Reflections on the Early Mathematical Life of Bob Osserman

ヘロト ヘヨト ヘヨト ヘヨ

Blaine Lawson ()

Reflections on the Early Mathematical Life of Bob Oss

April 21, 2012 1 / 41

Blaine Lawson ()

Reflections on the Early Mathematical Life of Bob Osse

April 21, 2012 2 / 41

Image: A matched black

Riemann, Weierstrauss

Riemann, Weierstrauss

The Idea: Consider a smooth surface in Euclidean 3-space $\Sigma \subset \mathbf{E}^3$.

Riemann, Weierstrauss

The Idea: Consider a smooth surface in Euclidean 3-space $\Sigma \subset \mathbf{E}^3$.

 Σ is called a minimal surface, if for every deformation Σ_t , ($\Sigma_0 = \Sigma$) in the interior, the area satisfies

 $A(\Sigma_t) \geq A(\Sigma)$.

Riemann, Weierstrauss

The Idea: Consider a smooth surface in Euclidean 3-space $\Sigma \subset \mathbf{E}^3$.

 Σ is called a minimal surface, if for every deformation Σ_t , ($\Sigma_0 = \Sigma$) in the interior, the area satisfies

 $A(\Sigma_t) \geq A(\Sigma)$.

Riemann, Weierstrauss

In particular we have:

$$\left.\frac{d}{dt}A(\Sigma_t)\right|_{t=0} = 0.$$

A Geometric Characterization THE GAUSS MAP

$$N:\Sigma \longrightarrow S^2$$

The Gauss map associates to each point $x \in \Sigma$, the normal vector N(x) to Σ at x, i.e., the vector perpendicular to the tangent plane to Σ at x.

Reflections on the Early Mathematical Life of Bob Oss

 Σ is **minimal** if and only if the Gauss map is (anti)-**conformal**.

Angles are preserved (but direction is reversed).

500

Complex Anaysis Enters the Picture

Take Stereographic Projection

Complex Analysis is

a rich and deep subject

with many beautiful results.

Blaine Lawson ()

Reflections on the Early Mathematical Life of Bob Oss

April 21, 2012 9 / 41

Elementary Question

Suppose our surface Σ is the graph of a function z = f(x, y)over a domain *D* in the (x, y)-plane

When is this graph a minimal surface?

ANSWER: It must satisfy the differential equation

$$(1+f_y^2)f_{xx}+(1+f_x^2)f_{yy}-2f_xf_yf_{xy} = 0.$$

The Dirichlet Problem

Let *D* be the round disk of radius *R*.

Let φ be an arbitrary continuous function on the boundary circle.

Theorem. There exists a unique function f(x, y) continuous on D and smooth in its interior, such that $f = \varphi$ on ∂D and in the interior it satisfies the minimal surface equation:

 $(1+|\nabla f|^2)\Delta f - (\nabla f)^t \mathbf{H}(f)\nabla f = 0$

This gives us a wildly abundant family of minimal surfaces which are graphs over disks of radius *R*.

This gives us a wildly abundant family of minimal surfaces which are graphs over disks of radius *R*.

Now imagine letting $R \to \infty$ and making clever choices for boundary curves φ .

This gives us a wildly abundant family of minimal surfaces which are graphs over disks of radius *R*.

Now imagine letting $R \to \infty$ and making clever choices for boundary curves φ .

One would expect to produce many functions f(x, y) defined over the entire (x, y)-plane and satisfying the M.S.Eqn.

This gives us a wildly abundant family of minimal surfaces which are graphs over disks of radius *R*.

Now imagine letting $R \to \infty$ and making clever choices for boundary curves φ .

One would expect to produce many functions f(x, y) defined over the entire (x, y)-plane and satisfying the M.S.Eqn.

Surprise!!

The Bernstein Theorem (1918). Any solution of the minimal surface equation which is defined for all (x, y) in the plane must be is linear, i.e., its graph is an affine 2-plane.

ロト イポト イラト イラト

This is a beautiful and astonishing result.

If we remove a tiny disk from the plane, there is a function defined everywhere outside that disk whose graph is a minimal surface.

This is also true if we remove a half-line from the plane,

This is a beautiful and astonishing result.

If we remove a tiny disk from the plane, there is a function defined everywhere outside that disk whose graph is a minimal surface.

This is also true if we remove a half-line from the plane,

Is this a special case - a quirk of nature?

Or - is there something deeper hidden behind this result?

< 3 >

Bob Osserman

In 1959 Bob gave a wonderful geometric generalization of Bernstein's Theorem.

In fact a significant body of his subsequent research revolved around the mathematical questions engendered by this initial result.

To understand his theorem we must return to the **Gauss Map**.

Notice: If

$$\Sigma = \{(x, y, f(x, y)) : (x, y) \in D\}$$

is a the graph of a function, then

the image of the Gauss map lies in the upper hemisphere

Theorem (Osserman – 1959).

Let $\Sigma \subset E^3$ be a complete minimal surface whose Gauss image misses a neighborhood of some point in S^2 . Then Σ is a plane.

Complete means there is no curve of finite length in Σ which gets to the "end" or "boundary" of the surface (i.e., which exits every compact subset).

Theorem (Osserman – 1959).

Let $\Sigma \subset E^3$ be a complete minimal surface whose Gauss image misses a neighborhood of some point in S^2 . Then Σ is a plane.

Complete means there is no curve of finite length in Σ which gets to the "end" or "boundary" of the surface (i.e., which exits every compact subset).

April 21, 2012 18 / 41

◆□→ ◆□→ ◆注→ ◆注→ ○注

April 21, 2012 19 / 41

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

April 21, 2012 20 / 41

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

By passing to the universal covering we can assume that Σ is parameterized (perhaps redundantly) by a conformal mapping

$$\psi: \mathbf{R} \longrightarrow \mathbb{E}^3$$

of a simply connected Riemann surface R.

By passing to the universal covering we can assume that Σ is parameterized (perhaps redundantly) by a conformal mapping

$$\psi: \mathbf{R} \longrightarrow \mathbb{E}^3$$

of a simply connected Riemann surface R.

By the Koebe Uniformization Theorem *R* is conformally equivalent to either the unit disk Δ or the complex plane \mathbb{C} .

By passing to the universal covering we can assume that Σ is parameterized (perhaps redundantly) by a conformal mapping

$$\psi: \mathbf{R} \longrightarrow \mathbb{E}^3$$

of a simply connected Riemann surface R.

By the Koebe Uniformization Theorem *R* is conformally equivalent to either the unit disk Δ or the complex plane \mathbb{C} .

Recall that the Gauss map gives a conformal mapping

$$N: \mathbb{C} \longrightarrow S^2 = \mathbb{C} \cup \{\infty\}$$

By passing to the universal covering we can assume that Σ is parameterized (perhaps redundantly) by a conformal mapping

$$\psi: \mathbf{R} \longrightarrow \mathbb{E}^3$$

of a simply connected Riemann surface R.

By the Koebe Uniformization Theorem *R* is conformally equivalent to either the unit disk Δ or the complex plane \mathbb{C} .

Recall that the Gauss map gives a conformal mapping

$$N: \mathbb{C} \longrightarrow S^2 = \mathbb{C} \cup \{\infty\}$$

We may assume that *N* misses a neighbothood of the north pole.

Thus after stereographic projection,

the Gauss map becomes a bounded holomorphic function. If $R \cong \mathbb{C}$, then Liouville's Theorem implies that the Gauss map must be constant, which immediately implies that Σ is a plane.

Thus after stereographic projection,

the Gauss map becomes a bounded holomorphic function. If $R \cong \mathbb{C}$, then Liouville's Theorem implies that the Gauss map must be constant, which immediately implies that Σ is a plane.

Applying the Weierstrauss Representation Theorem and a clever complex analysis argument, Bob Osserman showed that the induced metric could not be complete.

The argument boils down to the following assertion. Let $f : \Delta \to \mathbb{C}$ be a holomorphic function which is nowhere zero. Then the riemannian metric

$$ds^2 = |f(z)|^2 |dz|^2$$

is not complete. To see this set

$$F(z) \equiv \int_0^z f(\zeta) d\zeta.$$

By Liouville's Theorem there is a maximal disk $\{|w| < r\}$ of finite radius on which the inverse function $G(w) = F^{-1}(w)$ is defined (with G(0) = 0), and there is a point w_0 with $|w_0| = r$ such that *G* cannot be analytically continued into any neighborhood of w_0 .

Applying the Weierstrauss Representation Theorem and a clever complex analysis argument, Bob Osserman showed that the induced metric could not be complete.

The argument boils down to the following assertion. Let $f : \Delta \to \mathbb{C}$ be a holomorphic function which is nowhere zero. Then the riemannian metric

$$ds^2 = |f(z)|^2 |dz|^2$$

is not complete. To see this set

$$F(z) \equiv \int_0^z f(\zeta) d\zeta.$$

By Liouville's Theorem there is a maximal disk $\{|w| < r\}$ of finite radius on which the inverse function $G(w) = F^{-1}(w)$ is defined (with G(0) = 0), and there is a point w_0 with $|w_0| = r$ such that *G* cannot be analytically continued into any neighborhood of w_0 .

Applying the Weierstrauss Representation Theorem and a clever complex analysis argument, Bob Osserman showed that the induced metric could not be complete.

The argument boils down to the following assertion. Let $f : \Delta \to \mathbb{C}$ be a holomorphic function which is nowhere zero. Then the riemannian metric

$$ds^2 = |f(z)|^2 |dz|^2$$

is not complete. To see this set

$$\mathsf{F}(z) \equiv \int_0^z f(\zeta) \, d\zeta.$$

By Liouville's Theorem there is a maximal disk $\{|w| < r\}$ of finite radius on which the inverse function $G(w) = F^{-1}(w)$ is defined (with G(0) = 0), and there is a point w_0 with $|w_0| = r$ such that *G* cannot be analytically continued into any neighborhood of w_0 .

Applying the Weierstrauss Representation Theorem and a clever complex analysis argument, Bob Osserman showed that the induced metric could not be complete.

The argument boils down to the following assertion. Let $f : \Delta \to \mathbb{C}$ be a holomorphic function which is nowhere zero. Then the riemannian metric

$$ds^2 = |f(z)|^2 |dz|^2$$

is not complete. To see this set

$$F(z) \equiv \int_0^z f(\zeta) \, d\zeta.$$

By Liouville's Theorem there is a maximal disk $\{|w| < r\}$ of finite radius on which the inverse function $G(w) = F^{-1}(w)$ is defined (with G(0) = 0), and there is a point w_0 with $|w_0| = r$ such that *G* cannot be analytically continued into any neighborhood of w_0 .
We are reduced to the case where R is conformally the unit disk.

Applying the Weierstrauss Representation Theorem and a clever complex analysis argument, Bob Osserman showed that the induced metric could not be complete.

The argument boils down to the following assertion. Let $f : \Delta \to \mathbb{C}$ be a holomorphic function which is nowhere zero. Then the riemannian metric

$$ds^2 = |f(z)|^2 |dz|^2$$

is not complete. To see this set

$$F(z) \equiv \int_0^z f(\zeta) \, d\zeta.$$

By Liouville's Theorem there is a maximal disk $\{|w| < r\}$ of finite radius on which the inverse function $G(w) = F^{-1}(w)$ is defined (with G(0) = 0), and there is a point w_0 with $|w_0| = r$ such that *G* cannot be analytically continued into any neighborhood of w_0 .

Now the path $\Gamma = G(\{tw_0 : 0 \le t < 1\})$ has finite length $(\le r)$ and must go to the boundary in Δ .

Blaine Lawson ()

We are reduced to the case where *R* is conformally the unit disk.

Applying the Weierstrauss Representation Theorem and a clever complex analysis argument, Bob Osserman showed that the induced metric could not be complete.

The argument boils down to the following assertion. Let $f : \Delta \to \mathbb{C}$ be a holomorphic function which is nowhere zero. Then the riemannian metric

$$ds^2 = |f(z)|^2 |dz|^2$$

is not complete. To see this set

$$F(z) \equiv \int_0^z f(\zeta) \, d\zeta.$$

By Liouville's Theorem there is a maximal disk $\{|w| < r\}$ of finite radius on which the inverse function $G(w) = F^{-1}(w)$ is defined (with G(0) = 0), and there is a point w_0 with $|w_0| = r$ such that *G* cannot be analytically continued into any neighborhood of w_0 .

Now the path $\Gamma = G(\{tw_0 : 0 \le t < 1\})$ has finite length $(\le r)$ and must go to the boundary in Δ .

Let $\Sigma \subset E^3$ be a complete minimal surface whose Gauss image misses a set of positive logarithmic capacity in S^2 . Then Σ is a plane.

(4) The h

Gauss Curvature

Gauss curvature is a function $K:\Sigma\to\mathbb{R}$ which is characterized in several ways.

On a minimal surface $K \leq 0$.

(D) (A) (A) (A)

Let $\Sigma \subset E^3$ be a complete minimal surface whose Gauss image misses a set of logarithmic capacity zero in S^2 . Then Σ is a plane.

Theorem (Osserman – 1964).

Let $\Sigma \subset E^3$ be a complete minimal surface.

1. Suppose $\int_{\Sigma} K dA = -\infty$, then the normals assume every direction infinitely often except for a set of logarithmic capacity zero.

2. Suppose $\int_{\Sigma} K dA$ is finite but not zero. Then the normals assume all but at most three directions.

3. If $\int_{\Sigma} K \, dA = 0$, then Σ is a plane.

Let $\Sigma \subset E^3$ be a complete minimal surface whose Gauss image misses a set of logarithmic capacity zero in S^2 . Then Σ is a plane.

Theorem (Osserman – 1964).

Let $\Sigma \subset E^3$ be a complete minimal surface.

1. Suppose $\int_{\Sigma} K dA = -\infty$, then the normals assume every direction infinitely often except for a set of logarithmic capacity zero.

2. Suppose $\int_{\Sigma} K dA$ is finite but not zero. Then the normals assume all but at most three directions.

3. If $\int_{\Sigma} K \, dA = 0$, then Σ is a plane.

Let $\Sigma \subset E^3$ be a complete minimal surface whose Gauss image misses a set of logarithmic capacity zero in S^2 . Then Σ is a plane.

Theorem (Osserman – 1964).

Let $\Sigma \subset E^3$ be a complete minimal surface.

1. Suppose $\int_{\Sigma} K dA = -\infty$, then the normals assume every direction infinitely often except for a set of logarithmic capacity zero.

2. Suppose $\int_{\Sigma} K dA$ is finite but not zero. Then the normals assume all but at most three directions.

3. If $\int_{\Sigma} K \, dA = 0$, then Σ is a plane.

Let $\Sigma \subset E^3$ be a complete minimal surface whose Gauss image misses a set of logarithmic capacity zero in S^2 . Then Σ is a plane.

Theorem (Osserman – 1964).

Let $\Sigma \subset E^3$ be a complete minimal surface.

1. Suppose $\int_{\Sigma} K dA = -\infty$, then the normals assume every direction infinitely often except for a set of logarithmic capacity zero.

2. Suppose $\int_{\Sigma} K dA$ is finite but not zero. Then the normals assume all but at most three directions.

3. If $\int_{\Sigma} K \, dA = 0$, then Σ is a plane.

Conjectures of Nirenberg

Prior to Bob's first work on minimal surfaces, Louis Nirenberg made the following conjectures. They were based (I imagine) on taking seriously the analogy between the Gauss map of a complete minimal surface in \mathbb{E}^3 and a holomorphic function on \mathbb{C} .

Conjectures of Nirenberg

Prior to Bob's first work on minimal surfaces, Louis Nirenberg made the following conjectures. They were based (I imagine) on taking seriously the analogy between the Gauss map of a complete minimal surface in \mathbb{R}^3 and a holomorphic function on \mathbb{C} .

Conjecture 1 (Liouville-type theorem). If the Gauss map of a complete minimal surface in \mathbb{E}^3 misses a neighborhood of some point, the surface is a plane.

(Proved by Bob)

Conjectures of Nirenberg

Prior to Bob's first work on minimal surfaces, Louis Nirenberg made the following conjectures. They were based (I imagine) on taking seriously the analogy between the Gauss map of a complete minimal surface in \mathbb{E}^3 and a holomorphic function on \mathbb{C} .

Conjecture 1 (Liouville-type theorem). If the Gauss map of a complete minimal surface in \mathbb{E}^3 misses a neighborhood of some point, the surface is a plane.

(Proved by Bob)

Conjecture 2 (Picard-type theorem). If the Gauss map of a complete minimal surface in \mathbb{E}^3 misses three points, the surface is a plane.

(Proved to be wrong by Bob!)

Reflections on the Early Mathematical Life of Bob Oss

April 21, 2012 28 / 41

<ロ> <同> <同> < 同> < 同> < 三> < 三> 三三

Subsequent Spectacular Work

Theorem.(F. Xavier – 1982).

If the Gauss map of a complete minimal surface omits 7 points of the sphere, the surface is a plane

Subsequent Spectacular Work

Theorem.(F. Xavier – 1982).

If the Gauss map of a complete minimal surface omits 7 points of the sphere, the surface is a plane

Theorem.(H. Fugimoto – 1988).

If the Gauss map of a complete minimal surface omits 5 points of the sphere, the surface is a plane

Subsequent Spectacular Work

Theorem.(F. Xavier – 1982).

If the Gauss map of a complete minimal surface omits 7 points of the sphere, the surface is a plane

Theorem.(H. Fugimoto – 1988).

If the Gauss map of a complete minimal surface omits 5 points of the sphere, the surface is a plane

Theorem.(Osserman and Mo – 1990).

If the Gauss map of a complete minimal surface assumes five distinct values only a finite number of times, then the surface has finite total curvature.

Consider now a minimal surface

$$\Sigma \subset \mathbb{E}^n$$

for a general dimension $n \ge 3$.

(4) (3) (4) (4) (4)

Consider now a minimal surface

$$\Sigma \subset \mathbb{E}^n$$

for a general dimension $n \ge 3$.

At each $x \in \Sigma$ the vectors normal to Σ form a vector space of dimension n-2.

Consider now a minimal surface

$$\Sigma \subset \mathbb{E}^n$$

for a general dimension $n \ge 3$.

At each $x \in \Sigma$ the vectors normal to Σ form a vector space of dimension n-2.

Theorem. (Osserman – 1964).

Suppose all the normals to Σ (at all points) make an angle $\geq \alpha > 0$ with respect to some fixed direction. Fix $x \in \Sigma$ and let *d* be the distance from *x* to the boundary of Σ . Then the Gauss curvature of Σ at *x* satisfies

$$|K(x)| \leq \frac{16(n-1)}{d^2 \sin^4 \alpha}$$

Consider now a minimal surface

$$\Sigma \subset \mathbb{E}^n$$

for a general dimension $n \ge 3$.

コン イロン イヨン

At each $x \in \Sigma$ the vectors normal to Σ form a vector space of dimension n-2.

Theorem. (Osserman – 1964).

Suppose all the normals to Σ (at all points) make an angle $\geq \alpha > 0$ with respect to some fixed direction. Fix $x \in \Sigma$ and let *d* be the distance from *x* to the boundary of Σ . Then the Gauss curvature of Σ at *x* satisfies

$$|K(x)| \leq \frac{16(n-1)}{d^2 \sin^4 \alpha}$$

Corollary If Σ is complete and all the normals to Σ make an angle $\geq \alpha > 0$ with respect to some fixed direction, then Σ is a plane.

Let $\Sigma \subset \mathbb{E}^n$ be a minimal surface. Choosing isothermal coordinates z = x + iy gives a local conformal parameterization

$$\psi: \Delta \longrightarrow \Sigma \subset \mathbb{E}^n.$$

where $\psi = (\psi_1, ..., \psi_n)$.

Let $\Sigma \subset \mathbb{E}^n$ be a minimal surface. Choosing isothermal coordinates z = x + iy gives a local conformal parameterization

 $\psi:\Delta \longrightarrow \Sigma \subset \mathbb{E}^n.$

where $\psi = (\psi_1, ..., \psi_n)$. Conformality is equivalent to

$$|\psi_x|^2 = |\psi_y|^2$$
 and $\langle \psi_x, \psi_y \rangle = 0.$

(D) (A) (A) (A) (A) (A)

Let $\Sigma \subset \mathbb{E}^n$ be a minimal surface. Choosing isothermal coordinates z = x + iy gives a local conformal parameterization

 $\psi:\Delta \longrightarrow \Sigma \subset \mathbb{E}^n.$

where $\psi = (\psi_1, ..., \psi_n)$. Conformality is equivalent to

$$|\psi_x|^2 = |\psi_y|^2$$
 and $\langle \psi_x, \psi_y \rangle = 0.$

Setting

$$\varphi \equiv \frac{\partial \psi}{\partial z} = \frac{1}{2} (\psi_x - i \psi_y)$$

(D) (A) (A) (A) (A) (A)

Let $\Sigma \subset \mathbb{E}^n$ be a minimal surface. Choosing isothermal coordinates z = x + iy gives a local conformal parameterization

 $\psi:\Delta\longrightarrow\Sigma\subset\mathbb{E}^n.$

where $\psi = (\psi_1, ..., \psi_n)$. Conformality is equivalent to

$$|\psi_x|^2 = |\psi_y|^2$$
 and $\langle \psi_x, \psi_y \rangle = 0.$

Setting

$$\varphi \equiv \frac{\partial \psi}{\partial z} = \frac{1}{2} (\psi_x - i \psi_y)$$

this conformality becomes

$$\varphi^2 = \sum_{k=1}^n \varphi_k^2 \equiv 0.$$

(D) (A) (A) (A) (A) (A)

Let $\Sigma \subset \mathbb{E}^n$ be a minimal surface. Choosing isothermal coordinates z = x + iy gives a local conformal parameterization

 $\psi:\Delta \longrightarrow \Sigma \subset \mathbb{E}^n.$

where $\psi = (\psi_1, ..., \psi_n)$. Conformality is equivalent to

$$|\psi_x|^2 = |\psi_y|^2$$
 and $\langle \psi_x, \psi_y \rangle = 0.$

Setting

$$\varphi \equiv \frac{\partial \psi}{\partial z} = \frac{1}{2} (\psi_x - i \psi_y)$$

this conformality becomes

$$\varphi^2 = \sum_{k=1}^n \varphi_k^2 \equiv 0.$$

The minimal surface equation is equivalent to ψ being harmonic.

Let $\Sigma \subset \mathbb{E}^n$ be a minimal surface. Choosing isothermal coordinates z = x + iy gives a local conformal parameterization

 $\psi:\Delta \longrightarrow \Sigma \subset \mathbb{E}^n.$

where $\psi = (\psi_1, ..., \psi_n)$. Conformality is equivalent to

$$|\psi_x|^2 = |\psi_y|^2$$
 and $\langle \psi_x, \psi_y \rangle = 0.$

Setting

$$\varphi \equiv \frac{\partial \psi}{\partial z} = \frac{1}{2} (\psi_x - i \psi_y)$$

this conformality becomes

$$\varphi^2 = \sum_{k=1}^n \varphi_k^2 \equiv 0.$$

The minimal surface equation is equivalent to ψ being harmonic.

$$4\Delta\psi = \frac{\partial}{\partial\overline{z}}\frac{\partial\psi}{\partial z} = \frac{\partial\varphi}{\partial\overline{z}} = 0.$$

Let $\Sigma \subset \mathbb{E}^n$ be a minimal surface. Choosing isothermal coordinates z = x + iy gives a local conformal parameterization

 $\psi:\Delta \longrightarrow \Sigma \subset \mathbb{E}^n.$

where $\psi = (\psi_1, ..., \psi_n)$. Conformality is equivalent to

$$|\psi_x|^2 = |\psi_y|^2$$
 and $\langle \psi_x, \psi_y \rangle = 0.$

Setting

$$\varphi \equiv \frac{\partial \psi}{\partial z} = \frac{1}{2} (\psi_x - i \psi_y)$$

this conformality becomes

$$\varphi^2 = \sum_{k=1}^n \varphi_k^2 \equiv 0.$$

The minimal surface equation is equivalent to ψ being harmonic.

$$4\Delta\psi = \frac{\partial}{\partial\overline{z}}\frac{\partial\psi}{\partial z} = \frac{\partial\varphi}{\partial\overline{z}} = 0.$$

Thus ϕ is holomorphic.

Blaine Lawson ()

If we make a conformal change of coordinates w = w(z),

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

$$\widetilde{\varphi}(w) = \varphi(z) \frac{dz}{dw}$$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

$$\widetilde{\varphi}(w) = \varphi(z) \frac{dz}{dw}$$

and so we have a well defined point

$$\Phi(z) \equiv [\varphi(z)] \in \mathbb{P}^{n-1}(\mathbb{C})$$

in complex projective space.

(D) (A) (A) (A)

$$\widetilde{\varphi}(w) = \varphi(z) \frac{dz}{dw}$$

and so we have a well defined point

$$\Phi(z) \equiv [\varphi(z)] \in \mathbb{P}^{n-1}(\mathbb{C})$$

in complex projective space. This gives a holomorphic mapping

$$\Phi:\Sigma \longrightarrow \mathbb{Q}^{n-2} \subset \mathbb{P}^{n-1}(\mathbb{C})$$

where \mathbb{Q}^{n-2} is the algebraic variety defined by

$$\mathbb{Q}^{n-2} \equiv \left\{ [Z] \in \mathbb{P}^{n-1}(\mathbb{C}) : Z_1^2 + \dots + Z_n^2 = 0 \right\}$$

$$\widetilde{\varphi}(w) = \varphi(z) \frac{dz}{dw}$$

and so we have a well defined point

$$\Phi(z) \equiv [\varphi(z)] \in \mathbb{P}^{n-1}(\mathbb{C})$$

in complex projective space. This gives a holomorphic mapping

$$\Phi:\Sigma \longrightarrow \mathbb{Q}^{n-2} \subset \mathbb{P}^{n-1}(\mathbb{C})$$

where \mathbb{Q}^{n-2} is the algebraic variety defined by

$$\mathbb{Q}^{n-2} \equiv \left\{ [Z] \in \mathbb{P}^{n-1}(\mathbb{C}) : Z_1^2 + \dots + Z_n^2 = 0 \right\}$$

This is just the Grassmannian of oriented 2-planes in \mathbb{R}^n .

$$\widetilde{\varphi}(w) = \varphi(z) \frac{dz}{dw}$$

and so we have a well defined point

$$\Phi(z) \equiv [\varphi(z)] \in \mathbb{P}^{n-1}(\mathbb{C})$$

in complex projective space. This gives a holomorphic mapping

$$\Phi:\Sigma \longrightarrow \mathbb{Q}^{n-2} \subset \mathbb{P}^{n-1}(\mathbb{C})$$

where \mathbb{Q}^{n-2} is the algebraic variety defined by

$$\mathbb{Q}^{n-2} \equiv \left\{ [Z] \in \mathbb{P}^{n-1}(\mathbb{C}) : Z_1^2 + \dots + Z_n^2 = 0 \right\}$$

This is just the Grassmannian of oriented 2-planes in \mathbb{R}^n .

Φ is the Generalized Gauss Mapping.

Theorem. (S. S. Chern – 1965)

Let $\Sigma \subset \mathbb{E}^n$ be a complete minimal surface. Suppose the Gauss image $\Phi(\Sigma)$ misses a neighborhood of some hyperplane $\mathbb{P}^{n-2} \subset \mathbb{P}^{n-1}$.

Theorem. (S. S. Chern – 1965)

Let $\Sigma \subset \mathbb{E}^n$ be a complete minimal surface. Suppose the Gauss image $\Phi(\Sigma)$ misses a neighborhood of some hyperplane $\mathbb{P}^{n-2} \subset \mathbb{P}^{n-1}$.

Then Σ is an affine 2-plane.

Theorem. (S. S. Chern - 1965)

Let $\Sigma \subset \mathbb{E}^n$ be a complete minimal surface. Suppose the Gauss image $\Phi(\Sigma)$ misses a neighborhood of some hyperplane $\mathbb{P}^{n-2} \subset \mathbb{P}^{n-1}$.

Then Σ is an affine 2-plane.

This result is essentially the same as the Corollary of Bob's Theorem above.

Theorem. (S. S. Chern – 1965)

Let $\Sigma \subset \mathbb{E}^n$ be a complete minimal surface. Suppose the Gauss image $\Phi(\Sigma)$ misses a neighborhood of some hyperplane $\mathbb{P}^{n-2} \subset \mathbb{P}^{n-1}$.

Then Σ is an affine 2-plane.

This result is essentially the same as the Corollary of Bob's Theorem above.

At this point Chern and Osserman began a collaboration which led to a wonderful series of results about complete minimal surfaces in \mathbb{E}^n .
Theorem. (S. S. Chern – 1965)

Let $\Sigma \subset \mathbb{E}^n$ be a complete minimal surface. Suppose the Gauss image $\Phi(\Sigma)$ misses a neighborhood of some hyperplane $\mathbb{P}^{n-2} \subset \mathbb{P}^{n-1}$.

Then Σ is an affine 2-plane.

This result is essentially the same as the Corollary of Bob's Theorem above.

At this point Chern and Osserman began a collaboration which led to a wonderful series of results about complete minimal surfaces in \mathbb{E}^n .

This was followed by a long collaboration of Hoffman and Osserman who obtained beautiful generalizations of many of the results I have discussed to more general surfaces in \mathbb{E}^n

Some years later Bob and I addressed the elementary question:

What can one say about the Dirichlet problem for the minimal surface equation in \mathbb{E}^n ?

(I)

Some years later Bob and I addressed the elementary question:

What can one say about the Dirichlet problem for the minimal surface equation in \mathbb{E}^n ?

In \mathbb{E}^3 there is a beautiful and complete theory.

Some years later Bob and I addressed the elementary question:

What can one say about the Dirichlet problem for the minimal surface equation in \mathbb{E}^n ?

In \mathbb{E}^3 there is a beautiful and complete theory.

This is also true for hypersurfaces in \mathbb{E}^n .

Some years later Bob and I addressed the elementary question:

What can one say about the Dirichlet problem for the minimal surface equation in \mathbb{E}^n ?

In \mathbb{E}^3 there is a beautiful and complete theory.

This is also true for hypersurfaces in \mathbb{E}^n .

The general setting is the following.

Write

 $\mathbb{E}^n = \mathbb{E}^p \times \mathbb{E}^q$

and consider a strictly convex domain

 $\Omega \subset \mathbb{E}^{\textit{p}}$

with smooth boundary.

• • • • • • • •

Some years later Bob and I addressed the elementary question:

What can one say about the Dirichlet problem for the minimal surface equation in \mathbb{E}^n ?

In \mathbb{E}^3 there is a beautiful and complete theory.

This is also true for hypersurfaces in \mathbb{E}^n .

The general setting is the following.

Write

$$\mathbb{E}^n = \mathbb{E}^p \times \mathbb{E}^q$$

and consider a strictly convex domain

$$\Omega \subset \mathbb{E}^p$$

with smooth boundary.

Consider the graph

$$\Gamma(f) = \{(x, f(x)) : x \in \Omega\} = \mathbb{E}^{p+q}$$

of a smooth function

$$f:\Omega \to \mathbb{E}^q$$

Blaine Lawson ()

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

if and only if *f* satisfies the following system of differential equations:

$$\sum_{i,j=1}^{p} \frac{\partial}{\partial x_i} \left(\sqrt{g} g^{ij} \frac{\partial f}{\partial x_j} \right) = 0$$

Image: A math a math

if and only if *f* satisfies the following system of differential equations:

$$\sum_{i,j=1}^{p} \frac{\partial}{\partial x_{i}} \left(\sqrt{g} g^{ij} \frac{\partial f}{\partial x_{j}} \right) = 0$$

where

$$g_{ij}=\delta_{ij}+\langle f_{x_i},f_{x_j}
angle, \hspace{0.1in} ((g^{ij}))=((g_{ij}))^{-1} \hspace{0.1in} ext{and} \hspace{0.1in} g= ext{det}((g_{ij})).$$

if and only if *f* satisfies the following system of differential equations:

$$\sum_{i,j=1}^{p} \frac{\partial}{\partial x_{i}} \left(\sqrt{g} g^{ij} \frac{\partial f}{\partial x_{j}} \right) = 0$$

where

$$g_{ij} = \delta_{ij} + \langle f_{x_i}, f_{x_j} \rangle, \quad ((g^{ij})) = ((g_{ij}))^{-1} \text{ and } g = \det((g_{ij})).$$

For functions *f* which are only Lipschitz these equations can be replaced by the requirement that the the area of the graph be stationary.

Given a continuous function

$$\varphi: \partial \Omega \rightarrow \mathbb{E}^q,$$

Given a continuous function

$$\varphi:\partial\Omega \to \mathbb{E}^q,$$

does there exist a function

$$f:\Omega \rightarrow \mathbb{E}^q$$

which satisfies the minimal surface equation in Ω and agrees with φ on the boundary?

(I)

Given a continuous function

$$\varphi:\partial\Omega \to \mathbb{E}^q,$$

does there exist a function

$$f:\Omega \rightarrow \mathbb{E}^q$$

which satisfies the minimal surface equation in Ω and agrees with φ on the boundary?

Theorem. (Morrey – 1954)

Any C^1 function which satisfies the minimal surface equation is real analytic.

Given a continuous function

$$\varphi:\partial\Omega \to \mathbb{E}^q,$$

does there exist a function

$$f:\Omega \rightarrow \mathbb{E}^q$$

which satisfies the minimal surface equation in Ω and agrees with φ on the boundary?

Theorem. (Morrey – 1954)

Any C^1 function which satisfies the minimal surface equation is real analytic.

Theorem. (Allard – 1975)

Boundary regularity holds for solutions to the Dirichlet Problem.

Blaine Lawson ()

Reflections on the Early Mathematical Life of Bob Osse

▲ 王 シ ユ シ へ C
 April 21, 2012 37 / 41

イロト イヨト イヨト イヨト

Theorem. (L and O – 1977)

Existence fails for solutions to the Dirichlet problem.

(4) (3) (4) (4) (4)

Theorem. (L and O – 1977)

Existence fails for solutions to the Dirichlet problem.

Theorem. (L and O – 1977)

Uniqueness fails for solutions to the Dirichlet problem.

(4) (3) (4) (4) (4)

Theorem. (L and O – 1977)

Existence fails for solutions to the Dirichlet problem.

Theorem. (L and O – 1977)

Uniqueness fails for solutions to the Dirichlet problem.

Theorem. (L and O – 1977)

Regularity fails for solutions to the Dirichlet problem. There are Lipschitz solutions which are not C^1 .

< 同 > < 三 > < 三 >

Let

$$\varphi: S^{p-1} \to S^{q-1}$$

be a map which is not homotopic to zero.

(I)

Let

$$\varphi: S^{p-1} \to S^{q-1}$$

be a map which is not homotopic to zero. Consider the boundary function

$$\varphi_r: S^{p-1} \to \mathbb{E}^q$$
 where $\varphi_r(x) \equiv r\varphi(x)$.

for a constant r > 0.

Let

$$\varphi: S^{p-1} \to S^{q-1}$$

be a map which is not homotopic to zero. Consider the boundary function

$$\varphi_r: S^{p-1} \to \mathbb{E}^q$$
 where $\varphi_r(x) \equiv r\varphi(x)$.

for a constant r > 0.

Then for all r sufficiently small,

the Dirichlet problem is solvable.

• 3 > 4 3

Let

$$\varphi: S^{p-1} \to S^{q-1}$$

be a map which is not homotopic to zero. Consider the boundary function

$$\varphi_r: S^{p-1} \to \mathbb{E}^q$$
 where $\varphi_r(x) \equiv r\varphi(x)$.

for a constant r > 0.

Then for all r sufficiently small,

the Dirichlet problem is solvable.

However, there exists R > 0 such that for all r > R

the Dirichlet problem has no solution

A 3 5 A 3

Let

$$\varphi: S^{p-1} \to S^{q-1}$$

be a map which is not homotopic to zero. Consider the boundary function

$$\varphi_r: S^{p-1} \to \mathbb{E}^q$$
 where $\varphi_r(x) \equiv r\varphi(x)$.

for a constant r > 0.

Then for all r sufficiently small,

the Dirichlet problem is solvable.

However, there exists R > 0 such that for all r > R

the Dirichlet problem has no solution

A 3 5 A 3

Question: As $r \to \infty$ we pass from existence to non-existence.

(I)

Question: As $r \to \infty$ we pass from existence to non-existence. What happens in between?

(I)

The Simplest Case

The Hopf Mapping:

$$H: S^3 \rightarrow S^2$$

The Simplest Case

The Hopf Mapping:

$$H: S^3 \rightarrow S^2$$

Let

$$\varphi = \frac{\sqrt{5}}{2}H.$$

・ロト ・回ト ・ヨト ・ヨト

The Simplest Case

The Hopf Mapping:

$$H: S^3 \rightarrow S^2$$

Let

$$\varphi = \frac{\sqrt{5}}{2}H.$$

Theorem. (L and 0)

The cone on the Hopf map

$$f(x) = ||x||\varphi\left(\frac{x}{||x||}\right) \quad \text{for}||x|| \le 1$$

is the solution to the Dirichlet problem on the unit 4-disk *D* for boundary values φ on $\partial D = S^3$.

(a) (b) (c) (b)

Reflections on the Early Mathematical Life of Bob Osserman

Blaine Lawson ()

Reflections on the Early Mathematical Life of Bob Oss

< ■ ▶ ■ のへの April 21, 2012 41/41

・ロト ・回ト ・ヨト ・ヨト