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Abstract
A theory of di�erential characters is developed for manifolds with bound-ary. This is done from both the Cheeger-Simons and the deRham-Federerviewpoints. The central result of the paper is the formulation and proof ofa Lefschetz-Pontrjagin Duality Theorem, which asserts that the pairing

cIHk(X; @X)�cIHn�k�1(X) �! S1
given by (�; �) 7! (� � �) [X]
induces isomorphisms

D : cIHk(X; @X)! Hom1(cIHn�k�1(X); S1)
D0 : cIHn�k�1(X)! Hom1(cIHk(X; @X); S1)

onto the smooth Pontrjagin duals. In particular, D and D0 are injectivewith dense range in the group of all continuous homomorphisms into thecircle. A coboundary map is introduced which yields a long sequence forthe character groups associated to the pair (X; @X). The relation of thesequence to the duality mappings is analyzed.
Key words: Di�erential characters, Lefschetz duality, deRham theory.
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x0. Introduction.The theory of di�erential characters, introduced by Jim Simons and Je� Cheeger in 1973,is of basic importance in geometry. It provides a wealth of invariants for bundles withconnection starting with the classical one of Chern-Simons in dimension 3 and includinglarge families of invariants for 
at bundles and foliations. Its cardinal property is that itforms the natural receiving space for a re�ned Chern-Weil theory. This theory subsumesintegral characteristic classes and the classical Chern-Weil characteristic forms. It alsotracks certain \transgression terms" which give cohomologies between smooth and singularcocycles and lead to interesting secondary invariants.Each standard characteristic class has a re�nement in the group of di�erential characters.Thus for a complex bundle with unitary connection, re�ned Chern classes bck are de�nedand the total class gives a natural transformation
bc = 1 + bc1 + bc2 + � � � : IK(X) �! cIH�(X)

from the K-theory of bundles with connection to di�erential characters which satis�es theWhitney sum formula: bc(E�F ) = bc(E) �bc(F ). This last property leads to non-conformalimmersion theorems in riemannian geometry.Di�erential characters form a highly structured theory with certain aspects of coho-mology: contravariant functoriality, ring structure, and a pairing to cycles. There aredeRham-Federer formulations of the theory (Gillet & Soul�e 1989), (Harris 1989), (Harveyet al 2001), analogous to those given for cohomology, which are useful for example in thetheory of singular connections (Harvey & Lawson 1993 1995). Furthermore, the groups
cIHk(X) of di�erential characters carry a natural topology. The connected component of0 in this group consists of the smooth characters, those which can be represented bysmooth di�erential forms.In (Harvey et al 2001), where the deRham-Federer appoach is developed in detail, theauthors showed that di�erential characters satisfy Poincar�e-Pontjagin duality: On anoriented n dimensional manifold X the pairing

cIHk(X)�cIHn�k�1cpt (X) �! S1
given by (�; �) 7! (� � �)[X]
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(where cIH�cpt denotes characters with compact support) induces injective maps
cIHk(X) ! Hom�cIHn�k�1cpt (X); S1� and cIHn�k�1cpt (X) ! Hom�cIHk(X); S1�

with dense range in the groups of continuous homomorphisms into the circle. Moreoverthis range consists exactly of the smooth homomorphisms. These are de�ned precisely
in x4 but can be thought of roughly as follows. The connected component of 0 in cIHk(X)consists essentially (i.e., up to a �nite-dimensional torus factor) of the exact (k+1)-formsdEk+1(X) with the C1-topology. Now Hom(dEk+1(X); S1) = Hom(dEk+1(X);R) is justthe vector space dual. This is simply a quotient of the space of currents, the (n� k � 1)-forms with distribution coe�cients. The smooth dual corresponds to those forms whichhave smooth coe�cients.In this paper we formulate the theory of di�erential characters for compact manifoldswith boundary (X; @X) and prove a Lefschetz-Pontrjagin Duality Theorem analogous to
the one above. To do this we introduce the relative groups cIH�(X; @X) and develop thetheory from (Harvey et al 2001) for this case. The main theorem asserts the existence ofa pairing

cIHk(X)�cIHn�k�1(X; @X) �! S1
given by (�; �) 7! (� � �)[X] and inducing injective maps with dense range as above.The two pairings above have a formal similarity but are far from the same. The delicatepart of these dualities comes from the di�erential form component of characters. In the�rst pairing (on possibly non-compact manifolds) we contrast forms having no growthrestrictions at in�nity with forms with compact support. The second dualtiy (on compactman�olds with boundary) opposes forms smooth up to the bounday with forms whichrestrict to zero on the boundary.In cohomology theory there are long exact sequences for the pair (X; @X) which inter-lace the Pontrjagin and Lefschetz Duality mappings. In the last sections of this paper theparallel structure for di�erential characters is studied. We introduce coboundary maps
@ : cIHk(X) ! cIHk+1(X; @X), yielding long sequences which intertwine the duality map-pings and reduce to the standard picture under the natural transformation to integralcohomology.
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x1. Di�erential characters on manifolds with boundary. Let X be a compactoriented di�erentiable n-manifold with boundary @X. Let E�(X) denote the de Rhamcomplex of di�erential forms which are smooth up to the boundary, and set
E�(X; @X) = f� 2 E�(X) : ���@X= 0g:

The cohomology of this complex is naturally isomorphic to H�(X; @X; R). Let C�(X)denote the complex of C1-singular chains on X and C�(X; @X) � C�(X)=C�(@X) therelative complex. Denote by
Z�(X; @X) � fc 2 C�(X; @X) : @c = 0g

the cycles in this complex. We begin with de�nitions of di�erential characters in the spiritof Cheeger-Simons.
De�nition 1.1. The group of di�erential characters of degree k on X is the set ofhomomorphisms

Ĥk(X;R=Z) � f� 2 Hom(Zk(X); S1) : �(�) 2 Ek+1(X)g
where � denotes the coboundary. Similarly the group of relative di�erential charactersof degree k on (X; @X) is de�ned to be

Ĥk(X; @X;R=Z) � f� 2 Hom(Zk(X; @X); S1) : �(�) 2 Ek+1(X; @X)g
Inclusion and restriction give maps cIHk(X; @X) j�! cIHk(X) ��! cIHk(@X): with � � j = 0.
There is an alternative de Rham-Federer approach to these groups. Set

EkL1loc(X) � k-forms on X with L1loc-coe�cients
Rk(X) � the recti�able currents of degree k (dimension n� k) on X

EkL1loc(X; @X) � fa 2EkL1loc(X) : a in smooth in a neighborhood of @X and a��@X= 0g
Rkcpt(X � @X) � fR 2 Rk(X) : supp(R) � X � @Xg

De�nition 1.2. An element a 2 EkL1loc(X) is called a spark of degree k on X if
(1.3) da = ��R where � 2 Ek+1(X) and R 2 Rk+1(X):
Denote by Sk(X) the group of all such sparks and by T k(X) the subgroup of all a 2 Sk(X)
such that a = db+S where b 2 Ek�1L1loc (X) S 2 Rkcpt(X). Then the group of de Rham-Federer
characters of degree k on X is de�ned to be the quotient

cIHk(X) � Sk(X)=T k(X):
Given a spark a 2 Sk(X) we denote its associated character by hai 2 cIHk(X).We de�ne relative sparks and relative de Rham-Federer characters on (X; @X) by
Sk(X; @X) �fa 2 EkL1loc(X; @X) : da = ��R; � 2 Ek+1(X; @X) and R 2 Rk+1cpt (X � @X)g
T k(X; @X) � fa 2 Sk(X; @X) : a = db+ S; b 2 Ek�1L1loc (X; @X) and S 2 Rkcpt(X � @X)g

cIHk(X; @X) � Sk(X; @X)=T k(X; @X):
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The decomposition (1.3) is unique. In fact we have the following. Recall that a currentT is said to be integrally 
at if it can be written as T = R + dS where R and S arerecti�able. Then from x1.5 in (Harvey et al 2001) one concludes:
Proposition 1.4. Let a be any current of degree k on X such that da = � � R where� 2 Ek+1(X) and R is integrally 
at. If da = �0 � R0 is a similar decomposition, then� = �0 and R = R0. Furthermore,

d� = 0 and dR��X�@X = 0
and � has integral periods on cycles inX. In the case that � 2 Ek+1(X; @X) and supp(R) �X � @X, one has that dR = 0 and � has integral periods on all relative cycles in (X; @X).
Set

(1.5)

Z0̀(X) = f� 2 E`(X) : d� = 0 and � has integral periodsg
Z0̀(X; @X) = f� 2 E`(X; @X) : d� = 0 and � has

integral periods on relative cycles in (X; @X) g
Zr̀ect(X) = fR 2 R`(X) : dR��X�@X= 0g

Zr̀ect(X; @X) = fR 2 Rc̀pt(X � @X) : dR = 0g
Corollary 1.6. Taking d1a = � and d2a = R from the decomposition (1.3) gives well-de�ned mappings

d1 : Sk(X) �! Zk+10 (X); d2 : Sk(X) �! Zk+1rect (X); and
d1 : Sk(X; @X) �! Zk+10 (X; @X); d2 : Sk(X; @X) �! Zk+1rect (X � @X)

Proposition 1.7. There are natural isomorphisms
	 : cIHk(X) �=�! Ĥk(X; R=Z) and 	 : cIHk(X; @X) �=�! Ĥk(X; @X; R=Z)

induced by integration.
Proof. The �rst is proved in (Harvey et al 2001). The argument for the second is exactlythe same. �
Remark 1.8. In (Harvey et al 2001) we showed that there are many di�erent (but equiva-lent) deRham-Federer de�nitions of di�erential characters on a manifold without boundary.
Each of these di�erent presentations has obvious analogues for cIH�(X) and cIH�(X; @X).The proof of the equivalence of these de�nitions closely follows the arguments in x2 of(Harvey et al 2001) and will not be given here. However, this 
exibility in de�nitions isimportant in our treatment of the �-product.To illustrate the point we give one example. Recall that a current R on X is calledintegrally 
at if R = S + dT where S and T are recti�able. Denote by D0k(X) �
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fEn�k(X)g0 the space of currents of degree k on X. Let Skmax(X; @X) denote the setof a 2 D0k(X) such that a is smooth near @X, a��@X= 0, and da = � � R where � 2
Ek+1(X; @X) and R is integrally 
at. Let T kmax(X; @X) denote the subgroup of elementsof the form db+S where b is smooth near @X, b��@X= 0, and S is integrally 
at. Then the
inclusion Sk(X; @X) � Skmax(X; @X) induces an isomorphism

cIHk(X; @X) �= Skmax(X; @X)=T kmax(X; @X)

x2. The exact sequences. The fundamental exact sequences established by Cheegerand Simons in (Cheeger & Simons 1985) carry over to the relative case.
De�nition 2.1. A character � 2 cIHk(X; @X) is said to be smooth if � = hai for a
smooth form a 2 Ek(X; @X). The set of smooth characters is denoted cIHk1(X; @X). Thereis a natural isomorphism

cIHk1(X; @X) �= Ek(X; @X)=Zk0 (X; @X)
Proposition 2.2. The mappings d1 and d2 induce functorial short exact sequences:
(A) 0 �! Hk(X; @X; S1) j1�! cIHk(X; @X) �1�! Zk+10 (X; @X) �! 0;
(B) 0 �! cIHk1(X; @X) j2�! cIHk(X; @X) �2�! Hk+1(X; @X; Z) �! 0:

Proof. Note that @X has a co�nal system of tubular neighborhoods each of which isdi�eomorphic to @X � [0; 1). We shall use the following elementary result.
Lemma 2.3. For any a 2 Ek(@X � [0; 1)) such that da = 0 and a��@X= 0, there exists
b 2 Ek�1(@X � [0; 1)) such that db = a and b��@X= 0.
Proof. Write a = a1 + dt^ a2 where a1 and a2 are forms on X whose coe�cients dependsmoothly on t 2 [0; 1), or in other words, a1(t), a2(t) are smooth curves in Ek(X) and
Ek�1(X) respectively with a1(0) = 0. Now da = dxa1 + dt ^ @a1@t � dt ^ dxa2 = 0. We
conclude that dxa1 = 0 and dxa2 = @a1@t . Since a1(0) = 0 we have

a1(t) =
Z t
0
@a1
@t (s) ds =

Z t
0 dxa2(s) ds = dx

Z t
0 a2(s) ds

Set b � R t0 a2(s) ds, and note that: b��@X= 0, dxb = a1 and @b@t = a2. Hence, a = db. �
We shall also need the following result. On any manifold Y let

Fk(Y ) � EkL1loc(Y ) + dEk�1L1loc (Y )
denote 
at currents and Fkcpt(Y ) those with compact support. Note that dFk(Y ) =
dEkL1loc(Y ). This de�nition of Fkcpt(Y ) arises naturally in sheaf theory. However, the fol-
lowing equivalent de�nition will also be useful here.
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Lemma 2.4. Fkcpt(Y ) = EkL1loc;cpt(Y ) + dEk�1L1loc;cpt(Y ) and so dFkcpt(Y ) = dEkL1loc;cpt(Y )
Proof. Fix f 2 Fkcpt(Y ) and write f = a + db where a 2 EkL1loc(Y ) and b 2 Ek�1L1loc (Y ).Let K = supp (f), and note that in N � Y � K we have that a = �db. By standardde Rham theory there exists an L1loc-form b0 on N such that a1 � a + db0 is smoothon N . Furthermore since a1 is weakly exact on N there exists a smooth form b1 witha1 = �db1 on N . Choose � 2 C10 (Y ) with � � 1 in a neighbothood of K, let � = 1� �
and set ea = a + d(�b0 + �b1) and eb = b � �b0 � �b1 with � as above. Then f = ea + deband ea has compact support in Y .Observe now that f �ea is d-closed and has compact support in Y . Since H�(E�cpt(Y )) �=H�(F�cpt(Y )) we conclude that there exist a smooth form ! and a 
at form g, both having
compact support on Y such that f � ea = ! + dg. Now by the paragraph above we canwrite g = b+ de where b is L1loc with compact support. Hence f = ea+ ! + db. �
We �rst prove the surjectivity of �1. Fix � 2 Zk+10 (X; @X). Then by Lemma 2.3 there is

a neighborhood N �= @X � [0; 1) of @X and a form A 2 Ek(N) with dA = � and A��@X= 0.
Choose � 2 C10 (N) with � � 1 in a neighborhood of @X, and set �0 = � � d(�A). Nowsupp(�0) �� X�@X and �0 has integral periods, so there exists a cycle R 2 Zr̀ect(X; @X)with [�0 � R] = 0 in H�cpt(X � @X;R). By Lemma 2.4 there are L1loc-forms a; b with
compact support in X � @X such that d(a + db) = da = �0 � R. Then d1(�A + a) = �and surjectivity is proved.We now construct the map j1. Recall from x1 in (Harvey et al 2001) that

Hk(X; @X; S1) �= Hkcpt(X � @X; S1) �= ff 2 Fkcpt(X � @X) : df 2 Rk+1cpt (X � @X)g
dFk�1cpt (X � @X) +Rkcpt(X � @X)

Choose f 2 Fkcpt(X�@X) with df = R 2 Rk+1cpt (X�@X), and write f = a+db where a and b
are L1loc-forms with compact support inX�@X (cf. Lemma 2.4). Then a 2 Sk(X; @X) and
we set j1(f) � hai 2 cIHk(X; @X). Note that if f = a0+ db0 is another such decomposition,
then a�a0 = d(c0�c) and hai = ha0i. Clearly j1 = 0 on dFk�1cpt (X�@X)+Rkcpt(X�@X) =
dEk�1cpt (X � @X) +Rkcpt(X � @X), and so it descends to the quotient Hk(X; @X; S1).
To see that j1 is injective, let f = a+ db as above and suppose a = dc+S 2 T k(X; @X)where c is smooth and zero on @X. By Lemma 2.3 there exists an L1loc-form e, smooth

near @X, such that c0 = c� de � 0 near @X. Then a = dc0 + S � 0 in Hk(X; @X; S1).We now prove the exactness of (A) in the middle. Suppose a 2 Sk(X; @X) and �1(hai) =0. Then da = �R 2 Rk+1cpt (X � @X). Thus, in a neighborhood N of @X we have that a is
smooth, da = 0 and a��@X= 0. By Lemma 2.3 there exists b 2 Ek�1(N) with db = a and
b��@X= 0. Then ea = a� d(�b), with � as above, is equivalent to a in cIHk(X; @X). Since ea
has compact support in X � @X and dea = �R, we see that heai lies in the image of j1.We now prove the surjectivity of �2. Fix u 2 Hk+1(X; @X; Z) and choose a cycle R 2 u.
Then there is a smooth form � 2 Zk+10 (X; @X) such that ��R = df for f 2 Fkcpt(X�@X).
By Lemma 2.4 f = a + db where a is L1loc with compact support in X � @X. Then
a 2 Sk(X; @X) and �2(hai) = u.
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Now consider an element a 2 Sk(X; @X) with �2(hai) = 0. Then da = � � R where �
is smooth and R = dS for some S 2 Rkcpt(X � @X). Then ea = a � S � a in cIHk(X; @X)
and dea = 0 on X. Since ea is smooth near @X, standard de Rham theory shows that thereis an L1loc-form b with compact support in X � @X such that ea � db is smooth. Hence,
hai = heai 2 cIHk1(X; @X). �
Note that

(2.5) ker(�1) \ ker(�2) �= Hk(X; @X; R)
Hk(X; @X; Z)free �= Hkcpt(X � @X; R)

Hkcpt(X � @X; Z)free

x3. The star product. In this section we prove the following.
Theorem 3.1. There are functorial bilinear mappings

cIHk(X; @X)�cIH`(X; @X) ��! cIHk+`+1(X; @X) and
cIHk(X; @X)�cIH`(X) ��! cIHk+`+1(X; @X)

which make cIHk(X; @X) a graded commutative ring and cIH�(X) a graded cIHk(X; @X)-module. With this structure the maps �1, �2 are ring and module homomorphisms.
Proof. Fix � 2 cIHk(X; @X) and � 2 cIH`(X). Then from (Harvey et al 2001) we knowthat there exist sparks a 2 � and b 2 � with

da = ��R and db =  � S
with � 2 Zk+10 (X; @X);  2 Z`+10 (X); R 2 Zk+1rect (X; @X) and S 2 Z`+1rect (X), so that thewedge-intersection products R^ b and R^S are well de�ned. Furthermore, if supp S ��X � @X we can also assume that a ^ S is well de�ned. We then de�ne
(3.2) a � b = a ^  + (�1)k+1R ^ b;
and if S 2 Z`+1rect (X; @X) or if a 2 Ekcpt(X � @X), we can also de�ne
(3.3) ae�b = a ^ S + (�1)k+1� ^ b:
Since a is smooth near @X and a��@X= 0, a � b also has these properties (as well as ae�b
when it is de�ned). Note that
(3.4) d(a � b) = d(ae�b) = � ^  �R ^ S
The arguments from (Harvey et al 2001) easily adapt to show that ha � bi depends onlyon hai and hbi, and that ha � bi = hae�bi (when it is de�ned). Associativity, commutativity,
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etc. are straightforward. Equation (3.4) establishes the homomorphism propertes of �1and �2. �
x4. Smooth Pontrjagin Duals. The exact sequences of Proposition 2.2 show thatcIH�(X; @X) has a natural topology making it a topological group (in fact a topologi-cal ring) for which �1 and �2 are continuous homomorphisms. Essentially it is a prod-uct of the standard C1-topology on forms with the standard topology on the torusHk(X; @X; R)=Hkfree(X; @X; Z). It can also be de�ned as the quotient of the topology
induced on sparks by the embedding Sk(X; @X) � Fk(X)�Ek+1(X; @X)�Rk+1cpt (X�@X)
sending a 7! (a; d1a; d2a). (Similar remarks apply to cIH�(X).)
It is natual to consider the dual to cIH�(X; @X) in the sense of Pontrjagin. For an

abelian topological group A we denote by A✶ � Homcont(A;S1) the group of continuoushomomorphisms h : A! S1. Then 2.2(B) yields a dual sequence
(4.1) 0 �! Hk+1(X; @X; Z)✶ �! cIHk(X; @X)✶ ��! cIHk1(X; @X)✶ �! 0:
where � is the restriction mapping.
De�nition 4.2. An element f 2 cIHk1(X; @X)✶ is called smooth if there exists a form
! 2 Zn�k0 (X) such that

f(�) �
Z
X a ^ ! (mod Z)

for a 2 � 2 cIHk1(X; @X). An element f 2 cIHk(X; @X)✶ is called smooth if �(f) is
smooth. The set of these is called the smooth Pontrjagin dual of cIHk(X; @X) and is
denoted by cIHk(X; @X)✶1 = Hom1(cIHk(X; @X); S1)
Proposition 4.3. The smooth Pontrjagin dual cIHk(X; @X)✶1 is dense in cIHk(X; @X)✶.
Proof. Applying �1 to cIHk1(X; @X) gives an exact sequence

0 �! T �! cIHk1(X; @X) �! dEk(X; @X) �! 0
where T = Hk(X; @X; R)=Hkfree(X; @X; Z), with dual sequence
(4.4) 0 �! dEk(X; @X)✶ �! cIHk1(X; @X)✶ �! T✶ �! 0
Observe that T✶ = Hkfree(X; @X; Z) �= Hn�kfree (X; Z), and that dEk(X; @X)✶ = fdEk(X; @X)g0(the topological vector space dual) which is exactly the space of currents of degree n�k�1on X restricted to the closed subspace dEk(X; @X). This gives a commutative diagram

0 ����! dEn�k�1(X) ����! Zn�k0 (X) ����! Hn�kfree (X; Z) ����! 0??y ??y ??y�=
0 ����! dD0n�k�1(X) ����! cIHk1(X; @X)✶ ����! T✶ ����! 0
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with exact rows. Since En�k�1(X) is dense in D0n�k�1(X), the result follows. �
There is a parallel story for cIH�(X). The analogue of 2.2(B) gives an exact sequence

(4.5) 0 �! Hk+1(X; Z)✶ �! cIHk(X)✶ ��! cIHk1(X)✶: �! 0:
De�nition 4.6. An element f 2 cIHk1(X)✶ is called smooth if there exists a form ! 2
Zn�k0 (X; @X) such that

f(�) �
Z
X a ^ ! (mod Z)

for a 2 � 2 cIHk1(X) An element f 2 cIHk(X)✶ is called smooth if �(f) is smooth. The set
of these is called the smooth Pontrjagin dual of cIHk(X) and is denoted cIHk(X)✶1 =
Hom1(cIHk(X); S1)
Proposition 4.7. The smooth Pontrjagin dual cIHk(X)✶1 is dense in cIHk(X)✶.
Proof. Applying �1 to cIHk1(X) gives an exact sequence

0 �! T �! cIHk1(X) �! dEk(X) �! 0;
where T = Hk(X; R)=Hk(X; Z), with dual sequence
(4.8) 0 �! dEk(X)✶ �! cIHk1(X)✶ �! T✶ �! 0:
Observe now that T✶ = Hk(X; Z) �= Hn�k(X; @X; Z), and dEk(X)✶ = fdEk(X)g0 is thespace of currents of degree n� k� 1 on X restricted to the closed subspace dEk(X). Thisgives a commutative diagram:

En�k�1(X; @X) d����! Zn�k0 (X; @X) ����! Hn�k(X; @X; Z) ����! 0??y ??y ??y�=
D0n�k�1(X) d����! cIHk1(X)✶ ����! T✶ ����! 0

with exact rows. Since En�k�1(X; @X) is dense in D0n�k�1(X), the result follows. �
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x5. Lefschetz-Pontrjagin Duality. This brings us to the main result of the paper.
Theorem 5.1. Let X be a compact, oriented n-manifold with boundary @X. Then thebiadditive mapping

cIHk(X; @X)�cIHn�k�1(X) �! S1
given by (�; �) 7! (� � �) [X]
induces isomorphisms

D : cIHk(X; @X) �=�! cIHn�k�1(X)✶1 and
D0 : cIHk(X) �=�! cIHn�k�1(X; @X)✶1

Proof. Fix � 2 cIHk(X; @X) and suppose (� � �)[X] = 0 for all � 2 cIHn�k�1(X). Weshall show that � = 0. Choose a spark a 2 � and write da = ��R as in 1.4. Then for allsmooth forms b 2 En�k�1(X) we have by (3.3) that
� � hbi [X] = (�1)k+1 Z

X � ^ b � 0 mod Z
since d2b = 0. It follows that � = 0.
Hence, da = �R 2 Rk+1cpt (X � @X) is a cycle with [R] 2 Hk+1cpt (X � @X; Z)tor �=

Hn�k�1(X � @X; Z)tor. Choose any u 2 Hn�k(X; Z)tor �= Hk(X; @X; Z)tor, and choose arelative cycle S 2 u. Let m be the order of u. Then there is a (k + 1)-chain T on X withdT = mS rel @X. Set b = � 1mT and consider b as a spark of degree n� k � 1 on X withdb = �S. Now we may assume S and T to have been chosen so that supp (S)\supp (R) = ;and T meets R properly. Then
0 = � � hbi [X] � (�1)k+1R ^ b [X] mod Z

� (�1)k+1 1mR ^ T [X] mod Z
� (�1)k+1Lk([R]; [S]) mod Z
� (�1)k+1Lk(�2�; u) mod Z

where Lk denotes the de Rham-Seifert linking between the groups Hn�k�1(X � @X; Z)torand Hk(X; @X; Z)tor. By the non-degeneracy of this pairing we conclude that �2� = 0.Therefore � 2 ker(�1) \ ker(�2) can be represented by a smooth d-closed form a 2Ek(X; @X). In fact by Lemma 2.3 we may choose a to have compact support in X � @X.
Now for any cycle S 2 Zn�krect (X), i.e., any k-dimensional recti�able current S 2 Rk(X)
with dS 2 Rk�1(@X), we can �nd  2 En�k(X) and b 2 En�k�1L1loc (X) with db =  � S.
Then by (3.3) we have that

0 = � � hbi [X] � a ^ S [X] mod Z
�

Z
S a mod Z:

Hence, a represents the zero class in Hom(Hk(X; @X; Z); R)=Hom(Hk(X; @X; Z); Z) �=Hk(X; @X; R)=Hk(X; @X; Z)free, and by (2.2) and (2.5) we conclude that � = 0. Thus
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the map D is injective.To see that D is surjective consider the commutative diagram with exact rows:
0 ����! Hk(X; @X; S1) j1����! cIHk(X; @X) �1����! Zk+10 (X; @X) ����! 0

�=??y ??yD ??yD0
0 ����! Hom(Hn�k(X; Z); S1) ����! cIHn�k�1(X)✶ �����! cIHn�k�11 (X)✶ ����! 0
where the top row is 2.2(A) and the bottom row is the dual of 2.2(B). By de�nition D0 is
onto the smooth elements in cIHn�k�1(X)✶ and therefore the map D is surjective.
The proof that D0 is an isomorphism is parallel. Fix � 2 cIHn�k�1(X) and suppose

(� � �)[X] = 0 for all � 2 cIHk(X; @X). We shall show that � = 0. Choose a spark b 2 �and write db =  �S as in 1.4. Then for all smooth forms a 2 Ek(X; @X) we have by (3.3)that
hai � � [X] =

Z
X a ^  � 0 mod Z

since d2a = 0. It follows that  = 0.Hence, db = �S 2 Rn�k(X) is a relative cycle with torsion homology class [S] 2Hn�k(X; Z)tor �= Hk(X; @X; Z)tor. Choose u 2 Hk+1(X; @X; Z)tor �= Hn�k�1(X; Z)tor,and choose a cycle R 2 u with support in X � @X. Let m be the order of u. Then there isa (n� k� 1)-chain T in X � @X with dT = mR. Set a = � 1mT and consider a as a sparkof degree k on X with da = �R. Now we may assume R and T to have been chosen sothat supp (R) \ supp (S) = ; and T meets S properly. Then
0 = hai � � [X] � (�1)k+1a ^ S [X] mod Z

� (�1)k+1 1mT ^ S [X] mod Z
� (�1)k+1Lk([R]; [S]) mod Z
� (�1)k+1Lk(u; �2�) mod Z

where Lk denotes the de Rham-Seifert linking as before. We conclude that �2� = 0.Therefore � 2 ker(�1) \ ker(�2) can be represented by a smooth d-closed form b 2
En�k�1(X). Now for any cycle R 2 Zk+1rect (X; @X), i.e., any (n � k � 1)-dimensionalrecti�able current R 2 Rn�k�1(X � @X) with dR = 0, we can �nd � 2 Ek+1(X; @X) anda 2 EkL1loc(X; @X) with da = ��R. Then by (3.2) we have that

0 = hai � � [X] � (�1)k+1R ^ b [X] mod Z
� (�1)n(k+1) Z

R b mod Z:
Hence, b represents the zero class in Hom(Hn�k�1(X; Z); R)=Hom(Hn�k�1(X; Z); Z) �=Hn�k�1(X; R)=Hn�k�1(X; Z)free, and by (2.2) and (2.5) we conclude that � = 0. Thusthe map D0 is injective.
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The surjectivity of D0 follows as before from the commutative diagram with exact rows:
0 ����! Hn�k�1(X; S1) j1����! cIHn�k�1(X) �1����! Zn�k0 (X) ����! 0

�=??y ??yD ??yD0
0 ����! Hom(Hk+1(X; @X; Z); S1) ����! cIHk(X; @X)✶ �����! cIHk1(X; @X)✶ ����! 0:
This completes the proof. �
x6. Coboundary maps. It is natural to ask if there is a coboundary mapping @ withthe property that the sequence
(6.1) : : : �! cIHk�1(@X) @�! cIHk(X; @X) j�! cIHk(X) ��! cIHk(@X) @�! cIHk+1(X; @X) �! : : :
is exact. The di�erential-form-component of characters makes this impossible. However,there do exist natural coboundary maps @ with the following properties:

(1) Under �2 the sequence (6.1) becomes the standard long exact sequence in integralcohomology.(2) Under �1 the sequence (6.1) becomes a sequence of smooth d-closed forms whichinduces the standard long exact sequence in real cohomology.
Recall that the de�nitions of Thom maps and Gysin maps for di�erential charactersdepend essentially on a choice of \normal geometry". This will also be true for ourcoboundary maps. Fix a tubular neighborhood N0 of @X in X and an identi�cationN0 �= @X � [0; 2), and let � : N0 ! @X be the projection. Set N = @X � [0; 1) � N0 andlet IN be the characteristic function of this subset. Let � be a smooth approximation toIN ; speci�cally choose �(x; t) = �(t) where � � 1 near 0 and �(t) = 0 for t � 1. Then set

� � �� IN 2 cIH0(X)
Note that d� = d�� [@N ] has compact support in X � @X.
De�nition 6.2. We de�ne the coboundary map @ = @� : cIHk(@X) �! cIHk+1(X; @X) by

@(a) = (��a) � �:
Veri�cation of (1) and (2) above is straightforward, and the details are omitted.

x7. Sequences and duality. At the level of cohomology the long exact sequences forthe pair (X; @X) are related by the duality mappings. There is an analogous diagram fordi�erential characters:
cIHk(X; @X) j����! cIHk(X) �����! cIHk(@X) @����! cIHk+1(X; @X)

D??y D??y D??y D??y
cIHn�k�1(X)✶ j�����! cIHn�k�1(X; @X)✶ @�����! cIHn�k�2(@X)✶ ������! cIHn�k�2(X)✶
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and it is natural to ask whether this diagram commutes (up to sign). The square on theleft is evidently commutative. The other two squares commute up to an error term whichwe now analyse.
We begin with the square on the right. Fix � 2 cIHk(@X) and � 2 cIHn�k�2(X) andchoose L1loc-sparks a0 2 � and b 2 � with da0 = �0 � R0 and db =  � S as usual. Leta = ��a0, � = ���0 and R = ��R0 denote the pull-backs to the collar neighborhood of@X via the projection � : N0 ! @X de�ned in x6. Then

(7.1) f(D � @)(�)g(�) = (��a � b � �)[X] = f(a � b) ^ d�+ (�1)nd2(a � b)�g[X]:
Now we may assume that S��N0= ��S0 for some S0 2 Rk+1(@X), and we may further
assume that supp (R0) \ supp (S0) = ; because dim(R0) + dim(S0) = n � 2. Hence,d2(a � b) = ��R0 ^ ��S0 = ��(R0 ^ S0) = 0, and from (7.1) we see that

(�1)n�1f(D � @)(�)g(�) = (�1)n�1(a � b) ^ d�[X]
= (a � b)[@X]� �d(a � b)[X]
= f(�� � D)(�)g(�)� �d(a � b)[X]:

Now d(a � b) = � ^  �R ^ S = � ^  and we can write  =  1 + dt ^  2 as in the proofof Lemma 2.3. Since � = ���0 we see that � ^  1 = 0 and we conclude that

(7.2)
f(�� � D)(�)g(�) + (�1)nf(D � @)(�)g(�) =

Z
N � ^ �dt ^  2

=
Z
@X � ^

Z 1
0 �(t) dt ^  2

=
Z
@X � ^ �� f�(t) dt ^  2g � E(�):

Thus for example we see that (�� � D)(�) = (�1)n�1(D � @)(�) on all � which are ��-pull backs in N . Furthermore, we can consider the family of sparks �� � r��� wherer� : @X � [0; �)! @X[0; 1) is given by r�(x; t) = (x; t=�). From (7.2) we see that
lim�!0E(��) = 0:

A similar analysis applies to the middle square in the diagram and we have the following.
Proposition 7.3. The duality diagram above commutes in the limit as �! 0.
This is the best one can expect. The \commutators" in this diagram do not lie in thesmooth dual. Of course by Propositions 4.3 and 4.7 they do lie in its closure.Here is an explicit example of this non-commutativity. LetX = S2�D3 be the product ofthe 2-sphere and the 3-disk. Choose sparks � 2 S1(S2) and b 2 S2(D3) with da = !� [x0]and db = 
 � [0] for some x0 2 S2, where ! and 
 are unit volume forms on S2 and D3

respectively. Direct calculation shows that
(a � b)[@X] = 1 but (a � � � b)[X] =

Z
D3(1� �)
 < 1:
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