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ABSTRACT

Recently the authors have explored new concepts of plurisubharmonicity
and pseudoconvexity, with much of the attendant analysis, in the con-
text of calibrated manifolds. Here a much broader extension is made.
This development covers a wide variety of geometric situations, including,
for example, a notion of Lagrangian plurisubhamonicity and a notion of
Lagrangian convexity. It also applies in a number of non-geometric situ-
ations. Results include: fundamental properties of P+-plurisubharmonic
functions, plurisubharmonic distributions and regularity, P+-convex do-
mains and P+-convex boundaries, topological restrictions on and con-
struction of P+-convex domains, and a self-contained proof of existence
and uniqueness of solutions to the Dirichlet problem for P+-harmonic
functions. This last result includes classical results on the homogeneous
Monge-Ampère equations in the real, complex and quaternionic cases.
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1. Introduction.

Recently the authors have shown that the concepts of plurisubharmonicity and pseu-
doconvexity from complex analysis carry over, along with many of the basic results, to
other geometries, including calibrated and symplectic geometry. In this paper the same
ideas and results are extended to a broad geometric context. The core concept is that of
an elliptic cone. This is a closed convex cone P+ in the space Sym2(Rn) of symmetric
n×n-matrices, with the property that the relative interior of its polar dual P+ consists of
positive definite matrices.

A function u of class C2 on an open set X ⊂ Rn is defined to be P+-plurisubharmonic
if Hessxu ∈ P+ at every point x.

Basic geometric examples are constructed as follows. Fix an integer p, 1 ≤ p ≤ n, and
denote by G(p,Rn) the grassmannian of p-planes in Rn. Embed

G(p,Rn) ⊂ Sym2(Rn)

by associating to each p-plane ξ, the orthogonal projection Pξ : Rn → ξ ⊂ Rn. Now
let GI ⊂ G(p,Rn) be any compact subset, and define P+(GI ) (note the lower plus) to be
the closed convex cone in Sym2(Rn) generated by GI . Then a function u ∈ C2(X) is
P+(GI )-plurisubharmonic (sometimes shortened to GI -plurisubharmonic) if and only if

trξ{Hessxu} ≥ 0 ∀x ∈ X and ∀ ξ ∈ GI

where trξA ≡ 〈A, Pξ〉 denotes the trace of A on the p-plane ξ.
Important examples of this type are where GI = GI (φ) consists of the p-planes associated

to a calibration φ of degree p (such as the Kähler, Quaternionic, Special Lagrangian,
Associative, Coassociative or Cayley calibrations). Other interesting cases are where GI is
the set of all Lagrangian n-planes in Cn, or where GI = G(p,Rn) is the full grassmannian.

This geometric case has the following interesting feature. A function u ∈ C2(X) is
P+(GI )-plurisubharmonic if and only if its restriction to every minimal GI -submanifold of X
is subharmonic in the induced metric. (A GI -submanifold is a p-dimensional submanifold
of X all of whose tangent planes lie in GI .)

Of course the concept of an elliptic cone P+ is much broader than the geometric
case. Nevertheless, a surprising bulk of classical pluripotential theory carries over to this
context. The notion of P+-plurisubharmonicity extends from C2-functions to distributions,
and every such distribution is actually in L1

loc and has a unique upper semi-continuous
representative with values in [−∞,∞). The set PSH(X) of such functions has all the
classical properties. For example, if u, v ∈ PSH(X), then max{u, v} ∈ PSH(X). Also,
PSH(X) is closed under decreasing limits and uniform limits. An important fact is that if
F ⊂ PSH(X) is a family which is locally bounded above, then (the upper semicontinuous
regularization) of supv∈F v is in PSH(X). This enables one to apply the Perron process.

There is a notion of P+-convexity generalizing the concept of pseudo-convexity in
complex analysis. Given a compact set K ⊂ X , we define its P+-convex hull to be the set
K̂ of points x with

u(x) ≤ sup
K

u for all smooth u ∈ PSH(X).
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Then X is said to be P+-convex if for all K ⊂⊂ X we have K̂ ⊂⊂ X . It is proved that X
is P+-convex if and only if X admits a strictly P+-plurisubharmonic exhaustion function.

Given a compact domain Ω ⊂ X with smooth boundary ∂Ω, there is also a notion of
P+-convexity (and strict P+-convexity) of the boundary. It is shown that if ∂Ω is strictly
P+-convex, then Ω itself is P+-convex.

There is also a concept which generalizes the notion from complex geometry of being
totally real. In §10 we introduce the notion of a linear subspace V ⊂ Rn which is P+-free.
In the geometric case this means that V contains no GI -planes, that is, there are no ξ ∈ GI
with ξ ⊂ V . Then the free dimension of P+, denoted fd(P+), is defined to be the largest
dimension of a P+-free subspace of Rn, and we have the following generalization of the
Andreotti-Frankel Theorem.THEOREM 10.5. Any P+-convex domain has the homotopy type of a CW-complex of
dimension ≤ fd(P+).

The integer fd(P+) is often easily computable, particularly in the geometric cases. See
§10 for examples.

A submanifold is said to be P+-free if all of its tangent planes are P+-free. This
extends the notion of totally real submanifolds in complex geometry. In geometric cases
any submanifold of dimension ≤ p is free. Generic submanifolds of dimension ≤ fd(P+)
are P+-free on an open dense subset. Therefore, examples of P+-free submanifolds are
easy to construct. This leads to lots of P+-convex domains via the following analogue of
the Grauert Tubular Neighborhood Theorem.THEOREM 11.4. Suppose M is a P+-free closed submanifold of X ⊂ Rn. Then there
exists a fundamental neighborhood system F(M) of M consisting of P+-convex domains.
Moreover,

a) M is a deformation retract of each U ∈ F(M).

b) Each compact subset K ⊂M satisfies K = K̂U for all U ∈ F(M).

The methods used in [HW1,2] to generalize the Grauert Theorem extend to prove this
very general result.

Freeness of submanifolds and convexity of their tubular neighborhoods are related by
the following fact. Let M be a closed submanifold of an open subset X ⊂ Rn. Then M
is P+-free if and only if the square of the distance to M is strictly P+plurisubharmonic
at each point of M (and hence in a neighborhood of M). More generally we have the
following result.THEOREM 11.3. Consider the two classes of closed sets.

1) Closed subsets Z ⊂M of a P+-free submanifold M ⊂ X .

2) Zero sets Z = {f = 0} of non-negative strictly P+-plurisubharmonic functions f .

Locally these two classes are the same.

An important feature of this paper is the proof of existence and uniqueness of solutions
to the Dirichlet Problem for functions which are P+-harmonic. For functions u ∈ C2(X)
this means that Hessxu ∈ ∂P+ for all x ∈ X . More generally for u ∈ PSH(X) this notion
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is defined via a duality involving the subaffine functions, which are discussed in Appendix
A. The main results are the following.THEOREM 8.1. (The Dirichlet Problem – Existence). Suppose Ω is a bounded domain in
Rn with a strictly P+-convex boundary. Given ϕ ∈ C(∂Ω), the function u on Ω defined
by taking the upper envelope:

u(x) = sup{v(x) : v ∈ P+(ϕ)} where

P+(ϕ) ≡
{
v : v ∈ USC(Ω), v

∣∣
Ω
∈ PSH(Ω) and v

∣∣
∂Ω

≤ ϕ
}

(8.1)

satisfies:

1) u ∈ C(Ω),

2) u is P+-harmonic on Ω,

3) u
∣∣
∂Ω

= ϕ on ∂Ω.THEOREM 7.1. (The Dirichlet Problem–Uniqueness). Suppose P+ is an elliptic cone and
that K is a compact subset of Rn. If u1, u2 ∈ C(K) are P+-harmonic on IntK, then

u1 = u2 on ∂K ⇒ u1 = u2 on K

A rich source of examples outside the geometric case P+(GI ) comes from the theory of
G̊arding hyperbolic polynomials. A homogeneous polynomial M of degree m on Sym2(Rn)
is hyperbolic with respect to the identity I, if for each A ∈ Sym2(Rn) the polynomial
pA(t) = M(tI+A) has m real roots. Fundamental examples are the elementary symmetric
functions σk(A) in the eigenvalues of A. For any such polynomial with M(I) > 0, the
connected component of the complement of {M = 0} containing I is a convex cone P+,
and our theory applies. This is discussed in detail in Appendix E.

Many of the results in this paper have been subsequently generalized by the authors.
For example, in [HL4] Theorems 10.5, 7.1 and 8.1 above have been established for fully
non-linear, degenerate elliptic equations which are purely of second order. The main
analytic tool used in [HL4] is Slodkowski’s deep result on the largest Hessian eigenvalue
of convex functions [S]. The arguments also make use of subaffine functions and a certain
duality intrinsic to these second order problems. Subaffine functions are introduced here
in Appendix A and play an important role in the proof of the Uniqueness Theorem 7.1
above. We note that [HL4] treats the Dirichlet Problem in highly non-convex cases, such
as all other branches of the real, complex and quaternionic Monge-Ampere equations and
all branches of the special Lagrangian potential equation.

The results of [HL4] have subsequently been extended in two significant ways in [HL5].
Here one works over a general riemannian manifoldX , and the subequations considered are
closed subsets F ⊂ J2(X) of the 2-jet bundle of functions on X (which depends locally on
all the classical variables (x, r, p, A) ∈ X ×R×Rn × Sym2(Rn)). The main analysis rests
on the powerful Viscosity approach pioneered by Crandall, Ishii, Lions, Evans, Jensen and
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others (cf. [CIL], [C]). Many of the results discussed here and in [HL4] carry over to this
setting. In particular, if F is a constant coefficient subequation on Rn which is invariant
under a subgroup G ⊂ On, then for domains in any riemannian manifold with a topological
reduction of the structure group to G, there are existence and uniqueness results for the
Dirichlet Problem. For example, in an almost complex manifold with a hermitian metric
one can treat all branches of the homogeneous complex Monge-Ampère equation.

While these latter papers largely subsume the results here, we feel that this article has
valuable features. The exposition is less technical. The cases covered here include many of
basic geometric interest. Finally, since the basic sets P+ are convex cones, we are able to
use convolution (for smooth approximation) and classical distribution theory. This makes
the analytic part of the paper more widely accessible.

Conventions:

1. Throughout this paper X shall denote a connected open subset of Rn. We note
that almost all of the analysis done here carries over to much more general riemannian
manifolds X .

2. Whenever C ⊂ V is a convex cone in a finite dimensional vector space V we shall
denote by IntC the interior of C in the vector subspace W = spanC.
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2. Geometrically Defined Plurisubharmonic Functions

In this section we discuss a notion of plurisubharmonicity, for C∞-functions, based
on a distinguished subset GI of the grassmannian. We shall begin with some definitions
and notation. Let G(p,Rn) denote the grassmannian of unoriented p-planes through the
origin in Rn. Let Sym2(Rn) denote the vector space of quadratic forms (functions) on
Rn. We identify G(p,Rn) with a subset of Sym2(Rn) by associating to each ξ ∈ G(p,Rn)
the quadratic form Pξ corresponding to orthogonal projection of Rn onto ξ. The natural
inner product on Sym2(Rn) is given by the trace: 〈A,B〉 = trAB. Let P denote the set
of non-negative quadratic forms, A ≥ 0. This is a closed convex cone with vertex at the
origin in Sym2(Rn). The interior, IntP, consists of the positive definite quadratic forms,
A > 0. The extreme rays in P are generated by the rank-1 projections G(1,Rn).

The polar of a closed convex cone C with vertex at the origin is defined by

C0 ≡ polar C ≡ {A : 〈A,B〉 ≥ 0 for all B ∈ C}. (2.1)

The Bipolar Theorem states that (C0)0 = C. Note that the convex cone P is self-polar,
that is P0 = P, since A ≥ 0 if and only if 〈A, Pξ〉 ≥ 0 for all ξ ∈ G(1,Rn). (If x ∈ Rn is a
unit vector and ξ is the line through x, then 〈A, Pξ〉 = 〈Ax, x〉.)

Given ξ ∈ G(p,Rn) and A ∈ Sym2(Rn), the ξ-trace of A, defined by

trξA = 〈A, Pξ〉 = tr
(
A

∣∣
ξ

)
, (2.2)

is central to our development.
Given a function u ∈ C∞(X), its hessian at a point x ∈ X will be denoted by Hessx u.

This is a quadratic form on Rn, i.e., Hessx u ∈ Sym2(Rn).DEFINITION 2.1. Suppose GI is a non-empty closed subset of G(p,Rn). A function u ∈
C∞(X) is called GI -plurisubharmonic if

trξ (Hessx u) ≥ 0 for each ξ ∈ GI , x ∈ X. (2.3)

Let PSH∞(X,GI ) denote this space of GI -plurisubharmonic functions.

Suppose W is an affine p-plane through x with tangent space TW = ξ. Then

trξ (Hessx u) = tr
(
Hessx u

∣∣
ξ

)
= tr

(
Hessx u

∣∣
W

)
= ∆

(
u
∣∣
W

)
. (2.4)

Call W an affine GI -plane if TW = ξ ∈ GI . This proves the following.LEMMA 2.2. A function u ∈ C∞(X) is GI -plurisubharmonic if and only if

∆
(
u
∣∣
X∩W

)
≥ 0 for each affine GI −plane W. (2.3)′

That is:

A function u ∈ PSH∞(X,GI ) iff its restriction to every affine GI -plane W is subharmonic.
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A submanifold M of Rn is a GI -submanifold if TxM ∈ GI at each point x ∈M .THEOREM 2.3. Suppose M ⊂ X is a GI -submanifold which is minimal. For each u ∈ C∞(X)
which is GI -plurisubharmonic, the restriction of u to M is subharmonic in the induced
riemannian metric on M .

Proof. Recall the classical fact (cf. §1 in [HL2]) that if u ∈ C∞(X), then for a minimal
submanifold M , the Laplace Beltrami operator of M is given at x ∈M by

∆M

(
u
∣∣
M

)
= tr

{
Hessx u

∣∣
TxM

}
= trTxM

{
Hessx u

∣∣
TxM

}
.

GI -Pluriharmonic and GI -Harmonic Functions. In tandem with the concept of GI -
plurisubharmonicity it is natural to define a function u ∈ C∞(X) to be GI -pluriharmonic
if

trξHessxu = 0 for each ξ ∈ GI and each x ∈ X. (2.5)

That is, u is GI -pluriharmonic if and only if the restriction of u to each affine GI -plane
is harmonic. As in the proof of Theorem 2.3, if M is a GI -submanifold which is minimal
and u is GI -pluriharmonic, then u

∣∣
M

is harmonic in the induced riemannian metric on M .
Unfortunately, with rare exceptions, the space of GI -pluriharmonic functions is small (finite
dimensional). See the examples below.

A weakening of the definition of GI -pluriharmonicity provides a much larger class.DEFINITION 2.4. Suppose u ∈ C∞(X). Then

1) u is called GI -harmonic if u ∈ PSH∞(X,GI ) and for each x ∈ X , the trace

trξHessxu = 0 for some ξ ∈ GI .

2) u is called strictly GI -plurisubharmonic if for each x ∈ X ,

trξHessxu > 0 for all ξ ∈ GI .

Examples. There are many geometrically interesting cases of GI -plurisubharmonic func-
tions to which our general theory will apply. This wealth of examples is one of the impor-
tant features of this paper.

A rich source is the theory of calibrations [HL1,2]. Let φ be a constant coefficient
p-form on Rn with the property that φ(ξ) ≤ 1 for all ξ ∈ G(p,Rn). Then we define the φ-
grassmannian to be the set

GI (φ) = {ξ ∈ G(p,Rn) : φ(ξ) = 1}

All the following examples but 1,3, and 13 can be constructed this way.
In sections 4 and 5 we shall generalize the notion of P+-plurisubharmonicity to dis-

tributions, and show that any such distribution is an upper semi-continuous function.
For P+ = P+(GI ) the space of such functions is denoted PSH(X,GI ), and we have that
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u ∈ PSH(X,GI ) if and only if the restriction u
∣∣
W

to every affine GI -plane W is subharmonic
(or ≡ −∞). The following is a list of basic examples in the geometric case.

1. GI = G(1,Rn). PSH(X,GI ) is the set of convex functions on X .

2. GI = G(n,Rn) = {I} with I ∈ Sym2(Rn) the identity. PSH(X,GI ) is the set of
subharmonic functions on X .

3. GI = G(p,Rn) for 1 < p < n. PSH(X,GI ) is called the set of real p-plurisubharmonic
functions onX . The defining property is that they are subharmonic on every affine p-plane.

4. GI = Pn−1(C) = GC(1,Cn) ⊂ G(2,R2n) gives the set of standard plurisubharmonic
functions in complex analysis.

5. GI = Pn−1(H) = GH(1,Hn) ⊂ G(4,R4n) gives the set of quaternionic plurisubharmonic
functions on quaternionic n-space Hn (cf. [Al], [AV]).

6. GI = GC(p,Cn) for 1 < p < n gives complex p-plurisubharmonic functions on Cn. The
defining property is that they are subharmonic on every complex affine p-plane.

7. GI = GH(p,Hn) for 1 < p < n gives quaternionic p-plurisubharmonic functions on Hn.
The defining property is that they are subharmonic on every quaternionic affine p-plane.

8. GI = {x1-axis} ⊂ G(1,Rn) gives the horizontally convex functions, i.e., the functions
which are convex in the variable x1.

9. GI = SLAG ⊂ G(n,Cn), the set of (unoriented) special Lagrangian n-planes in Cn.

10. GI = ASSOC ⊂ G(3,R7), the set of (unoriented) associative 3-planes in ImO ∼= R7,
the imaginary octonions.

11. GI = COASSOC ⊂ G(4,R7), the set of (unoriented) coassociative 4-planes in ImO.

12. GI = CAY ⊂ G(4,R8), the set of (unoriented) Cayley 4-planes in the octonions O ∼= R8.

13. GI = LAG ⊂ G(n,Cn), the set of Lagrangian n-planes in Cn.REMARK 2.5. As noted in the introduction, for expository reasons the discussion in this
paper is confined to Rn with GI parallel. However, all of the examples above can be
carried over to general riemannian manifolds equipped with some additional structure.
Note for example that 4,6 and 13 make sense on any symplectic manifold with a compatible
riemannian metric. A quite general analysis on riemannian manifolds is carried out in
[HL5].

Elliptic Subsets GI of the Grassmannian.

In this subsection a notion of ellipticity is discussed which puts a very natural restric-
tion on the subsets GI ⊂ G(p,Rn).

Let P+(GI ) denote the closed convex cone in Sym2(Rn), with vertex at the origin,
determined by the compact set GI ⊂ Sym2(Rn). Let P+(GI ) denote the polar of P+(GI ).
(Recall that the polar of a convex cone C with vertex at the origin in a vector space V is
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the set C0 = {v ∈ V ∗ : 〈v, w〉 ≥ 0 ∀w ∈ C}.) Note that since P = P+(G(1,Rn)) contains
all the grassmannians G(p,Rn), we have

P+(GI ) ⊂ P, and hence P ⊂ P+(GI ),

for any GI ⊂ G(p,Rn). Set

S(GI ) = span GI = spanP+(GI ).

As one can see from the examples, S(GI ) is usually a proper vector subspace of Sym2(Rn),
and, in particular, P+(GI ) has no interior in Sym2(Rn). However, considered as a subset
of S(GI ), the interior of P+(GI ) has closure equal to P+(GI ). By IntP+(GI ) we shall always
mean the interior of P+(GI ) in S(GI ), not in Sym2(Rn). In particular, IntP+(GI ) is never
empty.DEFINITION 2.6. A closed subset GI ⊂ G(p,Rn) is elliptic if each A ∈ IntP+(GI ) is positive
definite.

The following conditions on a closed subset GI ⊂ G(p,Rn) are equivalent.

1) Given x ∈ Rn, if x l ξ = 0 for all ξ ∈ GI , then x = 0.

2) For each unit vector e ∈ Rn, Pe is never orthogonal to S(GI ) = span GI .

3) There does not exist a hyperplane W ⊂ Rn with GI ⊂ Sym2(W ) ⊂ Sym2(Rn).

To see that 1) and 2) are equivalent, note that 〈Pe, Pξ〉 = |e l ξ|2. If e ⊥ W , then GI ⊂
Sym2(W ) if and only if e l ξ = 0 for all ξ ∈ GI , so that 2) ⇔ 3).DEFINITION 2.7. A closed subset GI ⊂ G(p,Rn) is said to involve all the variables in Rn if
one of the equivalent conditions 1), 2), 3) holds.PROPOSITION 2.8. Suppose GI is a closed subset of G(p,Rn). Then GI is elliptic if and only
if GI involves all of the variables in Rn.

Proof. Suppose there exists A ∈ S(GI ) which is positive definite. Then GI must involve all
of the variables in Rn because otherwise by 3) GI , and so also P+(GI ) and S(GI ), would be
contained in Sym2(W ) for some hyperplane W . This is a contradiction since A ∈ Sym2(W )
can never be positive definite.

If GI involves all the variables in Rn, then, by 2), we have the following. Under the
orthogonal decomposition

Pe = Ee + Se with Se ∈ S(GI ) and Ee ⊥ S(G), (2.6)

the component Se is never zero. Now choose A ∈ IntP+(GI ). Since Se ∈ S(GI ), it follows
that for small ǫ > 0 we have A − ǫSe ∈ IntP+(GI ) ⊂ P. Therefore, 0 ≤ 〈Pe, A − ǫSe〉 =
〈Pe, A〉 − ǫ|Se|

2 proving that 〈Pe, A〉 > 0 for all unit e ∈ Rn, i.e. A > 0.REMARK . The proof also shows that each A ∈ IntP+(GI ) is positive definite if and only if
∃A ∈ S(GI ) which is positive definite.
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Each A ∈ Sym2(Rn) determines a constant coefficient linear second-order operator
〈Hessu,A〉. This linear operator is elliptic if and only if A is positive definite. In this case

∆Au = 〈Hessu,A〉

will be called the A-Laplacian.DEFINITION 2.9. Suppose GI is elliptic. Then for each A ∈ IntP+(GI ), the A-Laplacian ∆A

will be called a mollifying Laplacian for GI -plurisubharmonic functions.MOLLIFYING LEMMA 2.10. Suppose GI is elliptic and u ∈ C∞(X). Then u is GI -
plurisubharmonic if and only if u is ∆A-subharmonic for each mollifying Laplacian ∆A.

Proof. This follows from the fact that GI ⊂ P+(GI ) and that P+(GI ) is the closure of
IntP+(GI ).
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3. More General Plurisubharmonic Functions Defined by an Elliptic Cone P+

The basic properties of geometrically defined plurisubharmonic functions remain valid
in much greater generality. Suppose P+ is a closed convex cone in Sym2(Rn) with vertex
at the origin. Let P+ denote the polar cone. Let S(P+) denote the span of P+, and let
IntP+ denote the relative interior of P+ in the vector subspace S(P+) of Sym2(Rn). The
subspace E(P+) = S(P+)⊥ ⊂ P+ is called the edge of P+.DEFINITION 3.1.

1) P+ is a positive cone if each A ∈ P+ is positive, i.e. A ≥ 0.

2) P+ is an elliptic cone if each A ∈ IntP+ is positive definite.REMARK. Of course in the geometric case P+ = P+(GI ), the positivity condition P+ ⊂ P
is automatic.

If P+ is an elliptic cone (and, to a lesser extent, if P+ is a positive cone), it is
reasonable to investigate P+-plurisubharmonic functions, even though they have no direct
geometric interpretation.DEFINITION 3.2. A function u ∈ C∞(X) is P+-plurisubharmonic if

Hessxu ∈ P+ for each x ∈ X. (3.1)REMARK. If Hessxu ∈ ∂P+, then u is P+-harmonic. If Hessxu ∈ IntP+, then u is strictly
P+-plurisubharmonic. Finally, if Hessxu ⊥ S(P+), then u is P+-pluriharmonic.

A main point is that the Mollifying Lemma remains valid.MOLLIFYING LEMMA 3.3. Suppose P+ is an elliptic cone and u ∈ C∞(X). Then u is
P+-plurisubharmonic if and only if u is ∆A-subharmonic for each mollifying Laplacian.REMARK 3.4. There is an analogue of (2.3)′. Let GI denote the extreme points in the
compact convex base B+ = P+ ∩ {tr = 1}. Then u is P+-plurisubharmonic at x if and
only if

〈Hessx u,A〉 = tr {(Hessx u)A} ≥ 0 ∀A ∈ GI .

However, this is not particularly interesting or useful unless the set of extreme points of
the base B+ = P+ ∩ {tr = 1} are known. It is easy to see in the geometric case where
GI ⊂ G(p,Rn) and P+ = P+(GI ), that the set of extreme points of P+ ∩{tr = p} is exactly
GI .

Reformulating Ellipticity for a Convex Cone P+.

The positivity and ellipticity conditions have useful reformulations. First, the

Positivity Condition for P+: P+ ⊂ P, that is, every A ∈ P+ is ≥ 0

can be stated in the equivalent dual form since P is self-polar.

Positivity Condition for P+: P ⊂ P+, that is, every A ≥ 0 belongs to P+.

In terms of functions u, this says that each convex function is P+-plurisubharmonic .
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As noted, there are many cases where S(P+) = spanP+ is not all of Sym2(Rn).
However, there is a different kind of incompleteness that should be ruled out. We say that
P+ only involves the variables in a proper subspace W ⊂ Rn if

P+ ⊂ Sym2(W ). (3.2)

Otherwise we say that P+ involves all the variables in Rn.

Completeness Condition for P+: The convex cone P+ involves all the variables in Rn.

This can be expressed in dual form as follows. Suppose e is a unit vector and W is
the orthogonal hyperplane in Rn. We say that P+ can be defined using the variables in
W if

P+ = Sym2(W )⊥ ⊕
(
P+ ∩ Sym2(W )

)
. (3.2)′

It is easy to see that (3.2) and (3.2)′ are equivalent.

Completeness Condition for P+: The convex cone P+ can not be defined using the
variables in a proper subspace W ⊂ Rn.PROPOSITION 3.5. The convex cone P+ is elliptic if and only if the positivity condition and
the completeness condition are both satisfied.

Proof. First note that if P+ is elliptic, then P+ = IntP+ ⊂ P, i.e., the Positivity Condition
is satisfied. The Completeness Condition must also be satisfied, since P+ ⊂ Sym2(W )
excludes the possibility of P+ containing A > 0.

The following fact is basic to our discussion.
If the Positivity Condition P+ ⊂ P is satisfied, then for each A ∈ P+ and W = e⊥:

〈A, Pe〉 = A(e, e) = 0, if and only if A ∈ Sym2(W ) ⊂ Sym2(Rn) (3.3)

This follows because if A ≥ 0 and A(e, e) = 0, then 0 ≤ A(te+u, te+u) = 2tA(e, u)+A(u, u)
for all t ∈ R and all u ∈W = e⊥. Hence, A(e, u) = 0 for all u ∈W , i.e., A ∈ Sym2(W ).

If P+ involves all the variables in Rnand the Positivity Condition P+ ⊂ P is satisfied,
then because of (3.3), 〈A, Pe〉 cannot vanish for all A ∈ P+, i.e., Se is never zero. (Recall
the decomposition (2.6).) This forces A ∈ IntP+ to be positive definite exactly as in the
last paragraph of the proof of Proposition 2.8.

Assuming positivity there is is a simple test for completeness, which yields a useful
test for ellipticity only in terms of P+ (not P+).PROPOSITION 3.6. The convex cone P+ is elliptic if and only if Pe ∈ P+ but −Pe /∈ P+ for
each unit vector e ∈ Rn.

Proof. Consider E(P+) = S(P+)⊥, the edge of P+. Note that P+ ∩ S(P+) is the polar
of P+ in the vector space S(P+). It is easy to see that:

P+ = (P+ ∩ S(P+)) ⊕ E(P+).
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Since the Pe’s generate the extreme rays in P, positivity for P+ is equivalent to
Pe ∈ P+ for all e. Assuming positivity, we have that (3.3) above is true and says that:

∃Pe ∈ E(P+) ⇐⇒ Completeness for P+ fails.

Finally note that Pe ∈ E(P+) if and only if both ±Pe ∈ P+.REMARK . The edge E(P+) can also be described, without using the inner product, as
{A ∈ Sym2(Rn) : A+ P+ = P+}.

Smoothing Maxima. As we shall discuss, many of the facts concerning classical sub-
harmonic functions on Rn extend, once we have a suitable definition of (non-smooth) P+-
plurisubharmonic functions. However, limiting the discussion to smooth P+-plurisubharmonic
functions, there are still several interesting facts that extend. One of the most basic is
smoothing the maximum of two P+-plurisubharmonic functions. LetM(t) ≡ max{t1, ..., tm}
for t ∈ Rm. Suppose ϕ ∈ C∞

cpt(R
m), ϕ ≥ 0,

∫
ϕ = 1, with ϕ(−t) = ϕ(t) and sptϕ ⊂ {t :

|t| ≤ 1}.
Since M is a convex function, Mǫ = M ∗ ϕǫ is convex and decreases to M as ǫ → 0.

Also,
∑m

j=1
∂M
∂tj

= 1 implies
∑m

j=1
∂Mǫ

∂tj
= 1, or equivalently, M(t+ λe) = M(t) + λ implies

Mǫ(t+λe) = Mǫ(t)+λ, where e = (1, ..., 1). Moreover, Mǫ(t)− ǫ ≤M(t) ≤Mǫ(t). Finally
note that ∂M

∂tj
≥ 0 implies that ∂Mǫ

∂tj
≥ 0.

Given u1, ..., um ∈ C∞(X) and Ψ a smooth function of m variables, the chain rule
implies that

HessΨ(u1, ..., um) =
m∑

j=1

∂Ψ

∂tj
Hessuj +

m∑

i,j=1

∂2Ψ

∂ti∂tj
∇ui ◦ ∇uj (3.4)

Maxima Property: Suppose P+ is a positive cone (not necessarily elliptic). Given
u1, ..., um ∈ PSH∞(X), one has that:

1) Mǫ(u
1, ..., um) ∈ PSH∞(X),

2) Mǫ(u
1, ..., um) − ǫ ≤M(u1, ..., um) ≤Mǫ(u

1, ..., um),

3) Mǫ(u
1, ..., um) decreases to M(u1, ..., um) as ǫ→ 0.

Proof. Properties 2) and 3) are properties of M(t) and Mǫ(t). To prove 1) consider a more

general function Ψ and apply (3.3). The value of the quadratic form B ≡
∑

∂2Ψ
∂ti∂tj

∇ui◦∇uj

on ξ = (ξ1, ..., ξn) ∈ Rn is
∑

∂2Ψ
∂ti∂tj

〈∇ui, ξ〉〈∇uj, ξ〉, which is ≥ 0 if Ψ is convex. If

each ∂Ψ
∂tj

≥ 0 and
∑

j
∂Ψ
∂tj

= 1, then the quadratic form A =
∑

j
∂Ψ
∂tj

Hessuj is a convex

combination of the quadratic forms Hessuj , j = 1, ..., m. These assumptions are valid for
Ψ = Mǫ. The convexity of P+ and the positivity condition imply that HessΨ(u1, ..., um) =
A+B ∈ P+, which proves 1).EXERCISE 3.6. Suppose ψ′ ≥ 0 and ψ′′ ≥ 0. Show that u ∈ PSH∞(X) implies ψ(u) ∈
PSH∞(X).
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4. P+-Plurisubharmonic Distributions.

Throughout this section we assume that P+ ⊂ Sym2(Rn) is an elliptic cone (with
vertex at the origin).DEFINITION 4.1. A distribution u ∈ D′(X) is P+-plurisubharmonic if

(Hessu)(ϕA) ≥ 0 for all A ∈ P+ (4.1)

and all test functions ϕ ∈ C∞
cpt(X) with ϕ ≥ 0,

It is easy to see Definition 4.1 is compatible with Definition 2.1 for u ∈ C∞(X) ⊂ D′(X).NOTE . Let PSHdist(X) denote the set of u ∈ D′(X) which are P+-plurisubharmonic
distributions on X . Obviously PSHdist(X) is a closed convex cone in D′(X).

The condition (4.1) for distributional P+-plurisubharmonicity can be modified as
follows. The test function ϕ can be eliminated since we have

(Hessu)(ϕA) = (〈Hessu,A〉)(ϕ).

where Hessu is a symmetric matrix with entries in D′(X). Therefore, for a given A ∈
Sym2(Rn), condition (4.1) is equivalent to the statement that

∆Au = 〈Hessu,A〉 ≥ 0 (i.e., 〈Hessu,A〉 is a nonnegative measure.) (4.1)′

The Mollifying Lemma 3.3 extends to distributions.MOLLIFYING LEMMA 4.2. Suppose P+ is an elliptic cone. A distribution u ∈ D′(X) is
P+-plurisubharmonic if and only if u is a ∆A-subharmonic distribution for each mollifying
Laplacian ∆A (i.e., each A ∈ IntP+).

Proof. This is essentially the equivalence of (4.1) and (4.1)′. Also note that each A ∈ P+

can be approximated by elements in IntP+.

GI -Plurisubharmonic Distributions. Assume that P+ = P+(GI ) is geometrically de-
fined by an elliptic subset GI of the grassmannian G(p,Rn). For each ξ ∈ GI , consider the
degenerate Laplacian defined by A = Pξ, i.e.,

∆ξu = 〈Hessu, Pξ〉 (4.2)

Equation (2.3)′ has an extension from u ∈ C∞(X) to u ∈ D′(X).PROPOSITION 4.3. Suppose u ∈ D′(X). Then u ∈ PSH(X) if and only if

∆ξu ≥ 0 for all ξ ∈ GI . (4.3)

Proof. Each A ∈ IntP+(GI ) is a finite positive linear combination of projections Pξ with

ξ ∈ GI . Hence, (4.3) implies that ∆Au ≥ 0 for each A ∈ IntP+(GI ), so that u ∈ PSHdist(X)
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by the mollifying Lemma 4.2. Conversely, if u ∈ PSHdist(X), then ∆Au ≥ 0 for each A ∈
IntP+(GI ). If ξ ∈ GI and t > 0, then for A′ ∈ IntP+(GI ), one has A = Pξ + tA′ ∈ IntP+(GI )
since 1

t
Pξ +A′ ∈ IntP+(GI ) for t large. Hence, ∆ξu+ t∆A′u ≥ 0 for all t > 0, which proves

that ∆ξu ≥ 0 if ξ ∈ GI .

Many of the classical facts about subharmonic distributions immediately carry over
to P+-plurisubharmonic distributions because of the Mollifying Lemma 4.2. We list these
classical facts in §6.

5. Upper-Semi-Continuous P+-Plurisubharmonic Functions.

Throughout this section we assume that P+ ⊂ Sym2(Rn) is an elliptic cone (with
vertex at the origin). Let USC(X) denote the space of [−∞,∞)-valued function on X
which are upper-semi-continuous, and not ≡ −∞ on any component of X .DEFINITION 5.1. A function u ∈ L1

loc(X) is called L1
loc-upper-semi-continuous if the essential

limit superior
ũ(x) = ess lim sup

y→x
u(y) (5.1)

satisfies the conditions:

(i) ũ ∈ USC(X), and
(ii) ũ lies in the L1

loc(X)-equivalence class of u.PROPOSITION 5.2. Each P+-plurisubharmonic distribution u is L1
loc-upper-semi-continuous.

The proof of the proposition will be given below.DEFINITION 5.3. If u ∈ PSHdist(X), the associated canonical representative ũ ∈ USC(X)
is said to be an upper-semi-continuous P+-plurisubharmonic function. Let PSHu.s.c.(X)
denote the space of upper-semi-continuous P+-plurisubharmonic functions on X .COROLLARY 5.4. The map sending u ∈ PSHdist(X) to ũ ∈ PSHu.s.c.(X) is an isomorphism.

Proof. The map is surjective by definition, and injectivity is obvious.

We shall denote these equivalent spaces PSHdist(X) ∼= PSHu.s.c.(X) simply by PSH(X)
when no confusion will arise.

Classical potential theory applies to each Laplacian ∆A with A positive definite. Since
∆A is obtained from the standard Laplacian ∆ by a linear change of coordinates, any result
for the standard Laplacian ∆ that is independent of choice of linear coordinates applies to
each ∆A as well.

Let SHu.s.c.
A (X) denote the space of classical ∆A-subharmonic functions. That is,

u ∈ SHu.s.c.
A (X) if u ∈ USC(X) and for each compact subset K of X and each ∆A-harmonic

function h on a neighborhood of K,

u ≤ h on ∂K implies u ≤ h on K (5.2)

Let SHdist
A (X) denote the space of ∆A-distributions on X . That is, u ∈ SHdist

A (X) if
u ∈ D′(X) and ∆Au ≥ 0 is a non-negative regular Borel measure on X .
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For the standard Laplacian ∆ on Rn there are many references for the fact that
SHdist(X) and SHu.s.c.(X) can be identified. More specifically, with A = I:

1) u ∈ SHdist
A (X) implies u ∈ L1

loc(X).

2) u ∈ SHdist
A (X) implies that ũ ∈ SHu.s.c.

A (X) and ũ lies in the L1
loc(X)-class of u.

3) u ∈ SHu.s.c.
A (X) implies u ∈ L1

loc(X).

4) u ∈ SHu.s.c.
A (X) implies ∆Au ≥ 0.

Note that 1) and 2) provide an injective map SHdist(X) → SHu.s.c.(X) given by u 7→ ũ,
while 3) and 4) assert the surjectivity of this map.

These properties 1)—4) carry over to any A > 0 by the appropriate linear coordinate
change on Rn. This proves that

SHdist
A (X) ∼= SHu.s.c.

A (X). (5.3)

The L1
loc-upper-semi-continuity Condition 2) can be proved as follows for ∆A = ∆.

Let Br(x) denote the ball of radius r about x and |Br(x)| the volume of Br(x). By the
mean value inequality

ũ(x) ≤
1

|Br(x)|

∫

Br(x)

u ≤ ess sup
Br(x)

u ≤ sup
Br(x)

ũ. (5.4)

Since ũ is u.s.c., we have lim supy→x ũ(y) = ũ(x) forcing the essential lim sup to equal
ũ(x).

Stated differently, we have shown that if u ∈ D′(X) is both ∆A1
-subharmonic and

∆A2
-subharmonic, then the two classical representatives ũ1, ũ2 ∈ USC(X) are equal. Thus

there is no ambiguity in the u.s.c. function ũ representing a P+-plurisubharmonic function.

Proof of Proposition 5.2. If u ∈ PSHdist(X), then for some A > 0, u ∈ SHdist
A (X) and

Condition 2) is valid.

As a corollary, the Mollifying Lemma can be stated for u.s.c. P+-plurisubharmonic
functions.MOLLIFYING LEMMA 5.5. A function u ∈ USC(X) is u.s.c. P+-plurisubharmonic if and
only if u is u.s.c. ∆A-subharmonic for each mollifying Laplacian ∆A, i.e., each A ∈ IntP+.

Upper-Semi-Continuous GI -Plurisubharmonic Functions. Suppose that P+ =
P+(GI ) is geometrically defined by an elliptic subset GI of the grassmannian G(p,Rn).
Theorem 2.3 about C∞ GI -plurisubharmonic functions, has only a weak extension (Propo-
sition 4.3) to GI -plurisubharmonic distributions. However, it has a strong extension to
upper-semi-continuous GI -plurisubharmonic functions.THEOREM 5.6. Suppose P+ is geometrically defined by an elliptic subset GI of G(p,Rn).
Let u ∈ PSHu.s.c.(X) and suppose W is an affine GI -plane with W ∩X connected. Then
either u

∣∣
W∩X

≡ −∞ or
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u
∣∣
W∩X

is subharmonic.

More generally, suppose M is any connected GI -submanifold of X , i.e., TxM ∈ GI for all
x ∈M . If M is a minimal submanifold, then either u

∣∣
M

≡ −∞ or

u
∣∣
M

is subharmonic.

in the induced riemannian metric on M .

Proof. Assume that u ∈ PSHu.s.c.(X) and u is not ≡ −∞ on M . As noted in §6, there
exists a sequence {uj} of smooth P+-plurisubharmonic functions on X decreasing to u. By
Theorem 2.3 each uj

∣∣
M

is subharmonic. Hence, the decreasing limit u
∣∣
M

is subharmonic.

Theorem 5.6 has a converse.PROPOSITION 5.7. Suppose that u is a [−∞,∞)-valued u.s.c. function on a ball B ⊂ Rn

with the property that for every affine GI -plane W in Rn, either u
∣∣
W∩B

≡ −∞ or u
∣∣
W∩B

is subharmonic. If u ∈ L1
loc(B), then u ∈ PSHu.s.c.(B).

Proof. It suffices to show that u ∈ PSHdist(B) by Corollary 5.4. By Proposition 4.3 it
suffices to show that ∆ξu ≥ 0 for each ξ ∈ GI . Choose coordinates so that ξ is the first axis
p-plane in Rn and (x, y) belongs to Rp×Rn−p = Rn. It suffices to show that

∫
Rn u∆xϕ ≥ 0

for all ϕ ∈ C∞
cpt(R

n), ϕ ≥ 0. Now U(y) ≡
∫
Rp u(x, y)∆xϕ(x, y) ∈ L1

loc(R
n−p), and U ≥ 0

a.e. by hypothesis. Hence, by Fubini’s Theorem
∫
Rn u∆xϕ =

∫
Rn−p U(y)dy ≥ 0.
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6. Some Classical Facts that Extend to P+-Plurisubharmonic Functions.

In this section we list other useful properties of PSH(X)-functions.
Some of the standard results for ∆A-subharmonic functions immediately extend to

P+-plurisubharmonic functions by the Mollifying Lemma 5.5. Other facts require more
discussion. In what follows, u ∈ PSH(X) is always the canonical, u.s.c. representative.

Facts that follow immediately from the Mollifying Lemma.

(1) (Maxima) max{u1, ..., uN} ∈ PSH(X) if u1, ..., uN ∈ PSH(X) .

(2) If ψ is a convex non-decreasing function, then ψ(u) ∈ PSH(X) for each u ∈ PSH(X)

(3) (Maximum Principle) If K is a compact subset of X and u ∈ PSH(X), then

u(x) ≤ sup
∂K

u for all x ∈ K.

(4) (Decreasing Limits) If {uj}
∞
j=0 is a decreasing (i.e., uj ≥ uj+1) sequence of functions

in PSH(X) and X is connected, then unless u = limj→∞ uj is identically −∞, one
has u ∈ PSH(X) and {uj} converges to u in L1

loc(X).

(5) (Increasing Limits) Suppose {uj}
∞
j=0 is an increasing (i.e., uj ≤ uj+1) sequence of

functions in PSH(X). If the limit u = limj→∞ uj is locally bounded above, then the
u.s.c. regularization u∗(x) = lim supy→x u(y) of u belongs to PSH(X) with u∗ = u
a.e. and {uj} converging to u in L1

loc(X).

(5)′ (Families Locally Bounded Above) Suppose F ⊂ PSH(X) is locally uniformly bounded
above. Then the upper envelope v = supf∈F f has u.s.c. regularization v∗ ∈ PSH(X)

and v∗ = v a.e.. Moreover, there exists a sequence {uj} ⊂ F with vj = max{u1, ..., uj}
converging to v∗ in L1

loc(X).

(6) (Viscosity Plurisubharmonic) u ∈ PSH(X) if and only if u ∈ USC(X) and for each
point x ∈ X and each function ϕ ∈ C2 near x with u−ϕ having a local maximum at
x, one has

Hessxϕ ∈ P+.

Facts that do not follow immediately from the Mollifying Lemma.

(7) For each u ∈ PSHu.s.c.(X), there exists a decreasing sequence of smooth functions
{uj} ∈ PSH∞(Xj) with u = limj→∞ uj , where Xj = {x ∈ X : dist(x, ∂X) ≥ 1/j}.

(8) If u1, ..., um ∈ PSH(X) have the property that Hessuj − Λ is P+-positive, where
Λ : X → Sym2(Rn) is continuous, then Hess{Mǫ(u

1, ..., um)} − Λ is P+-positive.

(9) (Richberg) Suppose u ∈ C(X) ∩ PSH(X) has the property that Hessu − Λ is P+-
positive on X where Λ : X → Sym2(Rn) is continuous. Given λ ∈ C(X), λ > 0 on
X , there exists ũ ∈ C∞(X) ∩ PSH(X) with

u ≤ ũ ≤ u+ λ on Ω

such that Hessũ− (1 − λ)Λ is P+-positive on X .
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Some Comments:

By the “classical case of (k)” we will mean statement (k) with PSH(X) replaced by
SHA(X) with A > 0.

(5)′: The classical case of (5)′ follows from the classical case of (1) and (5) because
of Choquet’s Lemma, which says that for any family F ⊂ USC(X) which is uniformly
bounded above, there exists a sequence {uj} ⊂ F such that the upper envelopes v(x) =
supf∈F f(x) and u(x) = supj uj(x) satisfy the inequalities u ≤ v ≤ v∗ ≤ u∗ which forces
u∗ = v∗.. Note that (5)′ also follows directly from (1) and (5) by using Choquet’s Lemma.

(6): There is an ǫ-strict version of (6). See Definition 12.6. See a) and b) below.

(7): This statement can be proved as follows. If uǫ = ϕǫ ∗ u is a convolution smoothing,
then ∆Auǫ = ϕǫ∗(∆Au) so that each uǫ is in PSH∞ on a subset ofX a distance ǫ away from

the boundary. If I ∈ P+, then the convolutions uǫ = ϕǫ ∗ u with ϕǫ(x) = ǫ−nϕ( |x|
ǫ

) based
on a radial function ϕ(|x|), decrease monotonically to u as ǫ→ 0. Since ∆A is equivalent
to ∆ under a linear coordinate change, we can also find ϕ such that uǫ = ϕǫ ∗ u ց u if u
is ∆A-subharmonic.

(8) and (9): A matrix of distributions, such as Hessu−Λ, is defined to be P+-positive if
〈Hessu−Λ, A〉 ≥ 0 is a non-negative measure for all A ∈ P+. The proofs of (8) and (9) are
the same as in the several complex variable case. See Richberg [R] and [D] Lemma 5.18 e)
for (8) and Theorem 5.21 for (9).

Pluriharmonicity and Strict Plurisubharmonicity. It is straightforward to extend
the definition of pluriharmonicity to distributions.

1) A distribution u ∈ D′(X) is P+-pluriharmonic if ∆Au = 0 for all A ∈ P+, or equiva-
lently (see Appendix B) the S(P+)-Hessian of u is identically zero.

The appropriate extensions of partial and strict are more problematic. Uniform strict-
ness can be put in a satisfactory state.

Suppose u ∈ PSH(X) and ǫ > 0. Then u is ǫ-strict is either of the following two
equivalent conditions are satisfied. ( The proof of this equivalence is omitted.)

a) u− ǫ|x|2 ∈ PSH(X).

b) For each point x ∈ X and each function ϕ ∈ C2 near x which is “superior” to u in
the sense that u− ϕ has a local maximum at x, one has Hessxϕ− ǫI ∈ P+.

It is convenient to extend strictness from C2 functions to general plurisubharmonic
functions as follows.

2) u ∈ PSH(X) is said to be strict if u is ǫ-strict for some ǫ > 0.

The major defect of this definition is best understood by the following example.EXAMPLE 6.1. Note that the negation of strictness is no longer the appropriate notion of
being harmonic. For the standard Laplacian ∆ on Rn, u is strictly subharmonic if the
absolutely continuous part of the measure ∆u is bounded below a.e. by some ǫ > 0. Hence,
u being subharmonic but not strict does not imply that u is harmonic.

In the next section we examine the more difficult notion of P+-harmonic functions.
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7. The Dirichlet Problem – Uniqueness.

Here we consider the Dirichlet problem for functions which are “P+-harmonic” (see
Def. 7.7). A full discussion of this concept is given below. However, for C2-functions u on
X this simply means that Hessxu ∈ ∂P+ for each x ∈ X , and if, furthermore, P+ = P+(GI )
is geometrically defined, it means that (u is GI -psh and) at each x, trξHessxu = 0 for some
ξ ∈ GI . The main result of this section is the following.THEOREM 7.1. (Uniqueness for the Dirichlet Problem). Suppose P+ is an elliptic cone and
that K is a compact subset of Rn. If u1, u2 ∈ C(K) are P+-harmonic on IntK, then

u1 = u2 on ∂K ⇒ u1 = u2 on K

In order to formulate our definition for non-C2 functions, it is useful to study functions
v with −Hessxv /∈ IntF . These are in some sense (to be made precise) dual to the P+-
plurisubharmonic functions.DEFINITION 7.2. Given a closed subset F ⊂ Sym2(Rn), the Dirichlet dual is defined to be

F̃ = −(∼ IntF ) = ∼ (−IntF ).

Note that
∂F = F ∩ (−F̃ ).LEMMA 7.3. Suppose P+ satisfies the positivity condition. Then

B ∈ P̃+ ⇐⇒ A+B ∈ P̃ for all A ∈ P+

Proof. Since IntP+ = P+ + IntP, we have that

B′ /∈ IntP+ ⇐⇒ B′ −A /∈ IntP for all A ∈ P+.

Set B = −B′. Then

B /∈ −IntP+ ⇐⇒ B + A /∈ −IntP for all A ∈ P+.

In Appendix A we introduce the class of subaffine functions SA(X) on X , and we refer
the reader there for a full discussion. We mention, however, that a function w ∈ C2(X) is

subaffine if and only if for all x ∈ X , Hessxw ∈ P̃, i.e., −Hessxw /∈ IntP, i.e., Hessxw has
at least one eigenvalue ≥ 0. The following concept is basic to uniqueness and enables us
to define P+-harmonic functions (see Def. 7.7).DEFINITION 7.4. A function v ∈ USC(X) is said to be of type P̃+ on X if

A+ v ∈ SA(X) for all quadratic functions A ∈ P+.
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Let P̃SH(X) denote the space of all such functions.

If v ∈ C2(X), then

v is of type P̃+ ⇐⇒ Hessxv ∈ P̃+ for all x ∈ X. (7.1)

This follows since, as remarked above, A + v ∈ SA(X) if and only if A + Hessxv ∈ P̃ for

all x ∈ X , which by Lemma 7.3 is true for all A ∈ P+ if and only if Hessxv ∈ P̃+.REMARK 7.5. If P+ = P+(GI ) is geometrically defined, then

P̃+(GI ) = {B ∈ Sym2(Rn) : trξB ≥ 0 for some ξ ∈ GI }.

To see this first note that

IntP+(GI ) = {A ∈ Sym2(Rn) : trξA > 0 for all ξ ∈ GI },

that is,
∼ IntP+(GI ) = {A ∈ Sym2(Rn) : trξA ≤ 0 for some ξ ∈ GI }.

Now set B = −A and apply the definition of P̃+(GI ).

To establish the basic properties of this class it is useful to have alternative definitions
of type P̃+ functions.LEMMA 7.6. Fix v ∈ USC(X). Then v ∈ P̃SH(X) if and only if

u+ v ∈ SA(X) for all u ∈ C2(X) which are P+-plurisubharmonic .

Moreover, v /∈ P̃SH(X) if and only if ∃A ∈ P+, a affine, x0 ∈ X , and ǫ > 0 such that

a+ A+ v ≤ −ǫ|x− x0|
2 for x near x0

= 0 at x = x0.
(7.2)

Proof. If u + v /∈ SA(X) with u ∈ C2(X) of type P+, then by Lemma A.2 there exist
x0 ∈ X , ǫ > 0, and a′ affine with

a′ + u+ v ≤ −2ǫ|x− x0|
2 for x near x0

= 0 at x = x0.
(7.3)

Now since u ∈ C2(X), we have A = 1
2
Hessx0

u ∈ P+. Using the Taylor series for u about
x0 it is easy to see that (7.3) implies (7.2). Now (7.2) implies that there exists A ∈ P+

with A + v /∈ SA(X) (i.e., (7.2) implies v /∈ P̃SH(X)). The last implication needed is

trivial from Definition 7.4. Namely, if v /∈ P̃SH(X), then ∃u ∈ C2(X) of type P+ with
u+ v /∈ SA(X).
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DEFINITION 7.7. A function u such that u ∈ PSH(X) and −u ∈ P̃SH(X) will be called
P+-harmonic on X .

Note that for such functions u, since both u and −u are upper semi-continuous on
X , one has u ∈ C(X). Furthermore, since ∂P+ = P+ ∩ (−P̃+), if u ∈ C2(X), then u is
P+-harmonic if and only if Hessxu ∈ ∂P+ for each x ∈ X .

Because of the Maximum Principle in Appendix A, Theorem 7.1 is an immediate
consequence of the next result.THEOREM 7.8. (The Subaffine Theorem). Suppose P+ is an elliptic cone. If u ∈ PSH(X)

and v ∈ P̃SH(X), then u+ v ∈ SA(X).

Proof. Fact (7) above says that u is the decreasing limit of smooth functions uj which
are P+-plurisubharmonic. By the first part of Lemma 7.6, uj + v is subaffine. Finally, the
decreasing limit of subaffine functions is again subaffine.
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8. The Dirichlet Problem – Existence.

We now investigate the existence of solutions to the natural Dirichlet problem asso-
ciated with P+-plurisubharmonic functions on a smoothly bounded domain Ω. For the
existence question, we assume the boundary ∂Ω is strictly P+-convex, a concept intro-
duced and discussed in detail in §12. A principle result, Theorem 12.4, states that if ∂Ω is
strictly P+-convex, then there exists a smooth, strictly P+-plurisubharmonic function on
a neighborhood of Ω, which is a defining function for ∂Ω. It is this result that will be used
below, and the reader can, for the moment, take its conclusion as the working assumption.

As before we assume P+ is an elliptic cone.THEOREM 8.1. (The Dirichlet Problem – Existence). Suppose Ω is a bounded domain in
Rn with a strictly P+-convex boundary. Given ϕ ∈ C(∂Ω), the function u on Ω defined
by taking the upper envelope:

u(x) = sup{v(x) : v ∈ PSH(ϕ)}

over the family

PSH(ϕ) ≡
{
v : v is u.s.c. on Ω, v

∣∣
Ω
∈ PSHu.s.c.(Ω) and v

∣∣
∂Ω

≤ ϕ
}

(8.1)

satisfies:

1) u ∈ C(Ω),

2) u is P+-harmonic on Ω,

3) u
∣∣
∂Ω

= ϕ on ∂Ω.

Proof. By the Maximum Principle the family PSH(ϕ) is uniformly bounded above on Ω
by sup∂Ω ϕ < ∞. Hence by 5′) in §6, the u.s.c. regularization u∗ of the upper envelope u
of PSH(ϕ), belongs to PSHu.s.c.(Ω). That is

u∗
∣∣
Ω
∈ PSHu.s.c.(Ω). (8.2)

Let h denote the unique ∆A-harmonic solution to the Dirichlet problem for some mollifying
Laplacian ∆A. Then h ∈ C(Ω), u ≤ h on Ω and h = ϕ on ∂Ω. Hence, u∗ ≤ h on Ω so that

u∗
∣∣
∂Ω

≤ ϕ. (8.3)

This provesPROPOSITION 8.2. u∗ ∈ PSH(ϕ) and therefore

u∗ = u on Ω. (8.4)

The following classical barrier argument is taken from Bremermann [B].LEMMA 8.3. The function u on Ω is continuous at each point of ∂Ω, and u
∣∣
∂Ω

= ϕ on ∂Ω.

24



Proof. It suffices to show that

lim inf
x→x0

u(x) ≥ u(x0) for all x0 ∈ ∂Ω.

because of (8.3) above. Fix x0 ∈ ∂Ω and choose a smooth function ψ ≥ 0 with ψ(x0) = 0
and ψ(x) > 0 for x 6= x0. Replacing ψ by a sufficiently small scalar multiple of ψ we may
assume that ρ − ψ is strictly plurisubharmonic on Ω, where ρ is the defining function for
∂Ω given by Theorem 12.4. Now for each ǫ > 0, there exists C >> 0 so that the function

v(x) ≡ C(ρ(x) − ψ(x)) + ϕ(x0) − ǫ

satisfies
v = −Cψ + ϕ(x0) − ǫ ≤ ϕ on ∂Ω.

Thus v ∈ PSH(ϕ). Consequently, v ≤ u on Ω, and so

lim inf
x→x0

u(x) ≥ lim
x→x0

v(x) = ϕ(x0) − ǫ.

We now apply an argument of Walsh [W] to prove interior continuity.PROPOSITION 8.5. u ∈ C(Ω).

Proof. Let Ωδ ≡ {x ∈ Ω : dist(x, ∂Ω) < δ} denote an interior δ-neighborhood of the
boundary ∂Ω. Suppose ǫ > 0 is given. By the continuity of u at points of ∂Ω and the
compactness of ∂Ω, it follows easily that there exists a δ > 0 such that

If x ∈ Ω2δ, |y| < δ and x+ y ∈ Ω, then u(x+ y) − u(x) < ǫ. (8.5)

Now for |y| < δ fixed, consider the function

fy(x) ≡ max{u(x+ y) − ǫ, u(x)} on Ω − Ωδ.

Note that fy ∈ PSH(Ω − Ωδ) by 1) in Section 6.
Now consider the restriction of fy to Ω2δ −Ωδ. Then x ∈ Ω2δ, |y| < δ, and x+ y ∈ Ω,

so that (8.5) implies that

fy(x) = u(x) on Ω2δ − Ωδ.

We extend fy to all of Ω by setting fy = u on Ω2δ. The function fy now belongs to the
family PSH(ϕ). Hence, fy ≤ u. For x ∈ Ω − Ωδ this yields

u(x+ y) − ǫ ≤ u(x) if |y| < δ.

Replacing y by −y and x by x+ y yields

u(x) − ǫ ≤ u(x+ y) if |y| < δ and x ∈ Ω − Ω2δ.
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This proves that

|u(x+ y) − u(x)| < ǫ if |y| < δ and x ∈ Ω − Ω2δ.

Finally, to complete the proof of Theorem 8.1 we must show that the Perron function
u defined by (8.1) is P+-harmonic on Ω. We already have u ∈ PSH(Ω). Hence, we must

show that −u ∈ P̃SH(Ω). Suppose K ⊂ Ω is compact and let w be a polynomial of degree
two which is P+ plurisubharmonic with w ≤ u on ∂K. We must show that w ≤ u on
K. However, this must hold, since otherwise one could change u to max{w, u} on K and
violate the maximality of the Perron function u.REMARK 8.6. Suppose P+

0 ⊂ P+
1 are elliptic cones. Then if a boundary ∂Ω is strictly P+

0 -
convex, it is also strictly P+

1 -convex. Furthermore, if u is P+
0 -plurisubharmonic , then it

is also P+
1 -plurisubharmonic. It follows that if Ω ⊂ Rn is a bounded domain with strictly

P+
0 -convex boundary, and ϕ ∈ C(∂Ω) is given, then the unique solutions u0 and u1 to the

Dirichlet Problem for P+
0 and P+

1 respectively, given by Theorems 7.1 and 8.1, satisfy

u0 ≤ u1 on Ω
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9. P+-Convex Domains

In this section we introduce the notion of P+-convex domains and give several char-
acterizations of them. We then establish topological restrictions on any such domain. In
many cases these restrictions are known to be sharp.

We assume throughout this section X is a connected open subset of Rn, and that
P+ ⊂ Sym2(Rn) is a convex cone which satisfies the Positivity Condition: P+ ⊂ P, but
not necessarily the full Ellipticity Condition (i.e., not the Completeness Condition).DEFINITION 9.1. Given a compact subset K ⊂ X , we define the PSH∞(X)-hull of K to be
the set

K̂ ≡ K̂P+,X ≡ {x ∈ X : u(x) ≤ sup
K

u for all u ∈ PSH∞(X)}.

If K̂ = K, then K is called P+-convex.LEMMA 9.2. Suppose K is a compact subset of X . A point x is not in K̂ if and only if there
exists u ∈ PSH∞(X) with u ≥ 0 on X and u = 0 on a neighborhood of K but u(x) >> 0;
and with u strict at x.

Proof. Suppose x0 /∈ K̂. Then there exits v ∈ PSH∞(X) with supK v < 0 < v(x0).
Multiplying v by a large constant, we may assume that v(x0) is large. Replacing v by
v+ ǫ|x|2, we may assume that v is strict at x0. An ǫ-approximation u = maxǫ{0, v} to the
maximum max{0, v} satisfies all the conditions.PROPOSITION 9.3. The following two conditions are equivalent.

1) K ⊂⊂ X ⇒ K̂ ⊂⊂ X .

2) There exists a C∞ proper exhaustion function u for X which is strictly P+-psh.DEFINITION 9.4. If the equivalent conditions of Proposition 9.3 are satisfied, then X is a
P+-convex domain in Rn.

Proof of Proposition 9.3. We first show that 2) ⇒ 1). If K ⊂ X is compact, then

c = supK u is finite and K̂ is contained in the compact prelevel set {u ≤ c}.
To see that 1) ⇒ 2), choose compact PSH∞(X)-convex setsK1 ⊂ K2 ⊂ · · · withKm ⊂

Ko
m+1 and X =

⋃
m Km. By the Lemma above and the compactness of Km+2 − Ko

m+1

we may find u1, ..., uN ∈ PSH∞(X), which are non-negative and vanish on a neighbor-
hood of Km, with um = maxǫ{u

1, ..., uN} > m on Km+2 − Ko
m+1. The maximum

u = max{u1, u2, ...} satisfies 2), except for strictness. To obtain strictness, replace u
by u+ 1

2 |x|
2, which is strict because I is an interior point of P ⊂ P+.REMARK 9.5. Condition 2) in Proposition 9.3 can be weakened in several ways.

First, the exhaustion u need only be P+-plurisubharmonic, not strict, since one can
always replace u with u+ |x|2.

Second, u only needs to be defined near ∞ in the one point compactification of X .
More precisely, if there exists u ∈ PSH∞(X −K), where K is compact, u is bounded near
K, and limx→∞ u(x) = ∞, then 2) holds. To see this, note that for large c, v = u+ |x|2 is
a smooth strictly P+plurisubharmonic function outside the compact subset {v ≤ c − 1}.
Pick a convex increasing function ϕ ∈ C∞(R) with ϕ = c on a neighborhood of (−∞, c−1]
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and with ϕ(t) = t on (c + 1,∞). Then ϕ(v(x)) ∈ PSH∞(X) and equals v(x) outside the
compact set {v ≤ c+ 1}.

10. Topological Restrictions on P+-Convex Domains

We begin our discussion of the topology of P+-convex domains with the following
definition. Note that for any linear subspace, W ⊂ Rn there is a natural embedding
Sym2(W ) ⊂ Sym2(Rn).DEFINITION 10.1.

a) A linear subspace W ⊂ Rn is P+-free if P+ ∩ Sym2(W ) = {0}. In the geometric
case where P+ = P+(GI ), this means that W does not contain any p-planes ξ ∈ GI . In this
case we say that W is GI -free.

b) A linear subspace N ⊂ Rn is P+-strict if PN ∈ IntP+.LEMMA 10.2. Suppose that Rn = N ⊕ W is an orthogonal decomposition. Then W is
P+-free if and only if N is P+-strict.

Proof. If N is not strict, then by the Positivity Condition PN ∈ ∂P+. Hence, there
exists A ∈ P+, A 6= 0, with 〈PN , A〉 = 0. By the positivity assumption P+ ⊂ P and the
basic fact (3.3), it follows easily that 〈PN , A〉 = 0 if and only if A ∈ Sym2(W ). Thus,
P+∩Sym2(W ) 6= {0}, contradicting W being free. On the other hand, if PN is strict, then
for all A ∈ P+, 〈PN , A〉 > 0 unless A = 0, proving that P+ ∩ Sym2(W ) = {0}.REMARK 10.3.

PN is strict if and only if IntP+ ∩ Sym2(N) 6= ∅.

Proof. Note that if PN is strict, then PN ∈ IntP+ ∩ Sym2(N). For the converse, suppose
there exists H ∈ IntP+ ∩ Sym2(N), then H 6= 0 and 〈H,A〉 > 0 for all non-zero A ∈ P+.
However, 〈H,A〉 = 0 for all A ∈ Sym2(W ) proving that W is free. Hence N is strict by
Lemma 10.2.DEFINITION 10.4. The free dimension of P+, denoted by free-dim(P+) (or free-dim(GI ) in
the geometric case), is the maximal dimension of a P+-free subspace of Rn. By Lemma
10.2 this equals the maximal codimension of a P+-strict subspace.

Somewhat surprisingly the Andreotti-Frankel Theorem in complex analysis has a very
general extension. The usual proof of the Andreotti-Frankel result is quite specific to
complex analysis, relying on canonical forms.THEOREM 10.5. Let X be a P+-convex domain in Rn. Then X has the homotopy-type of
a CW-complex of dimension ≤ free-dim(P+).

Proof. Let u ∈ C∞(X) be a strictly P+-plurisubharmonic proper exhaustion function.
By standard approximation theorems (cf. [MS]) we may assume that all critical points of
u are non-degenerate. The theorem will follow if we can show that each critical point x0

of u in X has index ≤ free-dim(P+).
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Since u is P+-plurisubharmonic , we have Hessx0
u ∈ P+, that is

〈Hessx0
u,A〉 ≥ 0 for all A ∈ P+. (10.1)

Suppose now that the index of Hessx0
u is > free-dim(P+). Then there exists a subspace

W ⊂ Rn with dim(W ) > free-dim(P+) such that

Hessx0

(
u
∣∣
W

)
< 0. (10.2)

Now by definition of free-dim(P+) there exists a non-zero A ∈ Sym2(W ) ∩ P+. Hence,
〈A,Hessx0

u〉 =
〈
A,Hessx0

(
u
∣∣
W

)〉
< 0.REMARK 10.6. The free dimension of P+ is n− 1 if and only if each hyperplane W is free,

i.e., P+ ∩ Sym2(W ) = {0}, or equivalently each Pe ∈ IntP+ for 0 6= e ∈ Rn. Otherwise
the free dimension is < n− 1. In this case ∂Ω is connected for every P+-convex domain.
(This is the case k = 0 in the next Corollary.) A special case of this connectedness appears
as Lemma A in [CNS].COROLLARY 10.7. Let Ω ⊂⊂ X be a strictly P+-convex domain with smooth boundary
∂Ω, and let D be the free dimension of P+. Then

Hk(∂Ω; Z) ∼= Hk(Ω; Z) for all k < n−D − 1

and the map Hn−D−1(∂Ω; Z) → Hn−D−1(Ω; Z) is surjective.

Proof. This follows from the exact sequence

Hk+1(Ω, ∂Ω; Z) → Hk(∂Ω; Z) → Hk(Ω; Z) → Hk(Ω, ∂Ω; Z),

Lefschetz Duality: Hk(Ω, ∂Ω; Z) ∼= Hn−k(Ω; Z), and Theorem 10.5.

Geometric Examples. Consider the geometric case P+ = P+(GI ). Set fd(GI ) = free-
dim(GI ). The following facts were shown in [HL2].

1. GI = G(1,Rn) (Convex geometry). fd(GI ) = 0.

2. GI = G(n,Rn) (PSH(X,GI ) = subharmonic functions on X). fd(GI ) = n− 1.

3. GI = G(p,Rn) for 1 < p < n. fd(GI ) = p− 1.

4. GI = Pn−1(C) = GC(1,Cn) ⊂ G(2,R2n) (Complex psh-functions). fd(GI ) = n.

5. GI = Pn−1(H) = GH(1,Hn) ⊂ G(4,R4n) (Quaternionic psh-functions). fd(GI ) = 3n.

6. GI = GC(p,Cn) for 1 < p < n. fd(GI ) = n+ p− 1.

7. GI = GH(p,Hn) for 1 < p < n. fd(GI ) = 3n+ p− 1.

8. GI = {x1-axis} ⊂ G(1,Rn). fd(GI ) = n− 1.

9. GI = SLAG ⊂ G(n,Cn), the special Lagrangian n-planes in Cn. fd(GI ) = 2n− 2
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10. GI = ASSOC ⊂ G(3,R7), the associative 3-planes in ImO ∼= R7. fd(GI ) = 4.

11. GI = COASSOC ⊂ G(4,R7), the coassociative 4-planes in ImO. fd(GI ) = 4.

12. GI = CAY ⊂ G(4,R8), the Cayley 4-planes in the octonions O ∼= R8. fd(GI ) = 4.

13. GI = LAG ⊂ G(n,Cn), the set of Lagrangian n-planes in Cn. fd(GI ) = 2n− 2.

Some Non-Geometric Examples. Let σk(A) : Sym2(Rn) → R be the kth elementary
symmetric function of the eigenvalues defined by the equation det(I + tA) =

∑
k σk(A)tk

Consider the closed convex cone P+(σk) whose interior is the connected component, con-
taining I, of the set {A ∈ Sym2(Rn) : σk(A) > 0}. Then

14. fd(P+(σk)) = n− k.

Note that every k-plane N is P+(σk)-strict because σk(PN ) = 1. On the other hand
σk(PN ) = 0 for any (k−1)-plane. Thus, the strict dimension of P+(σk) is k or equivalently,
the free dimension of P+(σk) is n− k.

11. P+-Free Submanifolds

We have seen in §10 that there are sometimes quite strong restrictions on the homotopy
dimension of P+-convex domains. In this section we show that within these restrictions
the topology of such domains can be quite complicated. One of the main results, Theorem
11.4, is that any submanifold M ⊂ X , which is P+-free, has a fundamental system of
strictly P+-convex neighborhoods homotopy equivalent to M .

Most proofs in this section are omitted since they carry over by direct generalization
from [HL2]. The reader can consult [HL2] for further results and details.DEFINITION 11.1. A closed submanifold M ⊂ X ⊂ Rn is P+-free if the tangent space TxM
is P+-free at each point x ∈ M . (In the geometric case where P+ = P+(GI ) this means
that there are no GI -planes which are tangential to M .)THEOREM 11.2. Suppose M is a closed submanifold of X ⊂ Rn. Then M is P+-free if and
only if the square of the distance to M is strictly P+-plurisubharmonic at each point in
M (and hence in a neighborhood of M in X).

Proof. Given x0 ∈ M , let N = (Tx0
M)⊥ denote the normal to M at x0. Let fM (x) =

1
2
dist2M (x) denote half the square of the distance to M . One can calculate that

Hessx0
fM = PN .

(See, [HL2, (6.3)].) Now the theorem is immediate from Lemma 10.2.THEOREM 11.3. Consider the two classes of closed sets.

1) Closed subset Z ⊂M of a P+-free submanifold M ⊂ X .

2) Zero sets Z = {f = 0} of non-negative strictly P+-plurisubharmonic functions f .

Locally these two classes are the same.
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Proof. Suppose Z ⊂ M is as in 1). Choose ψ ∈ C∞(X) with ψ ≥ 0 and {ψ = 0} = Z.
Then for ǫ > 0 small, the function fM + ǫψ is strictly P+-plurisubharmonic and Z =
{fM + ǫψ = 0}.

Assume Z = {f = 0} is as in 2). At x0 ∈ Z choose coordinates x = (z, y) in a
neighborhood of x0 so that

Hessx0
f =

(
0 0
0 Λ

)

where Λ is a diagonal matrix with non-zero diagonal entries:

∂2f

∂y2
1

(x0), ... ,
∂2f

∂y2
r

(x0).

Set

M =

{
∂f

∂y1
= · · · =

∂f

∂yr

= 0

}
.

This defines a submanifold M in a neighborhood of x0, since ∇ ∂f
∂y1

, ...,∇ ∂f
∂yr

are linearly

independent at x0. At x0 the normal space to M is N = {(0, y) : y ∈ Rr}. Strict
plurisubharmonicity implies Hessx0

f ∈ IntP+ ∩ Sym2(N) so that Tx0
M = N⊥ is P+-free

by Lemma 10.2. Since the freeness condition is open, the manifold M is P+-free in a
neighborhood of x0. Since f ≥ 0, ∇f = 0 at all points of Z = {f = 0}, and so Z ⊂M .THEOREM 11.4. Suppose M is a P+-free closed submanifold of X ⊂ Rn. Then there
exists a fundamental neighborhood system F(M) of M consisting of P+-convex domains.
Moreover,

a) M is a deformation retract of each U ∈ F(M).

b) Each compact subset K ⊂M is PSH∞(U,P+)-convex for each U ∈ F(M).

The proof of this theorem is exactly as in [HL2, Thm. 6.6] and is omitted.
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12. P+-Convex Boundaries

In this section we introduce the notion of P+-convexity for smooth boundaries of
domains in Rn. We show, for bounded domains, that if the boundary is strictly P+-
convex at each point, then there exists a global defining function ρ for the domain which
is strictly P+-plurisubharmonic on its closure. It is then easy to see that −log(−ρ) is a
strictly P+-plurisubharmonic exhaustion, and so the domain is P+-convex.

Fix a domain Ω ⊂⊂ Rn with smooth boundary ∂Ω. By a defining function for ∂Ω we
mean a smooth function ρ defined in a neighborhood of ∂Ω such that in this neighborhood
Ω = {x ∈ Rn : ρ(x) < 0} and ∇ρ 6= 0 on ∂Ω.

An element A ∈ P+ is said to be tangential at x ∈ ∂Ω if A ∈ Sym2(Tx∂Ω). In terms
of the 2 × 2 blocking induced by the decomposition Rn = Nx(∂Ω) ⊕ Tx(∂Ω), this means

A =

(
0 0
0 a

)DEFINITION 12.1. We say that ∂Ω is strictly P+-convex at a point x ∈ ∂Ω if

〈Hessxρ, A〉 > 0 for all non zero A ∈ P+ which are tangential at x. (12.1)

If 〈Hessxρ, A〉 ≥ 0 for all tangential A ∈ P+, then ∂Ω is said to be P+-convex at x.NOTE 12.2. These notions are independent of choice of defining function ρ. If ρ̃ = fρ
with f > 0 in C∞(∂Ω), then Hessρ̃ = fHessρ+ ρHessf + 2∇ρ ◦ ∇f , and so 〈Hessxρ̃, A〉 =
f〈Hessxρ, A〉 for A ∈ P+ which are tangential at x.REMARK 12.3. (The Geometric Case) If P+ = P+(GI ), where GI is a closed subset of the
grassmannian G(p,Rn), note that A ∈ P+(GI ) is tangential if and only if A =

∑
j λjPξj

with each λj > 0 and each ξj ∈ GI tangential in the sense that span ξj ⊂ Tx∂Ω. To
show this let n denote a unit normal to ∂Ω at x. If A ∈ P+(GI ), then by definition
A =

∑
j λjPξj

with each λj > 0 and each ξj ∈ GI . If A is tangential to ∂Ω at x, then

0 = 〈A, Pn〉 =
∑

j λj〈Pξj
, Pn〉 and hence each 〈Pξj

, Pn〉 = |n l ξj|
2 vanishes, which implies

that span ξj ⊂ Tx∂Ω. Consequently, ∂Ω is strictly P+-convex at x ∈ ∂Ω if and only if

trξHessxρ = 〈Hessxρ, Pξ〉 > 0 for all ξ ∈ GI which are tangential at x (12.2)

(and ∂Ω is P+-convex at x iff trξHessxρ ≥ 0 for all ξ ∈ GI tangential at x).THEOREM 12.4. Suppose that Ω has a strictly P+-convex boundary. Then there exists a
strictly P+-plurisubharmonic function on a neighborhood of Ω which is a defining function
for ∂Ω.

Proof. Fix C > 0 and consider ρ̃ = ρ+ 1
2Cρ

2. This is also a defining function for ∂Ω. At
x ∈ ∂Ω

Hessxρ̃ = Hessxρ+ C(∇ρ ◦ ∇ρ). (12.3)LEMMA 12.5. For C sufficiently large, ρ̃ is strictly P+-plurisubharmonic at each point
x ∈ ∂Ω.
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Proof. Since P+ ⊂ P, condition (3.3) states that the tangential condition

A ∈ P+ ∩ Sym2(Tx∂Ω) is equivalent to A ∈ P+ and 〈∇ρ(x) ◦ ∇ρ(x), A〉 = 0. (12.4)

Now restrict attention to the compact base B+ = {A ∈ P+ : trA = 1} for P+. Consider
the open subsets of ∂Ω × B+ defined by

Uδ = {(x,A) ∈ ∂Ω × B+ : 〈∇ρ(x) ◦ ∇ρ(x), A〉 < δ}. (12.5)

Because of (12.4) these sets Uδ form a fundamental neighborhood system, in ∂Ω×B+, for
the compact set

K = {(x,A) ∈ ∂Ω × B+ : A is tangential to ∂Ω at x}.

The hypothesis that ∂Ω is strictly P+-convex implies that, for ǫ > 0 sufficiently small,
N(K) = {(x,A) ∈ ∂Ω × B+ : 〈Hessxρ, A〉 > ǫ} contains K. This proves that there exist
ǫ, δ > 0 such that for each (x,A) ∈ ∂Ω × B+

〈∇ρ(x) ◦ ∇ρ(x), A〉 < δ ⇒ 〈Hessxρ, A〉 > ǫ. (12.6)

Choose M > 0 so that −M < 〈Hessxρ, A〉 for all (x,A) ∈ ∂Ω × B+. Then, for 〈∇ρ(x) ◦
∇ρ(x), A〉 ≥ δ, one has

〈Hessxρ̃, A〉 = 〈Hessxρ+ C(∇ρ(x) ◦ ∇ρ(x)), A〉 ≥ Cδ −M, (12.7)

while for 〈∇ρ(x) ◦ ∇ρ(x), A〉 < δ, one has

〈Hessxρ̃, A〉 ≥ 〈Hessxρ, A〉 > ǫ (12.8)

by (12.6). Choose C > M/δ.

Since ρ̃ is strictly P+-plurisubharmonicat each point x ∈ ∂Ω, the same is true in a
neighborhood {−2t < ρ̃ < 2t} of ∂Ω.

To complete the proof of the theorem, it remains to extend ρ̃ to all of Ω. The function
max{ρ̃,−t} is a P+-plurisubharmonic extension, but it is not smooth or strict. However,
replacing −t by a|x|2 − t, where a > 0 is chosen small enough so that a|x|2 − t < ρ̃ on
{− t

2
< ρ̃ < 0}, and then smoothing, we have that for ǫ > 0 sufficiently small,

ρ̂ = maxǫ{ρ̃, a|x|
2 − t}

is a C∞ strictly P+-plurisubharmonic function on a neighborhood of Ω which agrees with
ρ̃ on a neighborhood of ∂Ω.REMARK 12.6. In the non-geometric cases, where P+ is given but P+ may be difficult to
determine explicitly, the proof of Lemma 12.5 (see (12.3)) provides a convenient criterion
for strict boundary convexity. Namely:

∂Ω is strictly P+ convex at x ∈ ∂Ω ⇔

Hessxρ+C(∇ρ(x) ◦ ∇ρ(x)) ∈ IntP+ for C > 0 sufficiently large
(12.9)
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The corresponding statement for P+-convexity is false. Consider P+ = P and n = 2 with

Tx∂Ω = span e2. Then H =

(
0 a
a 0

)
is ≥ 0 and tangential at x, but H + Ce1 ◦ e1 =

(
C a
a 0

)
is never in P+ = P.

We now consider convexity of ∂Ω in terms of its second fundamental form II with
respect to the outward pointing normal. Let ρ denote the signed distance function to ∂Ω,
i.e., ρ(x) = −dist(x, ∂Ω) for x ∈ Ω and ρ(x) = dist(x, ∂Ω) for x /∈ Ω (so ρ is a defining
function for ∂Ω). One computes (see [HL2, §5]) that for points x ∈ ∂Ω

Hessx ρ =

(
0 0
0 −II

)
(12.10)

with respect to the orthogonal decomposition

TxR
n = Nx∂Ω ⊕ Tx∂Ω. (12.11)PROPOSITION 12.7. Suppose Ω ⊂⊂ Rn has a smooth boundary, and denote by II the

second fundamental form of ∂Ω with respect to the outward pointing normal n = ∇ρ.
Then ∂Ω is strictly P+-convex at a point x ∈ ∂Ω if and only if

〈II, A〉 < 0 for all non zero A ∈ P+ which are tangential at x

or equivalently

−II + Cn ◦ n ∈ IntP+ for C > 0 sufficiently large. (12.12)

Proof. Since ρ is a defining function for ∂Ω, the first assertion follows immediately from
(12.10). The proof of (12.12) is discussed in Remark 12.6.REMARK 12.8. (The Geometric Case). The boundary ∂Ω is strictly P+(GI )-convex at
x ∈ ∂Ω if and only if

trξII < 0 for each ξ ∈ GI which is tangential at x.

Finally we discuss the relationship of boundary convexity to the convexity of the
domain itself.PROPOSITION 12.9. Suppose that Ω ⊂⊂ Rn has a smooth, strictly P+-convex boundary.
Then Ω is a P+-convex domain.

Proof. If ρ is a strictly P+-convex defining function (such as the one given by Theorem
12.4), then −log(δ), with δ = −ρ, is a strictly P+-plurisubharmonicexhaustion function.
One computes that

〈Hess(−logδ), A〉 =
1

δ
〈Hess ρ, A〉 +

1

δ2
〈∇ρ ◦ ∇ρ, A〉. (12.13)
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The right hand side is > 0 for all non-zero A ∈ P+.

In general it is not true that boundaries of P+-convex domains are P+-convex. (See
[HL2, §5] for examples). However, we have the following.THEOREM 12.10. Let δ = dist(•, ∂Ω) denote the distance to ∂Ω in Ω. If −logδ is P+-
plurisubharmonic near ∂Ω, then ∂Ω is P+-convex.

Proof. If ∂Ω is not P+-convex, then there exists x ∈ ∂Ω and A ∈ P+ ∩ Sym2(Tx∂Ω) with
〈II, A〉 > 0. Since A is tangential, we have 〈∇δ ◦ ∇δ, A〉 = 0. Let ℓ denote the line
segment in Ω which emanates from x normally to the boundary, i.e., in the direction ∇δ.
It follows from (12.10) and (12.13) that 〈Hess(−logδ), A〉 = −1

δ
〈Hess δ, A〉 < 0 at all points

of ℓ near to x. Consequently, −logδ is not P+-plurisubharmonic in any neighborhood of
∂Ω.
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Appendix A.

The Maximum Principle and Subaffine Functions.

An upper semi-continuous function u : X → [−∞,∞) satisfies the maximum principle
if for each compact subset K ⊂ X

sup
K

u ≤ sup
∂K

u. (A.1)

A function u may locally satisfy the maximum principle without satisfying the maximum
principle on all of X . (Consider, for example, a function u on R with compact support,
0 ≤ u ≤ 1, u ≡ 1 on a neighborhood of the origin and otherwise monotone.) However, this
situation is easily remedied. First note that (A.1) is equivalent to the condition that:

u ≤ c on ∂K ⇒ u ≤ c on K for all constants c, (A.1)′

i.e., u is sub-constants. Replacing the constant functions by the affine functions, consider
the condition:

u ≤ a on ∂K ⇒ u ≤ a on K for all affine functions a (A.2)DEFINITION A.1. A function u ∈ USC(X) satisfying (A.2) for all compact subsets K ⊂ X
will be called subaffine on X . Let SA(X) denote the space of all u ∈ USC(X) that are
locally subaffine on X , i.e., for all x ∈ X there exists a neighborhood B of x with u

∣∣
B

sub-affine.

Note that if u is subaffine on X , then the restriction to any open subset is also
subaffine.LEMMA A.2. If u is locally subaffine on X , then u is subaffine on X . In fact, u is not
subaffine on X if and only if

There exist x0 ∈ X, a affine, and ǫ > 0 such that

(u− a)(x) ≤ −ǫ|x− x0|
2 near x0, and

(u− a)(x0) = 0

(A.3)

Proof. Subaffine implies locally subaffine, which implies (A.3) is impossible. Hence, it
remains to show that if (A.3) is false, then u is subaffine, or equivalently, if u is not
subaffine on X , then (A.3) is true. If u is not subaffine on X , then for some compact set
K ⊂ X and some affine function b, the difference w = u − b has an interior maximum
point for K. For ǫ > 0 sufficiently small, the same is true for w = u + ǫ|x|2 − b. Choose
a maximum point x0 ∈ IntK for w and let M = w(x0) denote the maximum value on K.
Then u+ǫ|x|2−b−M ≤ 0 onK and equals zero at x0. Since ǫ|x|2 and ǫ|x−x0|

2 differ by the
affine function, this proves that there is an affine function a such that u+ǫ|x−x0|

2−a ≤ 0
on K and is equal to zero at x0, i.e., (A.3) is true.
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THEOREM A.3. (Maximum Principle). Suppose K ⊂ Rn is compact and u ∈ USC(K). If
u ∈ SA(IntK), then

sup
K

u ≤ sup
∂K

u.

Proof. Exhaust IntK by compact sets Kǫ. Since u ∈ SA(IntK), supKǫ
u ≤ sup∂Kǫ

u.
Since u ∈ USC(K), each Uδ = {x ∈ K : u(x) < sup∂K u + δ}, for δ > 0, is an open
neighborhood of ∂K in K. Therefore, there exits ǫ > 0 with ∂Kǫ ⊂ Uδ which implies that
sup∂Kǫ

u ≤ sup∂K u+ δ.

For functions which are C2 (twice continuously differentiable), the subaffine condition
is a condition on the hessian of u at each point.PROPOSITION A.4. Suppose u ∈ C2(X). Then

u ∈ SA(X) ⇐⇒ Hessxu has at least one eigenvalue ≥ 0 at each point x ∈ X.

Proof. Suppose HessX0
u < 0 (negative definite) at some point x0 ∈ X . Then the Taylor

expansion of u about x0 implies (A.3) Therefore, since u(x0) = 0, u /∈ SA(X).
Conversely, if u /∈ SA(X), then (A.3) is valid for some point x0 ∈ X which implies

that Hessx0
u+ ǫI ≤ 0. So Hessxu < 0 is negative definite.EXAMPLE (n=1). Suppose I is an open interval in R. Then

u ∈ SA(I) ⇐⇒ either u ∈ Convex(I) or u ≡ −∞.

Proof. Suppose u ∈ SA(I) equals −∞ at one point α ∈ I but u is finite at another point
β ∈ I. Choose a to be the affine function with a(α) = −N and a(β) = u(β). By (A.2), we
have u ≤ a on [α, β], which implies (by letting N → ∞) that u ≡ −∞ on [α, β). Hence
u is either ≡ −∞ or it is finite-valued on all of I (and therefore convex). The converse is
immediate.
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Appendix B.

Hessians of Plurisubharmonic Distributions.

The decomposition
Sym2(Rn) = E ⊕ S (B.1)

induces a decomposition of each Sym2(Rn)-valued test function on X , and hence of each
Sym2(Rn)-valued distribution on X . Applying this to Hessu, with u ∈ D′(X), we have

Hessu = (Hessu)E + (Hessu)S . (B.2)LEMMA B.1. If u ∈ PSHdist(X), then (Hessu)S is an S-valued measure on X .

Proof. Since the interior of P+ in S is non-empty, we may choose a basis A1, ..., AN ∈
IntP+ for S. the dual basis A∗

1, ..., A
∗
N for S will have the property that (Hessu)S =

u1A1 + · · ·+ unAN with each uj ∈ D′(X). Given ϕ ∈ C∞
cpt(X),

uj(ϕ) = (Hessu)S(ϕAj). (B.3)

If u is a P+-plurisubharmonic distribution, (B.3) implies that each uj ≥ 0 is a non-negative
measure.

Note that using any basis for Sym2(Rn) (for example the standard basis), (Hessu)S

will have measure coefficients.LEMMA B.2. Suppose H is an S-valued measure on X . Then there exists a measure
‖H‖ ≥ 0 and a function

−→
H : X → S which is in L1

loc on X with respect to the measure

‖H‖, and |
−→
H (x)| = 1, ‖H‖-a.e., such that

H(Φ) =

∫

X

〈
−→
H,Φ〉 ‖H‖

for each S-valued test form Φ on X . Also, ‖H‖ and
−→
H are unique.

Proof. This is a standard fact about vector-valued measures.THEOREM B.3. Suppose u ∈ PSHdist(X) and abbreviate (Hessu)S by Hu. Then

(Hessu)S =
−→
Hu ‖Hu‖ (B.4)

with ‖Hu‖ ≥ 0 and |
−→
Hu(x)| = 1 for ‖Hu‖ a.a. x ∈ X .
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Appendix C.

Convex Elliptic Sets in Sym2(Rn).

Suppose F is an unbounded closed convex set in a finite dimensional inner product
space (V, 〈·, ·〉), and assume that F has interior but F 6= V . We can associate with F two
closed convex cones with vertex at the origin, P+(F ) and P+(F ) which are polars of each
other.

P+(F ) — The Ray Cone of F : Pick a ∈ F . Consider the set of directions −→u such
that the ray from a in the direction −→u in contained in F . This coincides with the compact
subset ⋂

r>0

1
r
∂Br ∩ (F − a)

of the unit sphere. The cone on this compact set is called the ray cone of F and is denoted
by P+(F ). Since F − a is convex, P+(F ) is convex. If b ∈ F is any point in F , it is easy
to see that the ray {a+ tv : t ≥ 0} is contained in F if and only if the ray {b+ tv : t ≥ 0}
is contained in F . That is, P+(F ) is independent of the choice of point a ∈ F .

P+(F ) — The Cone of Supporting Directions for F : For each non-zero u ∈ V and
each λ ∈ R, consider the closed half-space

H(u, λ) = {v ∈ V : u · v ≥ λ}

If F ⊂ H(u, λ) for some λ ∈ R, then u is a supporting direction vector for F . Let P+(F )
denote the closure of the set of these supporting direction vectors. Obviously, P+(F ) is a
closed set of rays at the origin in V . If F ⊂ H(u, λ) and F ⊂ H(u′, λ′) and 0 ≤ s ≤ 1,
then it is easy to see that F ⊂ H(su+ (1 − s)u′, sλ+ (1 − s)λ′). Thus P+(F ) is convex.PROPOSITION C.1. Suppose F is an unbounded closed convex subset of V with spanF = V
but F 6= V . Then P+(F ) and P+(F ) are polars of each other (with spanP+(F ) = V and
P+(F ) 6= V ).

Proof. Suppose v ∈ P+(F ) and u is a supporting direction vector. Then for a ∈ F ,
the ray {a + tv : t ≥ 0} ⊂ F and there exists λ ∈ R with F ⊂ H(u, λ). Therefore,
λ ≤ 〈u, a + tv〉 = 〈u, a〉 + t〈u, v〉 for all t ≥ 0 which implies that 〈u, v〉 ≥ 0. This proves
that each of P+(F ) and P+(F ) is contained the the polar of the other.

Suppose v is in the polar of P+(F ), i.e., 〈u, v〉 ≥ 0 if F ⊂ H(u, λ) for some λ.
Consider the ray {a + tv : t ≥ 0} through a ∈ F . This ray is contained in H(u, λ) since
〈a+ tv, u〉 = 〈a, u〉+ t〈v, u〉 ≥ λ+ t〈v, u〉 ≥ λ if t ≥ 0. By the Hahn-Banach Theorem this
ray must be contained in F . Hence, v ∈ P+(F ). Thus P+(F ) is the polar of P+(F ). The
reverse follows from the bipolar theorem

The Edge of F . The set E(F ) = {v ∈ V : ±v ∈ P+(F )} consisting of those v ∈ V such
that the full affine line {a + tv : t ∈ R} through a ∈ F is contained in F , is called the
linearity of F or the edge of F . Set S(F ) ≡ E(F )⊥. Then

F = E(F ) × (F ∩ S(F ))

39



is a tube with base F ∩ S(F ). In this case the ray cone P+(F ) is also a tube

P+(F ) = E(F ) × (P+(F ) ∩ S(F ))

with the same edge as F .
Note that spanP+(F ) = V since F is assume to have interior, but

spanP+(F ) = S(F ).

Convex Elliptic Sets.DEFINITION C.2. A closed convex subset F ⊂ Sym2(Rn) which satisfies

(1) F + P ⊂ F .

(2) F can not be defined using the variables in a proper subspace W ⊂ Rn,

will be called a convex elliptic set.PROPOSITION C.3. A closed convex subset F ⊂ Sym2(Rn) is elliptic if and only if its ray
cone P+(F ) is an elliptic cone.

Proof. It is easy to see that F satisfies the positivity condition (1) if and only if P+(F )
does. It remains to show that F can be defined using the variables in a proper subspace
W ⊂ Rn if and only if the ray cone P+(F ) can be defined using the variables in W

We must show that Sym2(W )⊥ ⊂ F ⇐⇒ Sym2(W )⊥ ⊂ P+(F ). One way is trivial.
For the other, suppose Sym2(W )⊥ ⊂ P+(F ). We may assume 0 ∈ F . Then A ∈ P+(F ) if
and only if the ray {tA : t ≥ 0} ⊂ F . Hence, Sym2(W )⊥ ⊂ F .COROLLARY C.4. Suppose F is a closed convex set in Sym2(Rn) with F + P ⊂ F . Then
F cannot be defined using fewer of the variables in Rn if and only if each A ∈ IntP+(F )
is positive definite.
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Appendix D.

The Dirichlet Problem for Convex Elliptic Sets.

The main results of this paper carry over from elliptic cones to convex elliptic sets F .
Suppose

H = {B ∈ Sym2(Rn) : 〈A,B〉 ≥ c}

is a supporting half-space for F with A ∈ IntP+(F ). By Corollary C.4, A is positive
definite. Pick B0 ∈ ∂H, i.e., 〈A,B0〉 = c. Then the replacement for the mollifying
condition ∆Au ≥ 0 is ∆Au ≥ ∆AB0 = 〈A,B0〉 = c. The Mollifying Lemma 4.2 remains
valid for F -plurisubharmonic distributions. The notion of being u.s.c. F -plurisubharmonic
carries over in a straightforward manner. For both these concepts a function u is of type
F if and only if it is of type H for all supporting half-spaces H. The key approximation
property (7) is section 6 remains valid, with standard convolution providing the proof.

The equivalent definitions of type F̃ carry over from those of type P̃+.
Finally, the Dirichlet Problem is solvable in this context. See Theorem 7.1 (Unique-

ness) and Theorem 8.1 (Existence). In the existence statement the boundary ∂Ω must be
strictly P+(F )-convex.EXAMPLE D.1. A simple but illuminating example of a convex elliptic set is

F ≡ {A ∈ Sym2(Rn) : A ≥ 0 and detA ≥ c}

for a constant c ≥ 0. One sees that the ray cone P+(F ) = P. The corresponding classical
equation is: det{Hessu} = c.EXAMPLE D.2. A more interesting example is

F ≡ {A ∈ Sym2(Rn) : A ≥ 0 and Trace{arctan(A)} ≥ kπ} (D.1)

where n = 2k + 1 or 2k + 2. The corresponding equation

Im{det(I + iA)} = 0 (D.2)

arises in the study of Special Lagrangian submanifolds, and the Dirichlet problem for (D.2)
was studied in depth by Caffarelli, Nirenberg and Spruck [CNS]. In fact the locus of (D.2)
has k connected components and [CNS] treats only the “outermost” component, which
corresponds to the boundary of the set F defined in (D.1). In [CNS] the authors show that
the ray cone

P+(F ) =
{
P if n is odd
Q if n is even

where IntQ is the component of the set {A ∈ Sym2(Rn) : σn−1(A) > 0} which contains
the identity I (and σn−1 denotes the (n− 1)st elementary symmetric function). In [HL4]
existence and uniqueness of continuous solutions to the Dirichlet Problem are established
for all branches of the equation (D.2). However, the smoothness of the solutions for smooth
boundary data remains largely open (see [Y] however).
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Appendix E.

Elliptic MA-operators / G̊arding-Hyperbolic Polynomials on Sym2(Rn).

For each polynomial P on the vector space Sym2(Rn) consider the associated (non-
linear) partial differential operator defined by P(u) = P (Hessu). If P is the determinant,
the associated operator is the real Monge-Ampère operator.DEFINITION E.1. Let M be a homogeneous polynomial of degree m on Sym2(Rn). Suppose
that the identity I is a hyperbolic direction for M in the sense of G̊arding [G]. That is,
M(I) > 0 and for each A ∈ Sym2(Rn), the polynomial pA(t) = M(tI + A) has exactly m
real zeros on R. Then the operator

M(u) = M(Hessu) (E.1)

will be called a Monge-Ampère or MA-operator, and the polynomial M will be called an
MA-polynomial.

The negatives of the roots of pA are called the M -eigenvalues of A and are denoted
λ1(A), ..., λm(A) so that M(tI + A) = M(I)

∏m
j=1(t+ λj(A)).

G̊arding’s beautiful theory of hyperbolic polynomials states that the set

Γ(M) = {A ∈ Sym2(Rn) : λj(A) > 0, j = 1, ..., m} (E.2)

is an open convex cone in Sym2(Rn) equal to the connected component of {M > 0}
containing I. The closed convex cone

P+(M) = {A ∈ Sym2(Rn) : λj(A) ≥ 0, j = 1, ..., m} (E.3)

is the closure of Γ(M), and Γ(M) = IntP+(M). G̊arding also shows that the edge of
P+(M) is given by λ1(A) = · · · = λm(A) = 0.

The Positivity Condition on P+(M) (from §3) can be stated in several equivalent
ways in terms of M .

First the condition that IntP ⊂ P+(M), ( i.e., A > 0 ⇒ λj(A) ≥ 0 for all j) is
stated directly in terms of M as:

1) M(tI + A) 6= 0 if t > 0 and A > 0.

Second, the condition that Pe ∈ P+(M) for all unit vectors e in Rn, (i.e., λj(Pe) ≥ 0
for all j and e) is expressed directly in term of M as

1)′ M(tI + Pe) 6= 0 for all t > 0 and all unit vectors e.

By Proposition 3.6, assuming positivity, P+(M) is elliptic if and only if −Pe /∈ P+(M)
for all unit vectors e. Equivalently, Pe /∈ E(P+(M)), the edge of P+(M). That is,

2) M(I + sPe) is not constant in s for each unit vector e.PROPOSITION E.2. The convex cone P+(M) defined by an MA-polynomial is an elliptic
cone if and only if for each unit vector e ∈ Rn,

1)′ M(tI + Pe) 6= 0 for all t > 0, and
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2) M(I + sPe) is non-constant in s.

M-Elementary Symmetric Functions. Given an MA-polynomial, expanding out
M(tI + A) as a polynomial of degree m in t yields

M (0)(A)tm +M (1)(A)tm−1 + · · · +M (m)(A) (E.4)

where M (0)(A) = M(I), M (m)(A) = M(A), and

M (k)(A) =
1

(m− k)!

dm−k

dtm−k
M(tI +A)

∣∣
t=0

. (E.5)

By Rolle’s Theorem the roots of

M (k−1)(tI +A) =
1

(m− k)

d

dt
M (k)(tI +A) (E.6)

strictly separate the roots of M (k)(tI + A).PROPOSITION E.3. If M is an elliptic MA-polynomial on Sym2(Rn), then for each k,
1 ≤ k ≤ m, M (k) is also an elliptic MA-polynomial.

Proof. . Using induction and (E.6) is suffices to prove the Proposition for k = m −
1. By Rolle’s Theorem the M (m−1)-eigenvalues of A separate the M -eigenvalues of A.
Hence, if there are m of the M -eigenvalues, then there must be at least m − 1 of the
M (m−1)-eigenvalues. Moreover, if all the M -eigenvalues of A are ≥ 0, then all the M (m−1)-
eigenvalues of A are ≥ 0. Thus if M satisfies positivity, so does M (m−1). Since Pe ≥ 0, its
M -eigenvalues must be ≥ 0. Since M is elliptic, Pe does not belong to the edge of P+(M).
Thus Pe must have at least one M -eigenvalue > 0. By the separating property, this implies
that Pe must have at least one M (m−1)-eigenvalue > 0. Therefore, Pe /∈ E(P+(M (m−1))).

Examples: The basic examples are given by taking M to be the determinant. There are
four cases corresponding to R,C,H and O. In all four cases the cone P+(M) is elliptic.

1. The determinant on Sym2(Rn).

2. The determinant on HermCSym2(Cn) ⊂ Sym2(R2n).

3. The determinant on HermHSym2(Hn) ⊂ Sym2(R4n).

4. The determinant on HermOSym2(O2) ⊂ Sym2(R16).

The quaternionic case is perhaps best understood as a polar action [DK]. Namely,
Spn acts on HermHSym2(Hn) with cross-section given by the space D of diagonal ma-
trices. The polynomial λ1 · · ·λn on D extends to an Spn-invariant polynomial, detH, on
HermHSym2(Hn) (cf. [AV]).

In each of these cases the inhomogeneous equation has been been treated: the real case
by Taylor-Rauch, the complex case by Bedford-Taylor, the quaternionic case by Alesker-
Verbitsky and the octonian case also by Alesker-Verbitsky.
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Notice that in each of these cases the polynomialM (k)(A) is exactly the kth elementary
symmetric function σK

k (A) of the eigenvalues of the K hermitian symmetric part of A for
K = R,C,H.

Certain versions of the inhomogeneous Monge-Ampère can be treated by the methods
in [HL4,5]. For example one can insert a function f(x, u) with fu ≥ 0. One can also address
all other branches of the determinant in this inhomogeneous form.
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