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Pluriharmonics in general potential theories

F. Reese Harvey and H. Blaine Lawson, Jr.

Abstract. The general purpose of this paper is to investigate the notion
of “pluriharmonics” for the general potential theory associated to a convex
cone subequation F ⊂ Sym2(Rn). For such F there exists a maximal linear
subspace E ⊂ F , called the edge, and F decomposes as F = E ⊕ F0. The
pluriharmonics or edge functions are u’s with D2u ∈ E. Many subequations F
have the same edge E, but there is a unique smallest such subequation. These

are the focus of this investigation. Structural results are given. Many examples
are described, and a classification of highly symmetric cases is given. Finally,
the relevance of edge functions to the solutions of the Dirichlet problem is
established.
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1. Introduction.
This paper is concerned with the edge E of a convex cone subequation F ⊂

Sym2(Rn), obtained from the decomposition

F = E ⊕ F0 (1.1)

into a vector subspace E ⊂ Sym2(Rn) and a cone F0 ⊂ E⊥, called the reduced
constraint set, which contains no lines. (See §2 for definition of subequation.)
The interest in the edge E is that it gives us a notion of pluriharmonics, or edge
functions, for the potential theory associated to the subequation F . These edge
functions u are defined by D2u ∈ E.

The edge E of a subequation is, in a sense, a crude invariant, since many
subequations F have the same edge E. However, there is a canonical choice for F
completely determined by E, namely E + P, where P ≡ {A : A ≥ 0}. This is a
subequation with edge E, and it must be contained in all other subequations with
edge E (since by definition we always have P ⊂ F ). A large part of this paper is
devoted to studying and classifying these subequations E+P for which the edge E
is a determinative invariant. It is for these minimal subequations with edge E
(Def. 5.2) that the pluriharmonics or edge functions play the most important role.

Let’s look at some examples. The simplest is just P itself. Here the edge
E = {0} and the P-subharmonics are the convex functions. The edge functions are
those u with D2u ≡ 0, that is, the affine functions.

The other orthogonally invariant edge is E = {A : trA = 0}, and we have
P+E = {A : trA ≥ 0} ≡ Δ. Here the subsolutions are the classical subharmonics,
and the edge functions are just the harmonics.

The examples become more interesting if we look at U(n)-invariant edges in
C

n = (R2n, J). The reduction into irreducibles is

Sym2(R2n) = (R · Id)⊕Hermsym
0 ⊕Hermskew,

Hermsym
0 = {A : AJ = JA and trA = 0} and Hermskew = {A : AJ = −JA}. Here

there are two new edges.
The first is where we set E = Hermskew. This gives the complex Monge-Ampère

subequation:

PC = E + P = {A : AC = A− JAJ ≥ 0}.

The subsolutions are the plurisubharmonics, and the edge functions (or plurihar-
monics) are the classical pluriharmonic functions in complex analysis.

The other is where E = Hermsym
0 . This subequation is rather new.

P(Lag) = E + P =
{
A : tr

(
A

∣∣
W

)
≥ 0 for all Lagrangian planes W

}
.

The subsolutions are the Lagrangian plurisubharmonics which were studied in [10].
In this case the edge functions are certain quadratic functions.

If one now looks for Sp(n)·Sp(1)-invariant edges, there are many interesting
examples. In fact, in Chapter 7 a wide variety of subequations are given. The
reader might enjoy this section.

One interesting result concerning these minimal subequations is that they can
be used to characterize the dual subharmonics (negatives of the superharmonics).
(In this paper, degree-2 means degree ≤ 2.)
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THEOREM 6.4. Let P+ = E + P be a minimal subequation. The following
conditions on an upper semi-continuous function u are equivalent.

(1) u is dually P+-subharmonic.

(2) u is “sub” the edge functions.

(3) u is locally “sub” the edge functions.

(4) u is locally “sub” the degree-2 polynomial edge functions.

Here the notion of subharmonic is taken in the viscosity sense (see below). We
note that u is “sub” a function v if for each compact set Ω, one has u ≤ v on
∂Ω ⇒ u ≤ v on Ω.

For example, when F = P (the first example above), this theorem says that

the P̃-subharmonic functions (the negatives of supersolutions for the real Monge-
Ampère equation) are characterized by being “sub” the affine functions.

When F = PC, the P̃C-subharmonic functions (the negatives of supersolu-
tions for the complex Monge-Ampère equation) are characterized by being “sub”
the standard pluriharmonics in complex analysis. In fact the degree-2 polynomial
pluriharmonics will do.

When F = P(Lag), the P̃(Lag)-subharmonic functions (the negatives of su-
persolutions for the Lagrangian Monge-Ampère equation [10]) are characterized by
being “sub” an explicit family of quadratic polynomials.

Chapter 2 of this paper lays down the fundamental notions of the edge E,
the span S and the reduced constraint set F0, which appears in (1.1) above. By
definition S is the linear span of F0, but it could also be defined as the orthogonal
complement of E. This chapter then looks at geometrically defined equations,
which give many interesting examples.

Chapter 3 introduces a further refinement of the structure of convex cone sube-
quations. These equations are partitioned into two classes. The first consists of
subequations which are extremely degenerate (see Definition 3.1). A basic example
is the Laplacian on Rk, considered as a subequation on Rn where n > k. The
second class consists of those subequations which are dimensionally complete (see
Definition 3.1∗). This means that all the variables in Rn are required to define the
subequation. These complementary concepts are determined entirely by properties
of the edge, or equivalently the span, of F . For example,

F is complete ⇐⇒ E ∩ P = {0} ⇐⇒ S ∩ (IntP) �= ∅.

There are several other equivalent criteria; see Propositions 3.5 and 3.10. A pair of
orthogonal subspaces E and S of Sym2(Rn), which satisfy these criteria for E and
S, is called an edge-span pair.

In Chapter 4 the structure of the subequation F is further illuminated by
proving that there exists a unique subspace W ⊂ Rn, called the support of F ,
with the property that

F = Sym2(W )⊥ ⊕ F1 where F1 ⊂ Sym2(W ) (1.2)

is a complete convex cone subequation in W . This F1 is called the the supporting
subequation of F .

Combining (1.1) and (1.2) give the decomposition

F = Sym2(W )⊥ ⊕ E1 ⊕ F0 (1.3)
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where the edge of F is E = Sym2(W )⊥ ⊕ E1 and E1 is the edge of the supporting
subequation F1.

In Chapter 5 our minimal subequations are defined and discussed. We start
with any basic edge E ⊂ Sym2(Rn), i.e, one which satisfies E ∩ P = {0}. Then
(Lemma 5.1) the sum

P+ ≡ E + P is a subequation, and it has edge E.

(By the edge criteria P+ is then complete.) Such subequations are called mini-
mal and are the main focus of this paper. These subequations have many special
properties. Theorem 5.4 mentions eight of them, while Theorem 5.5 claims that
any one of these eight properties implies the subequation is minimal.

In Chapter 7 many examples of minimal subequations are given.
In Chapter 8 we classify all the minimal subequations which are invariant under

the compact group G where G = On,Un, Spn · Sp1, Spn and Spn · S1 (all acting on
their fundamental representation spaces).

We note that the general definition of F -plurisubharmonics is based on viscosity
theory [3], [2]. The reader is referred to [5], [7] or [8] for definitions and properties.

In Chapter 6 the generalized pluriharmonics (or edge functions) are introduced
from a viscosity point of view, and basic properties are discussed.

One might speculate, in light of Theorem 6.4 above, that for minimal subequa-
tions the Dirichlet Problem can be solved by replacing the standard Perron family
with the subfamily consisting only of P+-pluriharmonics. For the two extreme
subequations – the convexity and the Laplacian subequations – this is in fact true.
In §8 we prove something close for all minimal subequations.

THEOREM 9.3. Let P+ be a minimal subequation, and Ω ⊂ Rn a domain
with smooth strictly convex boundary. Then the standard solution to the Dirichlet
problem for any ϕ ∈ C(∂Ω) is the upper envelope of functions in the Perron sub-
family of functions which can be written locally as the maximum of a finite number
of pluriharmonics.

2. Preliminaries.
In this section we review the basic properties of convex cone subequations and

define many of the associated objects (cf. [6]).
We start with a closed convex cone P+ in Sym2(Rn), which we always assume

is a non-empty proper subset. Using the natural inner product 〈A,B〉 = tr(AB)
we have

(Polar Cone) P+ ≡ {A : 〈A,B〉 ≥ 0 ∀B ∈ P+}. (2.1)

If, in addition, P+ satisfies the following positivity condition, then P+ is re-
ferred to as a subequation. (We will frequently evoke the bipolar theorem, which
says that the polar of the polar is the original convex cone.)

Definition 2.1. P+ is a subequation if satisfies the positivity condition

P+ + P = P+, i.e. P ⊂ P+ (P )

or equivalently if P+ ⊂ P. The equivalence follows since P is self-polar.
Subequations have the important topological property

P+ = IntP+ (T )

since P+ + εI ⊂ P+ + IntP ⊂ IntP+ for all ε > 0.
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The following is an important class of examples.

Example 2.2. (The Geometric Case). Given a closed subset Gl ⊂ G(p,Rn) of
the Grassmannian of unoriented p-planes in Rn, let

P(Gl ) ≡ {A : 〈A,PW 〉 = tr(A
∣∣
W
) ≥ 0 ∀W ∈ Gl }

where W ∈ Gl is identified with PW , orthogonal projection onto W . Each such
P+ = P(Gl ) is a convex cone subequation with polar P+ = Convex Cone Hull (Gl )
≡ CCH(Gl ).

In addition to the polar cone P+ we associate two vector spaces E and S with
P+ which form an orthogonal decomposition Sym2(Rn) = E ⊕ S.

The Edge and the Span

(The Edge E) E ≡ P+ ∩ (−P+) = {A : A+ P+ = P+} (2.2)

(The Dual Span S) S ≡ span P+ (2.3)

Note that the edge E is the unique maximal vector space contained in P+. To
verify the equality in (2.2), use the fact that A+P+ = P+ ⇐⇒ −A+ P+ = P+,
along with the fact that P+ is a convex cone with vertex 0. Note that S is by
definition a vector space, whereas E is obviously closed under addition and scalar
multiplication.

Lemma 2.3. The Edge E of a subequation enjoys the properties:
(2.4) (Orthogonality) E and S are orthogonal compliments in Sym2(Rn).
(2.5) E ∩ (IntP+) = ∅. In particular, E ∩ (IntP) = ∅.

Proof of (2.4). It is easy to see that E ⊥ S. Then since P+ ⊂ S ⇒ S⊥ ⊂
P+, and since S⊥ is a vector subspace, this implies that S⊥ ⊂ E. Therefore,
Sym2(Rn) = S⊥ + S ⊂ E + S thereby proving that E + S = Sym2(Rn) is an
orthogonal decomposition.
Proof of (2.5). If this does not hold, we can pick A ∈ E ∩ IntP+. Given
B ∈ Sym2(Rn), we have A + εB ∈ P+ if ε > 0 is sufficiently small. Therefore,
B = − 1

εA+ ( 1εA+B) ∈ E + P+ = P+. This contradicts the assumption that P+

is a proper subset of Sym2(Rn).

Let π : Sym2(Rn) −→ S denote orthogonal projection. (2.6)

As a constraint on the second derivative, the important part of P+ is

(The Reduced Constraint Set) P+
0 ≡ π(P+). (2.7)

P+ = E ⊕ P+
0 , i.e., A ∈ P+ ⇐⇒ π(A) ∈ P+

0 . (2.8a)

IntP+ = E ⊕ IntP+
0 , i.e., A ∈ IntP+ ⇐⇒ π(A) ∈ IntP+

0 . (2.8b)

Since π(A) captures the important part of A ≡ D2u, π(D2u) is called the reduced
hessian of u for P+.

Note that

P+
0 is the polar of P+ in its span S. (2.9)

The closed convex cone P+
0 ⊂ S is not a subequation unless S ≡ Sym2(Rn),

i.e., E = {0}, in which case P+
0 = P+.

We say that the subequation P+ is self polar if

P+
0 = P+ (2.10)
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3. Extremely Degenerate Versus Complete
Our subequations divide into two kinds. The first is that of extreme degeneracy.

These subequations on n-dimensional euclidean space R
n are better understood as

subequations on a lower dimensional subspace (see Prop. 3.4 below and the Support
Theorem 4.3).

Definition 3.1∗. A convex cone subequation P+ is said to be extremely degen-
erate if there exists a proper subspace W ⊂ Rn such that the following equivalent
conditions are satisfied:
(1∗) The reduced constraint set P+

0 ⊂ Sym2(W ),

(2∗) The polar P+ ⊂ Sym2(W ), or equivalently the dual span S ⊂ Sym2(W ).
Proof that (1∗) ⇐⇒ (2∗). Note that: P+ ⊂ Sym2(W ) ⇐⇒ S ≡ span P+ ⊂
Sym2(W ) ⇐⇒ P+

0 ⊂ Sym2(W ) by (2.10).
Remark. In [6] we said for (2∗) that “P+ only involves the variables in W”, and
for (1∗) that “P+ can be defined using the variables in W”.

The remaining subequations are defined by taking the negations of (1∗) and
(2∗).

Definition 3.1. A subequation which is not extremely degenerate will be called
dimensionally complete, or just complete. In other words

(1) P+
0 �⊂ Sym2(W ) for any proper subspace W ⊂ Rn, or

(2) P+ �⊂ Sym2(W ) for any proper subspace W ⊂ Rn.
See [6] for many interesting results for complete convex cone subequations. The

purpose of this paper is to investigate a special class of such subequations described
in Section 5.

Extreme Degeneracy
Let A

∣∣
W

denote the restriction of A to the subspace W ⊂ R
n as a quadratic

form. In terms of the 2× 2-blocking of Sym2(Rn) induced by Rn = W ⊕W⊥, A
∣∣
W

is the (1, 1)-component of A.
The subequation P+ can be restricted to a subequation P+

W on W by defining

P+
W ≡

{
A

∣∣
W

: A ∈ P+
}
. (3.1)

Note that P+
W ⊂ Sym2(W ) satisfies positivity, since if P ∈ Sym2(W ), with P ≥ 0,

then A
∣∣
W

+P = (A+Q)
∣∣
W
, where Q ∈ Sym2(Rn) restricts to P on W and has all

other components 0, and therefore A+Q ∈ P+. Thus P+
W is a subequation on W .

We have proved the following. Let Sym2(W )⊥ denote the orthogonal comple-
ment of Sym2(W ) in Sym2(Rn).

Proposition 3.2. If P+ is extremely degenerate, i.e., if P+
W and W satisfy the

equivalent conditions (1∗) and (2∗) above, then

P+ = P+
W ⊕ Sym2(W )⊥. (3.2)

Moreover, P+ and P+
W have the same reduced constraint set P+

0 since Sym2(W )⊥ ⊂
E, i.e., S ⊂ Sym2(W ).

Definition 3.3. If (3.2) is satisfied, we say that P+ reduces to P+
W , and that P+

is the trivial extension of P+
W from W to Rn.

Proposition 3.4. [5, Thm. A.4]. Suppose that P+ reduces to a subequation
P+
W on W . If z = (x, y) ∈ W ⊕ W⊥ = Rn denotes coordinates, then u(x, y) is
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P+-subharmonic if and only if for each y, u(x, y) is P+
W -subharmonic in x, but

otherwise u is just upper semi-continuous in (x, y), i.e., there is no constraint on u
with respect to the y-variable.

The Edge Criteria
Extreme degeneracy and completeness can be described in a very simple way

in terms of edges.

Proposition 3.5. (The Edge Criteria). The following conditions on a convex
cone subequation P+ are equivalent.

(1)∼=(2) P+ is complete.
(3) E ∩ P = {0}.
(4a) Pe /∈ E for all |e| = 1.
(4b) −Pe /∈ P+ for all |e| = 1.

Stated as the edge criteria for extreme degeneracy, we have that the following are
equivalent.

(1∗)∼=(2∗) P+ is extremely degenerate.
(3∗) E ∩ P �= {0}.
(4∗a) Pe ∈ E for some |e| = 1.
(4∗b) −Pe ∈ P+ for some |e| = 1.

Proof. We will prove the extreme degeneracy version. First we note that (4∗a)
and (4∗b) are equivalent. One key to the proof is the following Lemma taken from
[6].

Lemma 3.6. Suppose that W is a hyperplane in Rn with unit normal e. Then

Pe ∈ E ⇐⇒ P+ ⊂ Sym2(W ).

Proof.

Corollary 3.7. We have that (2∗) ⇐⇒ (4∗a).
Proof. The only thing to note is that if condition (2∗), that P+ ⊂ Sym2(W ) for
some proper subspace W ⊂ Rn, holds, then P+ ⊂ Sym2(W ′) for any hyperplane
W ′ ⊃ W .

Since (4∗a) implies (3∗) is trivial, the only thing left to prove is that (3∗) implies
(4∗a).

Lemma 3.8. Suppose P ≥ 0 has null space N ⊂ Rn. Then

P ∈ E ⇒ Sym2(N⊥) ⊂ E (3.3)

Proof. The proof is modeled on the proof of (2.5). It suffices to show that
Sym2(N⊥) ⊂ P+. Given A ∈ Sym2(N⊥), we write A = −tP + (A + tP ) and
note that since P ∈ E, we have −tP ∈ E for all t ≥ 0. Now A+ tP ∈ P if t >> 0 is
sufficiently large since P

∣∣
N⊥ is positive definite. This proves that A ∈ E+P ⊂ P+.

Corollary 3.9. We have that (3∗) ⇒ (4∗a).
Proof. If (3∗) holds, choose P ∈ E ∩ P with P �= 0. Since P �= 0, the subspace
N⊥ �= {0}. Pick e ∈ N⊥ with |e| = 1. Then Pe ∈ E.

The Span Criteria
The span criteria for completeness also provides an easy check in examples for

completeness, and has important consequences for the subequation.
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Proposition 3.10. The following conditions on a convex cone subequation P+ are
equivalent.

(1)∼=(2) P+ is complete.
(5) S ∩ (IntP) �= ∅.
(6) IntS P+ ⊂ IntP.

Proof. First we show that for a pair of vector spaces E and S which are orthogonal
complements in Sym2(Rn), (3) and (5) are equivalent.

Lemma 3.11. Suppose subspaces E and S of Sym2(Rn) are orthogonal comple-
ments. Then

E satisfies the Edge Criteria (3) ⇐⇒ S satisfies the Span Criteria (5).

Proof. (3) ⇒ (5). If (5) is false, i.e., S ∩ (IntP) = ∅, then by the Hahn-Banach
Theorem there exists an open half-space U with S ⊂ ∂U and IntP ⊂ U . Let N ∈ U
denote the unit normal to the hyperplane ∂U . Then S ⊂ ∂U ⇒ N ∈ E = S⊥,
while IntP ⊂ U ⇒ 〈N,P 〉 > 0 ∀P > 0, which implies N ∈ P. Thus we have
N ∈ E ∩ P, but N �= 0 so that (3) is false.

(5) ⇒ (3). By (5) we can pick P ∈ S ∩ (IntP). If A ∈ E ∩ P, then 〈A,P 〉 = 0
since A ∈ E and P ∈ S. However, since A ≥ 0 and P > 0, this implies A = 0.
Proof that (5) ⇒ (6). By (5) we can choose P ∈ S∩ (IntP). Given A ∈ IntS P+,
for ε > 0 sufficiently small we have A−εP ∈ P+. Thus for all non-zero Q ∈ P ⊂ P+

we have 0 ≤ 〈A−εI,Q〉 = 〈A,Q〉−ε〈P,Q〉. Since P > 0, one has 〈P,Q〉 > 0, which
proves that 〈A,Q〉 > 0 for all non-zero Q ≥ 0. Thus A > 0, which proves (6).
Proof that (6) ⇒ (5). Now P+ is a closed convex cone in S. Hence IntS P+ �= ∅
is equivalent to S equaling the span of P+, which it does by the definition of S.
Now pick P ∈ IntS P+. Then P ∈ S and by (6) we have P > 0, which proves (5).

This completes the proof of Proposition 3.9.
The edge and span criteria (3) and (5) for completeness motivates the following

definition, which will be used in the next section.

Definition 3.12.
(a) A subspace E ⊂ Sym2(Rn) is called a basic edge subspace if

(3) E ∩ P = {0}.
(b) A subspace S ⊂ Sym2(Rn) is called a basic span subspace if

(5) S ∩ (IntP) �= ∅.
(c) If in addition E and S are orthogonal complements, then E, S well be referred
to as a basic edge-span pair.

4. The Supporting Subequation
For each subequation there is a smallest subspace W of Rn to which the sube-

quation reduces.

Definition 4.1. (Support). Given a convex cone subequation P+ we define
the support of P+ to be the subspace W ⊂ R

n which is the intersection of all
subspaces W ′ ⊂ Rn which that

P+ = P+
W ′ ⊕ Sym2(W ′)⊥. (4.1)

Lemma 4.2. The orthogonal complement of the support W of P+ equals:

V ≡ span {e ∈ R
n : Pe ∈ E, |e| = 1}. (4.2)
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Proof. Note that (4.1) holds ⇐⇒ Sym2(W ′)⊥ ⊂ E ⇐⇒ S ⊂ Sym2(W ′) ⇐⇒
P+ ⊂ Sym2(W ′) ⇐⇒ Pe ∈ E for all e ⊥ W ′ with |e| = 1.

The support illuminates the structure of the subequation.

THEOREM 4.3. (Structure Theorem). Suppose P+ ⊂ Sym2(Rn) is a convex
cone subequation with support W ⊂ Rn. Then

P+ = P+
W ⊕ Sym2(W )⊥ and (4.3)

P+
W ⊂ Sym2(W ) is a complete subequation. (4.4)

Proof. To be done later.

Definition 4.4. If W is the support of P+, the subequation P+
W will be called the

supporting subequation of P+, and its edge EW will be called the supporting
edge of P+

Note that the edge of P+,

E = EW ⊕ Sym2(W )⊥, (4.5)

is larger than its supporting edge EW unless P+ is complete.
Note also that the original subequation P+ and the supporting subequation

P+
W have the same span S and the same reduced constraint set P+

0 .

5. Minimal Subequations
These subequations are the focus of this paper. They are all constructed as

follows, starting with a basic edge-span pair.

Lemma 5.1. Suppose E, S ⊂ Sym2(Rn) are orthogonal complements with E∩P =
{0}, or equivalently S ∩ (IntP) �= ∅. That is, E, S is a basic edge-span pair. Then

P+ ≡ E + P is a subequation, and it has edge E and span S. (5.1)

Moreover, if Q+ is any subequation with edge E, then P+ ⊂ Q+.
Proof. Obviously P+ satisfies positivity. It remains to show that P+ ≡ E + P
is closed. Let π : Sym2(Rn) → S denote orthogonal projection as in (2.5). Since
E + P = E ⊕ π(P),

P+ is closed if and only if π(P) is closed. (5.2)

Now we prove that:

π(P) is closed.

Let K ≡ P ∩{tr = 1}, a compact base for P. The image π(K) is a compact subset
of S. The basic edge condition E ∩ P = {0} is equivalent to 0 /∈ π(K). This is
enough to conclude that the cone on the compact convex set π(K) is closed. Thus,
P+ ≡ E + P is a subequation.

To prove that P+ has edge E we must show that

P+ ∩ (−P+) = E or equivalently π(P) ∩ (−π(P)) = {0}.

Suppose A ∈ π(P) ∩ (−π(P)), i.e., A = π(P1) = −π(P2) with P1, P2 ∈ P. Then
π(P1+P2) = 0, i.e., P1+P2 ∈ E. Since E∩P = {0}, P1+P2 = 0. But this implies
P1 = P2 = 0 and hence A = 0. Since P+ has edge E, it has span S = E⊥. Finally,
P+ ⊂ Q+, since E ⊂ Q+ and positivity for Q+ implies P+ ≡ E + P ⊂ Q+.
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Definition 5.2. The subequation P+ = E + P constructed in Lemma 5.1 will
be referred to as a minimal subequation, or the minimal subequation with
edge E.

Corollary 5.3. Suppose P+ is a minimal subequation with edge-span E, S. Then

(a) E ∩ P = {0}, (b) S ∩ (IntP) �= ∅, (c) P+ is complete.

Proof. By definition of minimal we have P+ = E′ + P where E′ satisfies (a).
By Lemma 5.1 the edge E of P+ equals E′. Lemma 3.10 says that (a) and )b)
are equivalent. Either the edge criteria (a) ⇒ (c), or the span criteria (b) ⇒ (c),
completes the proof.

There are many additional interesting properties of minimal subequations,
besides the various completeness criteria in Section 3.

THEOREM 5.4. (Minimality Properties). Suppose P+ ≡ E + P is the
minimal subequation with edge E and span S. Then
(1) P+ = E + P, (1a) P+

0 = π(P), (1b) P+ = E ⊕ π(P)
(2) IntP+ = E + IntP, (2a) IntP+

0 = π(IntP), (2b) IntP+ = E ⊕ Int π(P)
(3) P+ = S ∩ P, and (3∗) IntS P+ = S ∩ (IntP).

In fact, for complete subequations each of these eight properties characterizes
minimality.

THEOREM 5.5. (Minimality Criteria). Suppose P+ ⊂ Sym2(Rn) is a com-
plete convex cone subequation, with edge E span S, reduced constraint set P0, and
polar cone P+. Then P+ is the minimal subequation with edge E if and only if
any one of the eight equivalent conditions in Theorem 5.4 hold.
Proof of Theorem 5.4. Assertion (1) is by Definition 4.2. Next we show the
following.

(1), (1a) and (1b) are equivalent for any subequation P+ with edge E. (5.3)

(1) ⇒ (1a): By definition P+
0 = π(P+). Since π(E) = {0}, (1) implies that

π(P+) = π(P).
(1a) ⇒ (1b): This follows because P+ = E ⊕ π(P+).
(1b) ⇒ (1): This is obvious.
Proof of (2). Obviously the open set E + IntP ⊂ IntP+. If A ∈ IntP+, then
for small ε > 0, A− εI ∈ IntP+ ⊂ P+. Hence there exist B0 ∈ E and P ≥ 0 such
that A − εI = B0 + P . Therefore, A = B0 + (P + εI) ∈ E + IntP, proving that
IntP+ = E + IntP.

Just as in (5.3), we have

(2), (2a) and (2b) are equivalent for any subequation P+ with edge E. (5.4)

Proof of (3). Since 0 ∈ P+ and P+ is P-monotone, we have P ⊂ P+. Since P is
self polar, taking polars implies that P+ ⊂ P and therefore P+ ⊂ S ∩ P.

Suppose B ∈ S ∩ P. To show B ∈ P+ it suffices to show that 〈A,B〉 ≥ 0 for
all A ∈ P+. By minimality, if A ∈ P+, then A = A0 + P with A0 ∈ E and P ∈ P.
Now 〈A,B〉 = 〈P,B〉 ≥ 0 since 〈A0, B〉 = 0.
Proof of (3∗). Note that S ∩ (IntP) is an open set in S, and it is contained in
S ∩ P, which is a subset of P+ by (3). Hence, S ∩ (IntP) ⊂ IntS P+.

The only non-trivial part (and the most important part) of showing IntS P+ =
S ∩ (IntP) is to show that:

IntS P+ ⊂ IntP. (5.5)
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Since S is a basic span subspace, S ∩ (IntP) �= 0. Choose P ∈ S ∩ (IntP). Given
A ∈ IntS P+, for ε > 0 sufficiently small we have A−εP ∈ P+. Thus for all non-zero
Q ∈ P ⊂ P+ we have 0 ≤ 〈A − εI,Q〉 = 〈A,Q〉 − ε〈P,Q〉. Since P > 0, one has
〈P,Q〉 > 0, which proves that 〈A,Q〉 > 0 for all non-zero Q ≥ 0. Thus A > 0.
Proof of Theorem 5.5. By Theorem 5.4, if P+ is minimal, then P+ satisfies
each of the eight conditions. For the converses we use the hypothesis that P+

is complete. By the edge criteria, Proposition 3.5(3), the edge E of P+ satisfies
E ∩ P = {0}. Therefore we can apply the construction in Lemma 4.1 to yield
a minimal subequation Q+ ≡ E + P satisfying all the eight conditions. If P+

satisfies (1) then P+ = Q+ and so it is minimal. Similarly, if P+ satisfies (2), then
IntP+ = IntQ+, so that P = Q+ is minimal.

By (5.3) we have that (1), (1a) and (1b) are equivalent.
By (5.4) we have that (2), (2a) and (2b) are equivalent.
Finally, if P+ satisfies (3∗), then since Q+ = S∩P also, we have P+ = Q+ and

hence P+ = Q+ is minimal. As noted above, (3) ⇒ (3∗).

Remark 5.6. The property (5.5) is extremely important and useful. See [6] for
more details of the following.

Given A ≥ 0 define ΔAu ≡ 〈D2u,A〉, or equivalently, from the subequation
point of view,

ΔA ≡ {B ∈ Sym2(Rn) : 〈B,A〉 ≥ 0}.
Then u is P+-subharmonic if and only if u is ΔA-subharmonic for all A ∈ Intrel P+.
If (5.5) is true, then each such operator ΔA is just a linear coordinate change of
the standard Laplacian on Rn (or said differently, it is the Laplacian on Rn with a
different metric). Thus results of standard potential theory, such as u ∈ L1

loc, are
valid for P+-subharmonic functions.

One final property of minimal subequation is the following.

Proposition 5.7. Suppose P+ is a minimal subequation. Then P+ is contained
in its dual subequation

P̃+ ≡ ∼ (− IntP+) = −(∼ IntP+). (5.6)

Proof. Since P+ = E + P and P̃+ + P = P̃+, it suffices to show that E ≡
P+ ∩ (−P+) ⊂ P̃+. Suppose A /∈ P̃+, i.e., −A ∈ IntP+. Then by 5.4(2) we have
−A = B1 + P with B1 ∈ E and P > 0. If A ∈ P+ also, then A = B2 + Q with
B2 ∈ E and Q ≥ 0. Therefore, P + Q = −B1 − B2 ∈ E. However, P + Q > 0
contradicting Corollary 5.3(a).

6. Edge Functions – Pluriharmonics
Suppose as before that P+ is a complete convex cone subequation with edge E.

Definition 6.1. An edge function, or P+-pluriharmonic function is a function
u such that both

u and −u are P+-subharmonic. (6.1)

Thus, by definition, u is continuous.

Definition 6.2. An upper semi-continuous function u is “sub” the edge functions
on an open set X ⊂ Rn if for all domains Ω ⊂⊂ Rn and all edge functions h on Ω
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which are continuous on Ω,

u ≤ h on ∂Ω ⇒ u ≤ h on Ω. (6.2)

Proposition 6.3. If u is dually P+-subharmonic on X, i.e., u is P̃+-subharmonic

for the dual subequation P̃+ (see (5.6)), then u is “sub” the edge functions on X.

Proof. Suppose u is P̃+-subharmonic and h is an edge function. Then −h is
P+-subharmonic and (6.2) follows from comparison (see Thm. 6.2 in [9]).

Now if a subequation becomes smaller, it dual subequation becomes larger.
Consequently, the only subequation P+, with a given edge E, for which Proposition
6.3 might have a converse is the minimal subequation with edge E (see Definition
5.2).

THEOREM 6.4. Suppose that E ⊂ Sym2(Rn) is a basic vector subspace, so
that P+ ≡ E + P is the minimal subequation with edge E. Then the following
conditions on a function u are equivalent.

(1) u is dually P+-subharmonic.

(2) u is “sub” the edge functions.

(3) u is locally “sub” the edge functions.

(4) u is locally “sub” the degree-2 polynomial edge functions.

Proof. Because of Proposition 6.3 we need only prove that if u is locally “sub”
the degree-2 polynomial edge functions, then u is dually P+-subharmonic. For this

suppose that u is not P̃+-subharmonic on X. Then (see Lemma 2.4 in [7]) there
exists z0 ∈ X, a quadratic polynomial test function ϕ, and α > 0 such that

u(z) ≤ ϕ(z)− α|z − z0|2 near z0 with equality at z0, (6.3)

but
D2

z0ϕ /∈ P̃+, i.e., −D2
z0ϕ ∈ IntP+. (6.4)

By Theorem 4.4(2) we have IntP+ = IntP + E. Thus

−D2
z0ϕ = P +B with P > 0 and B ∈ E. (6.5)

Consider the degree-2 edge polynomial

h(z) ≡ ϕ(z0) + 〈Dz0ϕ, z − z0〉 − 1
2 〈B(z − z0), z − z0〉

= ϕ(z)− 1
2 〈D

2
z0ϕ, z − z0〉 − 1

2 〈B(z − z0), z − z0〉
= ϕ(z) + 1

2 〈P (z − z0), z − z0〉.
Since P > 0 by (6.3) this implies that

u(z) ≤ h(z)− α|z − z0|2 (6.6)

near z0 with equality at z0. This implies that u is not sub the function h on any
small ball about z0. Hence, u is not locally “sub” the degree-2 edge polynomial h.
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7. Further Discussion of Examples
Before turning to the examples we define the (compact) invariance group

of P+ to be
{g ∈ On : g∗P+ = P+}. (7.1)

It is easy to see that for the minimal subequation P+ for a basic E,

g∗P+ = P+ ⇐⇒ g∗S = S ⇐⇒ g∗E = E (7.2)

by using the conditions in Theorems 5.4 and 5.5, and this yields two equivalent
definitions of this group.

Definition 7.1. (Self Duality). If the two convex cones P+
0 (the reduced con-

straint set) and P+ are polars of each other in the vector space S, then we say the
subequation P+ is polar self dual (not to be confused with a subequation which
equals its dual subequation in the sense of [5]).

Remark 7.2. Note that this can only happen for a minimal subequation P+.
This is because if P+

0 = P+ (self duality), then P+
0 = P+ ⊂ P, and hence P+

0 =
π(P+

0 ) ⊂ π(P). Note that P ⊂ P+ so that π(P) ⊂ P+
0 is always true. This proves

P+
0 = π(P), so by Theorems 5.5 and 5.4(1a), P+ is minimal.

Given a closed subset Gl ⊂ G(k,Rn) consider the subequation geometrically
defined by Gl :

P(Gl ) ≡
{
A ∈ Sym2(Rn) : 〈A,PW 〉 = tr(A

∣∣
W
) ≥ 0 ∀W ∈ Gl

}
.

We shall use the following notations introduced in Example 2.2:

P+ ≡ P(Gl ), P+ = CCH(Gl ), S = span (Gl ), E = S⊥, and P+
0 .

Note that the compact invariance group of the subequation P+ = P(Gl ) can also
be defined by

{g ∈ O(n) : g(Gl ) = Gl }. (7.2)′

The O(n)-Invariance Group
For our first two examples of minimal subequations we focus on the On-

orthogonal decomposition

Sym2(Rn) = R · Id⊕ Sym2
0(R

n) (7.3)

into irreducible components under On.

Example 7.1. (Real Monge-Ampère). The subequation is P+ = P. Here
the edge E = {0} is as small as possible, and S = Sym2(Rn), P+ = P, so the
subequation is self-dual, and we have Gl = G(1,Rn). Obviously E, S is a basic
edge-span pair (Definition 3.12c). The conditions in Theorem 5.4 are obvious as
well as the fact that P = P+ = P+ = P+

0 is dimensionally complete. The invariance
group is On, and the extreme rays are

Ext(P) = {Ray(Pe) : |e| = 1}.
Each A ∈ S can be put in canonical form A =

∑
j λjPej under the action of On,

and det(A) =
∏

j λj , provides a nonlinear operator for P+ = {λmin ≥ 0} (the

standard real Monge-Ampère operator).

Example 7.2. (The Laplacian). Here P+ = Δ = {A : tr(A) ≥ 0} is a closed half
space, and Gl = {Id} = G(n,Rn), E = Sym2

0(R
n), the traceless part of Sym2(Rn),

S = R · Id, and P+ = R+ · Id is a ray. The invariance group is On. The reduced
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constraint set is P+
0 = P+ so Δ is self dual. Now it is obvious that Δ is a minimal

subequation.

The U(n)-Invariance Group
We now consider Cn and the following U(n)-orthogonal decomposition of

real symmetric matrices into Un-irreducible subspaces:

Sym2
R(C

n) = R · Id⊕HermC−sym
0 (Cn)⊕HermC−skew(Cn) (7.4)

multiples of the identity, traceless complex hermitian symmetric, and complex her-
mitian skew components. Given A ∈ Sym2

R(C
n), this decomposition can be written

as

A =
tr(A)

2n
Id+AC−sym

0 +AC−skew (7.5)

where with respect to multiplication I by i:

AC−sym = 1
2 (A− IAI) and AC−skew = 1

2 (A+ IAI).

Example 7.3. (Complex Plurisubharmonics). The subequation is P+ =
P(Gl ) where Gl = P(Cn) ⊂ GR(2,C

n) is the Grassmannian of complex lines in

Cn. The edge is E = HermC−skew(Cn) and the span is S = HermC−sym(Cn).
Also P+

0 = P+ is the convex cone on non-negative complex hermitian symmetric
bilinear forms on Cn, so this third example is self dual. Note that the projection
of 2Pe onto S is PCe, (orthogonal projection onto the complex line through e) since
Pe − IPeI = PCe. The convex cone P+

0 = P+ has extreme rays generated by
{PCe : |e| = 1} = P(Cn) = Gl . The invariance group is Un. Each A ∈ S can
be put into canonical form A =

∑n
j=1 λjPCej under the action of this group, and

P+
0 = {λmin ≥ 0}. The complex Monge-Ampère operator det(A) = λ1(A) · · ·λn(A)

provides the nonlinear operator for P+ = P(P(Cn)), in tight analogue with the real
case P.

Now we finally get to a new example, which is the subject of [10].

Example 7.4. (Lagrangian Plurisubharmonics). The subequation is P+ =
P(LAG), where LAG ⊂ GR(n,C

n) is the set of Lagrangian n-planes in Cn = R2n.
The edge E and span S are given by

E = HermC−sym
0 (Cn) and S = R · Id⊕HermC−skew(Cn).

In [10] we prove that E, S is a basic edge-span pair, so that P+ = E + P and
P+ = S ∩ P. The extreme rays in P+ are generated by the projections PW with
W ∈ LAG a Lagrangian n-plane. The extreme rays in P+

0 are generated by the
images π(Pe) of Pe where e is a unit vector. Note that

π(Pe) =
1
2n Id+ 1

2 (Pe + IPeI) =
1
2n Id+ 1

2 (Pe − PIe),

and that 1
2 (Pe−PIe) is the C-skew component of Pe. This example is not self dual.

However, since each A ∈ S can be put in canonical form

A =
tr(A)

2n
+

1

2

n∑
j=1

λj

(
Pej − PIej

)
there is again a nonlinear operator for P+ = P(LAG) (see [10]). The invariance
group is Un.
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The Sp(n)·Sp(1)-Invariance Group

LetMn(H) denote the space of n×nmatrices with entries in H, and let A∗ = A
t

if A ∈ Mn(H). Consider the two subspaces

M sym
n (H) = {A ∈ Mn(H) : A∗ = A}, and

M skew
n (H) = {A ∈ Mn(H) : A∗ = −A}.

We let the scalars H act on the right. Then by letting Mn(H) act on x =
(x1, ..., xn)

t ∈ H
n on the left, one can identify Mn(H) with EndH(H

n), the vec-
tor space of H-linear maps of Hn. Let

HermH−sym(Hn) = {A ∈ EndH(H
n) : A = A∗}, and

HermH−skew(Hn) = {A ∈ EndH(H
n) : A = −A∗}.

so that M sym
n (H) = HermH−sym(Hn) are identified (same for the skew parts).

Let ε(x, y) =
∑n

�=1 x�y� denote the standard quaternionic hermitian bilinear
form on Hn. The quaternionic unitary group is

Spn = {A ∈ Mn(H) : ε(Ax,Ay) = ε(x, y)}.
For each scalar u ∈ H let Rux ≡ xu denote right multiplication, and set I ≡ Ri,
J ≡ Rj , K ≡ Rk. Then the group of unit scalars Sp1 ≡ S3 = {Ru : u ∈ H, |u| = 1}
acts on H

n on the right and the enhanced quaternionic unitary group is the
group

Spn · Sp1 = Spn × Sp1/Z2.

Since the standard euclidean inner product on R4n = Hn is 〈x, y〉 = Re ε(x, y),

M sym
n (H) = HermH−sym(Hn) is a real subspace of Sym2(R4n)

and

M skew
n (H) = HermH−skew(Hn) is a real subspace of Skew2(R4n)

where EndR(R
4n) = Sym2(R4n) ⊕ Skew2(R4n) is the usual decomposition. Note

also that for each unit imaginary quaternion u ∈ ImH, we have Ru ∈ Skew2(R4n),

and hence RuA = ARu ∈ Sym2(R4n) for all A ∈ M skew
n (H) = HermH−skew(Hn).

This embeds

ImH⊗HermH−skew(Hn) = ImH⊗M skew
n (H) ⊂ Sym2(R4n). (7.6)

The Spn · Sp1-orthogonal decomposition

Sym2(R4n) = R · Id⊕HermH−sym
0 (Hn)⊕

(
ImH⊗HermH−skew(Hn)

)
(7.7)

into irreducible components plays a role in the next two examples, and a key role
in classifying all the Spn · Sp1-invariant minimal subequations. Projection onto

HermH−sym(Hn) = R · Id⊕HermH−sym
0 (Hn) and ImH⊗HermH−skew(Hn) are given

by A = AH−sym + AH−skew where

AH−sym = 1
4 (A− IAI − JAJ −KAK), and (7.8a)

AH−skew = 1
4 (3A+ IAI + JAJ +KAK). (7.8b)

Example 7.5. (Quaternionic Plurisubharmonics). The subequation P+ ≡
P(P(Hn)) is geometric with Gl = P(Hn) ⊂ GR(4,H

n). The edge and span are given
by

E = ImH⊗HermH−skew(Hn), and S = HermH−sym(Hn). (7.9)
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The set P+
0 = P+ is the convex cone of non-negative quaternionic hermitian sym-

metric bilinear forms on Hn (see [1] or [4] for more details). Under the identification

of HermH−sym(Hn) with the set of quaternionic n × n matrices Mn(H) satisfying

A∗ ≡ A
t
= A, we have

P+
0 = {A ∈ Mn(H) : A∗ = A and xtAx ≥ 0 ∀x ∈ H

n}.
This is a minimal subequation and has compact invariance group Spn · Sp1. Note

that by (7.7a) the projection of Pe (|e| = 1) onto HermH−sym(Hn) is just PHe,
orthogonal projection onto the quaternionic line He. Hence, this example is self
dual, i.e., P+

0 = P+. Each A ∈ Mn(H) with A∗ = A can be put in canonical form

AH−sym =
n∑

j=1

λjPHej

under the action of Spn · Sp1. The quaternionic Monge-Ampère operator

detH(A) ≡
n∏

j=1

λj

(
AH−sym

)
provides the nonlinear operator for P+ = P(P(Hn)).

Example 7.6a. Reversing the roles of ImH⊗HermH−skew(Hn) and

HermH−sym
0 (Hn) in (7.9) above results in a second Spn · Sp1-invariant minimal

subequation P+ ≡ E + P with P+ = S ∩ P, where

E ≡ HermH−sym
0 (Hn) and S ≡ R · Id⊕(ImH⊗HermH−skew(Hn)). (7.10)

Note that for each |e| = 1,

π(Pe) = 1
4n Id+ 1

4 (3Pe − PIe − PJe − PKe). (7.11)

We leave as a question: Does π(Pe) generate an exposed ray in P+
0 = π(P)?

This edge E ≡ HermH−sym
0 (Hn) is reminiscent of the edge in Example 7.4 in

the complex case. We now pursue this analogy. We say that a real n-plane W in
Hn is H-Lagrangian if

W ⊕ IW ⊕ JW ⊕KW = H
n (orthogonal direct sum), (7.12)

and let HLag denote the set of all such n-planes.

Example 7.6b. (Quaternionic Lagrangian Plurisubharmonics). These are
defined as the subharmonics for the geometrically defined subequation P(HLag).
Note that HLag and hence P(HLag) has compact invariance group Spn · Sp1.
Furthremore, given A ∈ Sym2

R(H
n) one can show that

trA
∣∣
W

= 0 ∀W ∈ HLag ⇐⇒ A ∈ HermH−sym
0 (Hn)). (7.13)

Consequently, P(HLag) has edge-span given by (7.10). At the moment we do not
know whether or not P(HLag) is the minimal subequation with this edge-span. Of
course one has

E + P ⊂ P(HLag) and P+(HLag) ⊂ S ∩ P, (7.14)

where P+(HLag) is the convex cone hull of {PW : W ∈ HLag}.
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The Spn·S1–Invariance group

If Un is replaced by the smaller subgroup SUn, the decomposition (7.4) of
Sym2

R(C
n) remains the same, and so SUn is not a compact invariance group for a

minimal subequation. However, the decomposition (7.7) does not remain the same
if we replace Spn · Sp1 by Spn. The new decomposition can be written as

Spn : Sym2
R(H

n) = R · Id⊕HermH−sym
0 (Hn)

3⊕
j=1

Ij HermH−skew(Hn) (7.15)

where Ij vary over I, J,K, or in fact over any orthonormal basis of ImH. Note that

the representations Ij HermH−skew(Hn) are all equivalent.
The next example is a minimal subequation which is new.

Example 7.7. (I-Complex and J,K-Lagrangian Plurisubharmonics). This
is a geometrically defined subequation given by the set

Gl = Gl (I; J,K) ⊂ GR(2n,H
n)

of real 2n-planes which a simultaneously I-complex and both J and K Lagrangian.
(Note that any two of these conditions implies the third.) The associated subequa-
tion is P(Gl (I; J,K)).

Now P(JLAG) has edge

HermJC−sym
0 (C2n) = HermH−sym

0 (Hn)⊕ J HermH−skew(Hn)

and P(KLAG) has edge

HermKC−sym
0 (C2n) = HermH−sym

0 (Hn)⊕K HermH−skew(Hn).

Hence the sum

HermH−sym
0 (Hn)⊕ J HermH−skew(Hn)⊕K HermH−skew(Hn) ⊂ Edge(P(Gl )).

Each W ∈ Gl has a real basis of the form

e1, Ie1, ..., en, Ien where e1, ..., en is an H-basis for Hn.

Thus PW = PV + PIV where V ≡ span R{e1, ..., en}. Note that W ∈ Gl ⇒ W⊥ =
JW = KW ∈ Gl . Hence, Id = PW + PW⊥ ∈ S ≡ span (P(Gl )) ≡ span (Gl ). Now we
have

PW − PW⊥ = PW − PIW = PW + IPW I ∈ I HermH−skew(Hn).

One can show (direct proof and invariance proof) that

S = R · Id⊕I HermH−skew(Hn) (7.16)

and hence

E = HermH−sym
0 (Hn)⊕ J HermH−skew(Hn)⊕K HermH−skew(Hn). (7.17)

Lemma 7.8. Each A ∈ I HermH−skew(Hn) commutes with I and anti-commutes
with J and K. If e is an eigenvector of A with eigenvalue λ, then Ie, Je,Ke are
eigenvectors with eigenvalues λ,−λ,−λ. Hence, A can be put in the canonical form
(where e1, ..., en is an H-basis for Hn):

A ≡
n∑

j=1

λj

(
Pej + PIej − PJej − PKej

)
.
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Corollary 7.9. The element B ≡ t
4n Id+A ∈ S is ≥ 0 if and only if each |λj | ≤ t

2n .
Hence, taking t = tr(B) = 2n, the non-negativity condition becomes

|λj | ≤ 1

2
, j = 1, ..., n.

This describes a cube in Rn. The 2n extreme points are ε = (± 1
2 , ...,±

1
2 ), which

yields

B(ε) ≡ 1
2 Id+

n∑
j=1

± 1
2

(
Pej + PIej − PJej − PKej

)
= PW (ε)

where

W (ε) = span

{
(e1, Ie1 if ε1 = 1

2 ) or (Je1,Ke1 if ε1 = − 1
2 ), ... etc.

}
.

This proves

Proposition 7.10.

S ∩ P = CCH{PW : W ∈ Gl } ≡ P+(Gl ).

Corollary 7.11. The subequation P(Gl ) is the minimal subequation with span S
and edge E given by (7.9) and (7.10).

Example 7.12. Consider the edge EI ≡ I HermH−skew(Hn) and the minimal
subequation P+ ≡ EI+P. The compact invariance group is Spn ·S1, as in Example
7.7.

Lemma 7.13. One has

P+ ≡ EI + P ⊂ P(I Lag) ∩ P(PJ (C
2n)) ∩ P(PK(C2n))

= P
(
(I Lag) ∪ PJ (C

2n) ∪ PK(C2n)
)

which has edge EI .

Proof. Suppose for all W ∈ I Lag∪PJ (C
2n) ∪ PK(C2n) that 〈A,PW 〉 ≥ 0. Taking

W ∈ I Lag proves that A ∈ P(I Lag); taking W ∈ PJ (C
2n) proves that A ∈

P(PJ(C
2n)); and taking W ∈ PK(C2n) proves that A ∈ P(PK(C2n)). Conversely,

if A belongs to the intersection of the three geometric subequations in the Lemma,
then trA

∣∣
W

≥ 0 for all W ∈ I Lag∪PJ(C
2n) ∪ PK(C2n). This proves the last

equality in the Lemma.
Since EI ⊂ E0,I , by Example 7.4,

P+ ≡ EI + P ⊂ E0,I + P = P(I Lag).

Since EI ⊂ EI,K , by Example 7.3,

P+ ≡ EI + P ⊂ EI,K + P = P(PJ (C
2n)).

Since EI ⊂ EI,J , by Example 7.3,

P+ ≡ EI + P ⊂ EI,J + P = P(PK(C2n)).

Finally since EI = E0,I ∩ EI,K ∩ EI,J , this proves that P
(
(I Lag) ∪ PJ (C

2n) ∪
PK(C2n)

)
has edge EI .

It remains an open question whether or not P
(
(I Lag) ∪ PJ (C

2n) ∪ PK(C2n)
)

is the minimal subequation P+ ≡ EI + P with edge EI .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PLURIHARMONICS IN GENERAL POTENTIAL THEORIES 163

8. Classifying the Invariant Minimal Subequations
Given a compact subgroup G ⊂ ON , one could ask which (if any) subequations

have G as their exact invariance group. Now the compact invariance group for
a minimal subequation P+ = E + P is the same as for its edge E (see (7.2)).
Therefore we need only classify the possible invariant edges E. This is easily done
as follows. First decompose Sym2

R(R
N ) into irreducible pieces Sym2

R(R
N ) = R ·

Id⊕E0 ⊕ E1 ⊕ · · · ⊕ Ek, and note that E0 ⊕ · · · ⊕ Ek = Sym2
0(R

N ), the traceless
part. Hence any space E = Ei1 ⊕ · · · ⊕ Ei� , 0 ≤ i1 < · < ı� ≤ k can be chosen
as a basic (invariant) edge. Note that E = {0} is also a basic invariant edge, and
E + P = P, which has compact invariance group ON .
The On-Case. Here we have

Sym2(Rn) = R · Id⊕E0 with E0 ≡ Sym2
0(R

n).

There are two examples: E = {0} and E = E0 given by Examples 7.1 and 7.2.
The Un-Case. Here it is more complicated:

Sym2
R(C

n) = R · Id⊕E0 ⊕ E1 with

E0 ≡ HermC−sym
0 (Cn) and E1 ≡ HermC−skew(Cn),

which are Examples 7.3 and 7.4.
The Spn·Sp1-Case. Here we have

Sym2
R(H

n) = R · Id⊕E0 ⊕ E1 with

E0 ≡ HermH−sym
0 (Hn) and E1 ≡ ImH⊗HermH−skew(Hn).

Hence again there are two new examples E = E0 and E = E1 which are Examples
7.5 and 7.6a.
The Spn and Spn·S1-Cases. Under Spn we have

Sym2
R(H

n) = R · Id⊕E0 ⊕ EI ⊕ EJ ⊕ EK with

E0 ≡ HermH−sym
0 (Hn), EI ≡ I HermH−skew(Hn),

EJ ≡ J HermH−skew(Hn), EK ≡ K HermH−skew(Hn),

(see (7.15)). Of the possible edges we can exclude most of them as coming from

the previous cases. For example, E0,I ≡ E0 ⊕ EI = HermC−sym
0 (Cn) for the I-

complex case (as well as E0,J , E0,K) come from Example 7.4. The case EJ,K ≡
EJ ⊕ EK = HermC−skew(Cn) (for the complex structure I) can be excluded, since
this is Example 7.3. Similarly we exclude EI,K and EI,J . The case E = E0 is just

Example 7.6a, while the case E ≡ EI,J,K = EI⊕EJ⊕EK = ImH⊗HermH−skew(Hn)
is Example 7.5.

This leaves, up to permuting I, J,K, two examples: E = EI , which is Example
7.12, and E = E0,J,K = E0 ⊕ EJ ⊕ EK as in (7.10), which is Example 7.7. These
last two examples have compact invariance group Spn·S1. Note that this proves
that there are no minimal subequations with compact invariance group Spn.

9. An Envelope Problem for Minimal Subequations.
Suppose that F ≡ P+ is a minimal subequation. In this section we investigate

the role played by the edge functions in solving the Dirichlet problem. The key fact
about F that will be used below is the following from Theorem 5.4(2):

IntF = E + IntP. (9.1)
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We recall that existence and uniqueness for the (DP) on a bounded domain
Ω ⊂ Rn and arbitrary ϕ ∈ C(∂Ω) was established in [5] if ∂Ω is smooth and

strictly F- and F̃-convex (for any subequation F ⊂ Sym2(Rn)). Moreover, the
solution H equals the Perron function

H(x) ≡ sup
u∈FF(ϕ)

u(x) for x ∈ Ω (9.2)

for the Perron family of F-subharmonics

FF(ϕ) ≡
{
u ∈ F(Ω) : u

∣∣
∂Ω

≤ ϕ
}
. (9.3)

By definition u ∈ F(Ω) if u is [−∞,∞)-valued and upper semi-continuous on Ω
and u

∣∣
Ω
∈ F(Ω).

The proof of our main result here follows (as closely as possible) the existence
proof for the Dirichlet Problem given in [7].

To begin we consider the following analogues of the above. Let

E(Ω) ≡
{
u ∈ C(Ω) : u

∣∣
Ω
∈ E(Ω)

}
(9.4)

denote the space of edge functions on Ω, and consider the family of edge functions

FE(ϕ) ≡
{
h ∈ E(Ω) : h

∣∣
∂Ω

≤ ϕ
}
. (9.5)

A natural question to ask is:

Question 1. When is the envelope

UE(x) ≡ sup
h∈FE(ϕ)

h(x) equal to the solution H defined by (9.2)?

There are two interesting extreme cases where the answer is positive.

Example 9.1. (F ≡ P). Here E(Ω) ≡ Aff(Rn), the space of affine functions on
Rn. In this case

UAff = HP

because, by the Hahn-Banach Theorem, for each point x0 ∈ Ω, there exists an affine
function h with h ≤ HP on Ω and h(x0) = HP((x0).

Example 9.2. (F ≡ Δ). Here E(Ω) ≡ {h ∈ C(Ω) : h
∣∣
Ω
is Δ-harmonic}. There-

fore, H ∈ FE(ϕ), proving that

UΔ = HΔ.

For other cases Question 1 remains open, so it is appropriate to consider larger
families than FE(ϕ). First, set

Emax(Ω) ≡ {M : M = max{h1, ..., hN} with h1, ..., hN ∈ E(Ω)} (9.6)

and consider the family

FEmax(ϕ) ≡ {M ∈ Emax(Ω) : M
∣∣
∂Ω

≤ ϕ} (9.7)

where by definition M ∈ Emax(Ω) if M ∈ USC(Ω) and M
∣∣
Ω

∈ Emax(Ω). Since

the conditions M ≡ max{h1, ..., hN} ∈ Emax(Ω) and M
∣∣
∂Ω

≤ ϕ imply that each

hk ∈ FE(ϕ), we have

UEmax = sup
M∈FEmax (ϕ)

M = sup
h∈FE(ϕ)

h = UE . (9.8)

In particular, UEmax = H ⇐⇒ UE = H.
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Now we consider a localized version

FEloc-max(ϕ) = {u ∈ Eloc-max(Ω) : u
∣∣
∂Ω

≤ ϕ} (9.9)

where by definition u ∈ Eloc-max(Ω) if u ∈ USC(Ω) and for each point x0 ∈ Ω, there
exists a neighborhood Br(x0) ⊂ Ω such that

u
∣∣
Br(x0)

∈ Emax(Br(x0)). (9.10)

Question 2. When is the envelope

U ≡ UEloc-max = sup
u∈F

Eloc-max(ϕ)

u equal to the solution H in (9.2)?

We can answer this question.

THEOREM 9.3. If F = P+ is a minimal subequation and ∂Ω is smooth and
strictly F-convex, then

U = H.

Proof. Since F ⊂ F̃ (Thm. 5.7), the strict F̃-convexity of the boundary is auto-
matic.

In what follows we shall shorten FEloc-max(ϕ) to F(ϕ).
Note that F(ϕ) ⊂ FF(ϕ) ⇒ U ≤ H ⇒ U∗ ≤ H ⇒

U∗∣∣
∂Ω

≤ ϕ, and we also have (9.11a)

ϕ ≤ U∗
∣∣
∂Ω

proved at the end. (9.11b)

Note 9.4. If ∂Ω is strictly convex, then Example 9.1 shows that ϕ = UP
∣∣
∂Ω

and
UAff = UP . Since P ⊂ F and Aff ⊂ E, we have UP ≤ UE ≤ U . Hence UP ≤ U∗, so
that (9.11b) holds under strict P-convexity of ∂Ω.

These two properties imply the following.

(Boundary Continuity) U∗
∣∣
∂Ω

= U
∣∣
∂Ω

= U∗∣∣
∂Ω

= ϕ. (9.11)

By the “families bounded above property” we have

U∗ ∈ F(Ω). (9.12)

Note that H (or sup∂Ω ϕ if you wish) provides an upper bound for F(ϕ).
Assume for the moment that:

−U∗ ∈ F̃(Ω). (9.13)

Then the proof is easily completed as follows. By (9.12) and (9.13), U∗−U∗ ∈ P̃(Ω)
is subaffine on Ω (see [5]). Moreover, it is ≥ 0 on Ω and equal to zero on ∂Ω. Hence,

by the (MP) for P̃, U∗ − U∗ vanishes on Ω. That is,

U∗ = U = U∗ on Ω. (9.14)

This proves that U is F-harmonic on Ω and equal to ϕ on ∂Ω. By uniqueness for
the (DP) this proves that U = H on Ω. Thus it remains to prove (9.11b) and the
following.

Lemma 9.5. −U∗
∣∣
Ω
∈ F̃(Ω).

Proof. We follow that bump argument given in the proof of Lemma F̃ in [7, p.
455] as closely as possible.
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Suppose −U∗
∣∣
Ω

/∈ F̃(Ω). Then there exists x0 ∈ Ω, ε > 0 and ψ, a degree-2
polynomial, satisfying

(a) − U∗ ≤ ψ − ε|x− x0|2 near x0, and

(b) − U∗(x0) = ψ(x0), and

(c) D2ψ /∈ F̃.

(9.15)

Rewrite (a) and (c) as

(a)′ − ψ ≤ U∗ − ε|x− x0|2 near x0, and

(c)′ D2(−ψ) ∈ IntF.

By the key fact (9.1) above we have that

D2(−ψ) = e+ P with e ∈ E and P > 0. (9.16)

Therefore
−ψ = h+ 1

2 〈P (x− x0), x− x0〉 (9.17)

with h a degree 2 polynomial satisfying

(i) D2h = e and (ii) h(x0) = U∗(x0). (9.18)

The first part is just the statement that

(i)′ h is an edge function on R
n. (9.18)(i)′

Now by (9.17) the inequality (a)′ says

h+ 1
2 〈P (x− x0), x− x0〉 ≤ U∗ − ε|x− x0|2 on Br2(x0). (9.19)

Choose 0 < r1 < r < r2. Then by (9.19)

h+ δ < U∗ on Br2(x0)−Br1(x0) (9.20)

where δ ≡ inf |x−x0|=r1
1
2 〈P (x− x0), x− x0〉 (or δ = εr21 also works). For each point

y ∈ ∂Br(x0) we have h(y) + δ < U(y) by (9.20). Hence, by the definition of the
U = UFEloc-max given in Question 2, there exists uy ∈ F(ϕ) with

h(y) + δ < uy(y), (9.21)

and since h and uy are continuous, this holds in a neighborhood of y. Therefore,
by compactness, there exist u1, ..., uN ∈ F(ϕ) with

h+ δ < u ≡ max{u1, ..., uN} in a neighborhood of ∂Br(x0). (9.22)

Since F(ϕ) is closed under taking the maximum of a finite number of elements, we
have

h+ δ < u in a neighborhood of ∂Br(x0) with u ∈ F(ϕ). (9.23)

This implies that

u′ ≡
{

u on Ω−Br(x0)

max{u, h+ δ} on Br(x0)
(9.24)

is an element of F(ϕ). (Note that h+ δ and hence u′ is not necessarily an element
of Fmax

E (ϕ).) Since u′ ∈ F(ϕ), we have u′ ≤ U on Ω. In particular, h + δ ≤ U on
Br(x0). Since h is continuous, this implies h+ δ ≤ U∗, and hence

h(x0) + δ ≤ U∗(x0), (9.25)

which contradicts (9.18 b) that h(x0) = U∗(x0).
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It only remains to do the following.

Proof of (9.11b). We fix x0 ∈ ∂Ω, and let ρ be a smooth, strictly F-convex
defining function for ∂Ω defined in a neighborhood of x0. Then by (9.1) there exist
ε > 0 and r > 0 such that

D2
xρ− εI ∈ IntF = E + IntP ∀x ∈ Br(x0).

In particular,

D2
x0
ρ− εI = A+ P for A ∈ E and P > 0.

By adding a linear function to 1
2 〈Ax, x〉, we get a quadratic ψ with D2

x0
ψ = A and

ψ(x0) = 0 so that

ρ(x)− ε

2
|x− x0|2 = ψ(x) + 1

2 〈P (x− x0), x− x0〉+O(|x− x0|3).

Taking ε smaller, we can get a smaller r > 0 so that

ρ(x)− ε

2
|x− x0|2 > ψ(x) + 1

2 〈P (x− x0), x− x0〉 for x ∈ Br(x0)− {x0}.

Since ρ ≤ 0 on Ω we have

− ε

2
|x− x0|2 − 1

2 〈P (x− x0), x− x0〉 ≥ ψ(x) for x ∈ Br(x0) ∩ Ω. (9.26)

We now fix δ > 0 and shrink r > 0 so that

ϕ(x0)− δ < ϕ for x ∈ Br(x0) ∩ ∂Ω. (9.27)

From (9.26) above we have that there exists η with

0 > η ≥ ψ(x) for x ∈
(
Br(x0)−Br/2(x0)

)
∩ Ω. (9.28)

We now consider the edge function

Ψ(x) ≡ ϕ(x0)− δ + Cψ(x). (9.29)

By (9.28) we see that for C >> 0 we will have

Ψ(x) < inf ϕ on
(
Br(x0)−Br/2(x0)

)
∩ Ω

Therefore

u ≡
{
inf∂Ω ϕ on Ω−Br/2(x0)

max{Ψ, inf∂Ω ϕ} on Br(x0) ∩ Ω

is a well defined function on Ω, and it is locally the maximum of edge functions.
Furthermore, by (9.27) and (9.29) we see that u ≤ ϕ on ∂Ω. Hence, u is in our
Perron family for the Dirichlet problem, and so we have u ≤ U, which implies that
u ≤ U∗. In particular, u(x0) = ϕ(x0) − δ ≤ U∗(x0). Taking δ → 0 shows that
ϕ(x0) ≤ U∗(x0). This proves (9.11b) and therefore Theorem 9.3.
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