Homework 12

Due Monday April 23th at the beginning of class.

1. Let $\Omega \subset \mathbb{C}^2$ be a domain. A smooth function $f : \Omega \to \mathbb{C}$ is **holomorphic** if its tangent linear map $df_x : T_x \mathbb{C}^2 \cong \mathbb{C}^2 \to \mathbb{C}$ is complex linear at each point (i.e., it commutes with scalar multiplication by i). A smooth map from Ω to \mathbb{C}^2 is holomorphic if its two coordinate functions are holomorphic.

 (i) Set
 $$\Delta^2 = \{(z, w) \in \mathbb{C}^2 : |z| < 1, |w| < 1\} \quad \text{and} \quad I^4 = [-1, 1] \times \cdots \times [-1, 1]$$
 where the splitting of I^4 is according to the real and imaginary coordinates axes. Does there exist a homeomorphism $F : \Delta^2 \to I^4$ which is holomorphic on Δ^2? Why?

 (ii) Let $f : \Delta^2 \to \mathbb{C}$ be a continuous map which is holomorphic in Δ^2. Show that
 $$\sup_{\Delta^2} |f| \leq \sup_{|z|=|w|=1} |f(z, w)| \quad (\text{the max on the } 2 \text{-torus}).$$

 (iii) Show that there does not exist a homeomorphism $F : \Delta^2 \to B$ which is holomorphic on Δ^2, where B is the unit ball about the origin in \mathbb{C}^2.

2. Show that with proper choice of branches the function
 $$f(z) = \int_0^z \frac{1}{\sqrt{\zeta(1-\zeta^2)}} \, d\zeta$$
 maps the upper half plane onto a square.

3. Let H be the upper half plane. Let T be an equilateral triangle in \mathbb{C} with vertices A, B and C.

 (1) Why does there exist a holomorphic automorphism
 $$f : H \to T$$
 continuous on the closure, which sends $0, 1, \infty$ to A, B, C?

 (2) Why is f unique?

 (3) Using Shwarz reflection, extend the mapping f^{-1} to the entire complex plane.