the Dirichlet problem. There are Lipschitz
solutions which are not C1.
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Theorem. (L and O – 1977)

Let
ϕ : Sp−1 → Sq−1

be a map which is not homotopic to zero.

Consider the boundary function

ϕr : Sp−1 → Eq where ϕr (x) ≡ rϕ(x).

for a constant r > 0.

Then for all r sufficiently small,

the Dirichlet problem is solvable.

However, there exists R > 0 such that for all r > R

the Dirichlet problem has no solution

.
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Question: As r →∞ we pass from existence to non-existence.

What happens in between?
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The Simplest Case

The Hopf Mapping:
H : S3 → S2

Let

ϕ =

√
5

2
H.

Theorem. (L and 0)

The cone on the Hopf map

f (x) = ‖x‖ϕ
(

x
‖x‖

)
for‖x‖ ≤ 1

is the solution to the Dirichlet problem on the unit 4-disk D for boundary
values ϕ on ∂D = S3.
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