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In this paper we solve the nonlinear Dirichlet problem 
(uniquely) for functions with prescribed asymptotic singulari-
ties at a finite number of points, and with arbitrary continuous 
boundary data, on a domain in Rn. The main results apply, in 
particular, to subequations with a Riesz characteristic p ≥ 2. 
It is shown that, without requiring uniform ellipticity, the 
Dirichlet problem can be solved uniquely for arbitrary con-
tinuous boundary data with singularities asymptotic to the 
Riesz kernel ΘjKp(x − xj) where

Kp(x) =
{ − 1

|x|p−2 for 2 < p < ∞,

log |x| if p = 2.

at any prescribed finite set of points {x1, ..., xk} in the do-
main and any finite set of positive real numbers Θ1, ..., Θk. 
This sharpens a previous result of the authors concerning the 
discreteness of high-density sets of subsolutions.
Uniqueness and existence results are also established for finite-
type singularities such as Θj |x − xj |2−p for 1 ≤ p < 2.
The main results apply similarly with prescribed singulari-
ties asymptotic to the fundamental solutions of Armstrong–
Sirakov–Smart (in the uniformly elliptic case).
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1. Introduction and statement of some main results

The aim of this paper is to study the Dirichlet problem for functions with prescribed 
asymptotic singularities on a domain in Rn. We shall adopt the notation and definitions 
as in our previous work [10,12,14,19].

Throughout the paper F ⊂ Sym2(Rn) will denote a closed set which satisfies the 
weakest possible ellipticity condition:

(F1). A ∈ F and P ≥ 0 ⇒ A + P ∈ F ,

so that solutions can be taken in the viscosity sense (cf. [7,8,6]). Said differently, F is a 
constant coefficient, pure second-order subequation in Rn.

In addition we will always assume that:

(F2). F is a cone with vertex at the origin (i.e., tF = F for t > 0).

We will refer to an F satisfying (F1) and (F2) succinctly as a cone subequation.
For certain existence results we shall also make the mild requirement that

(F3). −Pe /∈ F for all unit vectors e ∈ Rn

where Pe denotes orthogonal projection onto the line R · e. Said differently, quadratic 
functions such as u(x) = −x2

1 are not allowed to be F -subharmonic. This property (F3) 
is equivalent to the following condition on the dual subequation F̃ ≡∼ (−F ):

(B3). All smooth boundaries are strictly F̃ -convex.

See Proposition 1.7 below for the proof of this equivalence and further discussion.
Our asymptotic singularities will be prescribed by functions of the following type.

Definition 1.1. A downward-pointing singular F -subharmonic at a point x0 ∈ Rn is a 
continuous [−∞, ∞)-valued F -subharmonic function ψ defined on a neighborhood U of 
x0 with ψ(x) > ψ(x0) for x ∈ U − {x0}, such that either:

(Polar Case): ψ(x0) = −∞, or
(Finite Case): ψ(x0) > −∞, and ψ has no test functions at x0.
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If in addition ψ is F -harmonic on U − {x0}, then ψ will be referred to as a downward-
pointing singular F -harmonic at x0, and will usually be denoted by h instead of ψ.

Note that in the polar case ψ also has no test functions at x0.
The problem we want to address is the following, which we will refer to as the (DPPS).

1.1. The Dirichlet problem with prescribed singularities

Let Ω be a bounded domain in Rn, and fix a finite number of points x1, ..., xk ∈ Ω.

Boundary Data: This consists of a function ϕ ∈ C(∂Ω) along with a downward-
pointing singular F -harmonic function hj at each point xj .

A function H is a solution of the corresponding (DPPS) if

(1) H ∈ C(Ω − {x1, ..., xk}),
(2) H is F -harmonic on Ω − {x1, ..., xk},
(3) H

∣∣
∂Ω = ϕ,

(4) H is asymptotically equivalent to hj at xj . By definition this means that:

(4a) (In the Polar Case). There exists a constant C > 0 such that for each j =
1, ..., k

hj(x) − C ≤ H(x) ≤ hj(x) + C near xj .

(4b) (In the Finite Case). For each j = 1, ..., k

lim
x→xj

H(x) −H(xj)
hj(x) − hj(xj)

= 1.

Remark 1.2. One easily verifies that asymptotic equivalence is indeed an equivalence 
relation (in fact, on the larger space of upper semi-continuous functions defined in a 
neighborhood of the point in question). Each equivalence class is invariant under the 
change of functions by an additive constant. We will denote asymptotic equivalence

by H ≈ h in the polar case, and by H ∼ h in the finite case.

The following result is an immediate consequence of the comparison Theorems 5.2
and 5.4 proved in Section 5.

Theorem 1.3 (Uniqueness). For any cone subequation F there is at most one function H
with properties (1) through (4).

An existence construction is presented in Section 6 and then completed in the polar 
case by proving the following theorem. Our existence results in the finite case are stated 
and proved in Section 7.
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Theorem 1.4 (Existence in the polar case). Suppose that F is a cone subequation sat-
isfying Condition (F3) = (B3), and that the boundary of Ω is smooth and strictly 
F -convex. Assume that each prescribed singularity hj at xj is a downward-pointing sin-
gular F -harmonic of polar type. Finally assume

Hypothesis (H): There exists a continuous F -subharmonic function ψ on Ω, finite except 
at x1, ..., xk ∈ Ω, with ψ ≈ hj at xj for each j.

Then the Dirichlet Problem with Prescribed Singularities described above has a solution. 
Moreover, it is uniquely determined as the Perron function

H(x) = sup
v∈F

v(x)

for the family

F ≡ {v ∈ USC(Ω) : v is F -subharmonic on Ω, v ≤ ϕ on ∂Ω,

and v − hj is bounded above near each xj}.

By Remark 11.13 in [12] this Theorem extends to domains which are finite intersec-
tions of domains with smooth strictly F -convex boundaries.

Typically the functions hj arise from a single global F -subharmonic function h on 
Rn which is F -harmonic outside the origin and has a downward-pointing singularity at 
0. Such an h will be called a generalized fundamental solution for the subequation F . 
It determines the data in the (DPPS) by taking hj(x) = Θjh(x − xj) with constants 
Θj > 0 for j = 1, ..., k. For Hypothesis (H) consider the function

ψ(x) =
k∑

j=1
Θjh(x− xj). (1.1)

In the polar case (where h(0) = −∞) the condition ψ ≈ hj at xj is automatic since h is 
continuous outside the origin. Thus the hypothesis (H) reduces to

Hypothesis (H)′: ψ(x) =
∑

j Θjh(x − xj) is F -subharmonic on Rn.

There are two cases where this hypothesis is easily satisfied.

A Single Point Singularity at x0 ∈ Ω: Then ψ(x) ≡ Θh(x −x0) (Θ > 0) is F -subharmonic 
on Rn – in fact, F -harmonic on Rn − {x0}.

The subequation F is convex: Then ψ is F -subharmonic on Rn because sums and positive 
multiples of F -subharmonic functions are also F -subharmonic.

Remark. If F is convex, then one has the option of considering F -subharmonics using 
distribution theory, because of the results of [15].
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This yields two special cases where the (DPPS) is uniquely solvable.

Corollary 1.5. Let F and Ω be as in Theorem 1.4, and suppose h is a generalized funda-
mental solution for F .

(a) For each x0 ∈ Ω and Θ > 0 there exists a unique solution to the (DPPS) having 
boundary values ϕ on ∂Ω and asymptotic to Θh(x − x0) at x0.

(b) If, in addition, F is convex, then the multi-pole (DPPS) with ψ as in (1.1), has a 
unique solution.

In the case of just one point singularity with Θ = 1 and the outer boundary function 
ϕ ≡ 0, the solution provided by Corollary 1.5(a) will be denoted GΩ(x; x0, h) and re-
ferred to as the nonlinear Green’s function for the subequation F on the domain Ω with 
asymptotic singularity determined by the generalized fundamental solution h.

In the multi-pole case where F is required to be convex, we again take ϕ ≡ 0. Then the 
solution to the (DPPS) given by Corollary 1.5(b) will be called the multi-pole nonlinear 
Green’s function and denoted by GΩ(x; x1, ..., xk; Θ1, ..., Θk; h).

These functions extend the classical pluri-complex Green’s function with logarithmic 
singularities (cf. [28,22,21,27,34]) where h(x) = log |x| on R2n = Cn. (See Theorem 3.5
ff. for further discussion.)

In Section 7 we establish existence results in the finite case. The strongest result, 
Theorem 7.4, applies when there is just one singularity. Here the asymptotic type of the 
singularity can be prescribed along with the outer boundary values. One begins with 
a function h ∈ C(Ω) which is F -harmonic on Ω − {x0} and has a downward-pointing 
singularity of finite type at x0. One then says that a function H ∈ C(Ω) has h-density
Θ ≥ 0 if

lim
x→x0

H(x) −H(x0)
h(x) − h(x0)

= Θ.

This is equivalent to saying that H ∼ Θh at x0. Theorem 7.4 asserts that under certain 
assumptions on F , the Dirichlet problem can be solved for a harmonic with any pre-
scribed h-density Θ ≥ 0 at x0 and ϕ ∈ C(Ω). It is then shown that the hypotheses in 
Theorem 7.4 are satisfied for two large and important classes of subequations. The first is 
the class of O(n)-invariant subequations whose Riesz-characteristic p satisfies 1 ≤ p < 2. 
Here h(x) = |x − x0|2−p. The second class consists of the uniformly elliptic subequa-
tions where h is taken to be the downward-pointing fundamental solution of Armstrong, 
Sirakov and Smart.

There is another existence question which is meaningful only in the finite case. As 
before we fix a boundary function ϕ ∈ C(∂Ω) and points {x1, ..., xk} ⊂ Ω. However, 
rather than prescribing densities, we instead prescribe the values vj for H at each point 
xj . This is the Dirichlet Problem on the Punctured Domain Ω − {x1, ..., xk}, where we 
look for a function H ∈ C(Ω) which is F -harmonic on Ω − {x1, ..., xk} with H

∣∣
∂Ω = ϕ

and H(xj) = vj for each j. By comparison on Ω − {x1, ..., xk}, if a solution H exists, 
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it is unique (see for example, [18, Thm. 6.2]). This leaves the important problem of 
exactly determining the set Val of values v = (v1, ..., vk) for which a solution H exists. 
In general Val ⊂ Rk is a proper subset which depends on the given data. In Section 8
we establish the existence of a large, and explicitly described, subset V ⊂ Val. For the 
case where ϕ = 0, it is shown that this set V is a convex cone with vertex at the origin 
and non-empty interior contained in the negative “octant” Rk

−. When ϕ = 0 and there is 
only one point (k = 1), the “value problem”, namely, that of determining Val, is solved 
completely: Val = {v ≤ 0} = V for any choice of point x1 ∈ Ω. (See Proposition 8.5.)

The main theorem in Section 8 (Theorem 8.1) actually enables one to prescribe not 
only certain values of H at the points xj but also to prescribe the tangent to H at xj up 
to a positive multiple ≥ 1. The key hypothesis in Theorem 8.1 is that there must exist 
on Ω an F -subharmonic function h which is ≤ ϕ on ∂Ω and asymptotic to the given 
tangent at each xj . For convex subequations this is often easily done and one obtains 
the large subset V ⊂ Val discussed above.

Remark 1.6 (The boundary convexity hypothesis). The hypothesis that ∂Ω is strictly 
F -convex in Theorem 1.4 is necessary for existence in the finite cases as well as the 
polar case. Of course there are many domains with smooth boundary where this is true. 
For example, if ∂Ω is strictly convex, then ∂Ω is also strictly F -convex for any cone 
subequation F because P ⊂ F . On the other hand, there are many cone subequations F
with the property that every smooth boundary is strictly F -convex, allowing ∂Ω to be 
arbitrary. This is true if and only if Pe ∈ IntF for all |e| = 1 by the following Proposition, 
applied to F̃ instead of F .

Proposition 1.7 (Concerning condition (F3)). For a cone subequation F the conditions:

(F3) −Pe /∈ F for any unit vector e, and
(B3) all boundaries are strictly F̃ -convex

are equivalent. Furthermore, if F is a convex subequation, then (F3) and (B3) are also 
equivalent to:

(F3)′ The subequation F is complete, i.e., it cannot be defined using the variables in 
a proper linear subspace of Rn.

Finally, if F is an invariant cone subequation as in Lemma 3.4, then these conditions 
are equivalent to:

(F3)′′ F has finite Riesz characteristic p (see Definition 3.2).

We shall use condition (B3), while condition (F3) provides the simplest test for this 
assumption. Condition (F3)′ is automatic unless the subequation is so degenerate that 
it does not involve all the variables in Rn.
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Proof. For cone subequations the equivalence of (F3) and (B3) was established in Sec-
tion 5 of the earlier paper [10], but was not stated explicitly. The argument goes as 
follows. First, by Lemma 5.3 (ii)′ in [10] condition (B3) is equivalent to:

(F3)′′′ For all B ∈ Sym2(Rn) and all unit vectors e

B + tPe ∈ IntF̃ for all t ≥ some t0.

(This can be considered to be the definition of strict F̃ -convexity.) Second, by the Ele-
mentary Property (5) in [10, §3] with B′ ≡ 0, this is equivalent to:

(F3)(iv) Pe ∈ IntF̃ for all unit vectors e.

Finally, by definition we have −IntF̃ = ∼ F , so that (F3)(iv) ⇐⇒ (F3).
The equivalence of the two structural conditions (F3) and (F3)′, for F convex, was 

established in Proposition 3.6 of [11].
For the equivalence of (F3) and (F3)′′ see Lemma 3.4. �

2. Examples of downward-pointing F-harmonics

Example 2.1 (Riesz kernels). Perhaps the most important such examples are the classical 
Reisz kernels Kp (with p ≥ 1) which are defined and discussed in the next section. Each 
has a downward-pointing singularity. They play a fundamental role in standard potential 
theory (cf. [26]). Moreover, each Kp is actually a punctured harmonic for a large family of 
subequations – those of Riesz characteristic p. For such subequations F the Riesz kernels 
are central to the study of tangents and densities in the associated F -potential theories 
[19,20]. In particular, they often arise as the unique tangent to any F -subharmonic 
function.

A large and important class of subequations with characteristic-p, which are convex 
cones but not uniformly elliptic, come from:

Geometrically Defined Subequations: These are the convex cone subequations P(G)
determined by a closed subset G ⊂ G(p, Rn), of the Grassmannian of p-dimensional 
subspaces of Rn, by the requirement that

A ∈ F ⇐⇒ tr
(
A
∣∣
W

)
≥ 0 ∀W ∈ G.

The following Fullness Condition on G:

Each unit vector e ∈ Rn is contained in a subspace W ∈ G, (2.1)

is equivalent to the pth Riesz kernel being a punctured P(G)-harmonic on Rn − {0}. 
Moreover, if G satisfies (2.1), then Condition (F3) = (B3) also holds for P(G).

These examples contain the subequations naturally associated to many calibrations. 
They also include the Lagrangian subequations on Cn. If G = G(p, Rn), the resulting 
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subequation P(G) (denoted Pp in Example 3.6(1)) is basic in geometry (cf. [33,29,13]
for example). See Section 4 of [19] and Appendix A in [20] for many more examples.

Perhaps it deserves mentioning here that the potential theory associated with the 
subequation P(G) is more appropriately called the G-pluripotential theory because of 
the fact that: u is P(G)-subharmonic ⇔ u

∣∣
W

is Δ-subharmonic for every affine W ∈ G

(proved in [16]).

Example 2.2 (Homogeneous singularities). Suppose that the function ψ in Definition 1.1
is homogeneous. This means (assuming x0 = 0 for simplicity) that

ψ(x) = |x|αψ
(

x

|x|

)
for some α �= 0

or, in the case “α = 0”, ψ(x) = ψ( x
|x| ) + Θ log |x| where sup|x|=1 ψ = 0 and Θ > 0. Note 

that the Riesz kernel Kp has homogeneity α = 2 − p.
Suppose that ψ is a homogeneous F -subharmonic on Rn−{0}. Then ψ is downward-

pointing (Definition 1.1) as follows.

Case: 0 < α ≤ 1. Then ψ has a strict minimum at x0 = 0 if and only if ψ(x) > 0 for 
x �= 0, in which case ψ(0) = 0 and c|x|α ≤ ψ(x) with c = inf∂B ψ. The condition of 
having no test functions at 0 follows easily from this inequality since 0 < α ≤ 1. Thus ψ
has a downward-pointing singularity at 0 ⇐⇒ ψ(x) > 0 on |x| = 1.

Case: α < 0. Then ψ has a strict minimum at x0 = 0 if and only if ψ(x) < 0 for x �= 0, in 
which case ψ(0) = −∞. Thus ψ has a downward-pointing singularity at 0 ⇐⇒ ψ(x) < 0
on |x| = 1.

Case: α = 0. For any ψ( x
|x| ) continuous we have ψ(0) = −∞, while ψ(x) is finite for 

x �= 0. Thus ψ always has a downward-pointing singularity at 0.

Example 2.3 (The special cases P, PC and PH). These are the geometrically de-
fined subequations obtained by taking G to be G(1, Rn), GC(1, Cn) ⊂ G(2, R2n) and 
GH(1, Hn) ⊂ G(4, R4n) respectively. Here there are huge families of downward-pointing 
F -harmonic functions h. Those which are homogeneous can be classified as follows. (The 
differential inequalities are in the viscosity sense.)

The P Case:

h(x) = |x|g
(

x

|x|

)
with g ∈ C(Sn−1) satisfying

HessSn−1g + gI ≥ 0, and inf
n−1

g > 0

S
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The PC Case:

h(x) = g ([x]) + Θ log |x| with g ∈ C(P(Cn)) and Θ > 0 satisfying

i∂∂g + Θω ≥ 0, and sup
P(Cn)

g = 0

(equivalently HessCP(Cn)g + ΘI ≥ 0, and sup
P(Cn)

g = 0).

The PH Case:

h(x) = 1
|x|2 g ([x]) with g ∈ C(P(Hn)) satisfying

HessHP(Hn)g − 2gI ≥ 0, and sup
P(Cn)

g < 0

See Section 5 in [20] for details and proofs.

Example 2.4 (Bedford–Taylor singularities). Downward-pointing F -harmonics need not 
be homogeneous. The PC-harmonic (i.e., maximal plurisubharmonic) functions on 
Cn − {0} given by

h(z, w) = log(|z|2 + |w|4)

and each of its unitary rotates, define a family of distinct asymptotic equivalence classes 
at the origin, which are different from the basic punctured harmonic log(|z|2 + |w|2). 
There are also the PC-harmonic functions log(|z|α + |w|β) for α, β > 0. These examples 
go back to Bedford and Taylor [5].

Example 2.5 (Armstrong–Sirakov–Smart singularities). In the very interesting paper [4]
the authors consider pure second-order cone subequations exactly as in this paper but 
with the additional hypothesis of uniform ellipticity (where (F3) is automatic). Under 
this hypothesis they establish the existence of a canonical fundamental solution Φ which 
is F -harmonic on Rn−{0}, has the homogeneity property Φ(tx) = t2−pΦ(x), ∀ t > 0 for 
some 1 < p < ∞, and has a downward-pointing singularity at 0. In stark contrast to the 
three special cases P, PC and PH in Example 2.3 above, in this uniformly elliptic case 
there is precisely one asymptotic equivalence class of downward-pointing F -harmonic, 
namely Φ, up to a positive scale (see [4]).

Now start with any cone subequation F ⊂ Sym2(Rn) and consider the family 
F (δ), δ > 0 of elliptic regularizations consisting of uniformly elliptic cone subequations 
converging to F as δ → 0 (see Appendix A in [20]). The paper [4] applies to each F (δ)
presenting us with a large set of functions hδ ≡ Φ, other than the Riesz kernels, which 
satisfy the conditions of Definition 1.1.

Now suppose that F is convex, so that for small δ, F (δ) is also convex. The smallest 
possible subequation Fδ for which the function hδ = Φ is an entire subharmonic is 
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constructed by taking the closed convex cone on {D2
xΦ : |x| = 1} +P. (See Example 3.6

where this is carried out in the cases F = P, PC and PH.) If Φ is also a harmonic for 
this smallest Fδ (outside the origin), then Φ is a downward-pointing harmonic for all 
cone subequations F such that Fδ ⊂ F ⊂ F (δ). For each such F , Theorems 1.3 and 1.4
apply, as well as Theorem 7.1 in the finite case.

Other examples of this phenomenon can be constructed by applying a non-orthogonal 
linear transformation to any of the many convex subequations studied in [19] and [20].

3. Riesz kernels and the Riesz characteristic

Of particular importance for the study of isolated singularities of subsolutions are the 
classical Riesz kernels:

Kp(x) =

⎧⎨⎩− 1
p−2

1
|x|p−2 for 1 ≤ p < ∞, p �= 2

log |x| if p = 2.

One sees easily that

DxKp = x

|x|p and D2
xKp = 1

|x|p
(
Px⊥ − (p− 1)Px

)
where Px⊥ and Px denote orthogonal projection onto the hyperplane perpendicular to x
and the line through x respectively. From this one sees the following.

Proposition 3.1. Given a cone subequation F , the pth Riesz kernel

Kp is F harmonic on Rn − {0} ⇐⇒ Pe⊥ − (p− 1)Pe ∈ ∂F ∀ |e| = 1. (3.1)

Definition 3.2. A (not necessarily convex) cone subequation F ⊂ Sym2(Rn) is said to 
have a finite Riesz characteristic pF = p if

Pe⊥ − (p− 1)Pe ∈ ∂F for all unit vectors e ∈ Rn.

If F has finite Riesz characteristic p, then 1 ≤ p since IntP ⊂ IntF . In addition, the 
Riesz kernel Kp and each of its translates is F -harmonic outside its singularity. Thus

h(x) ≡ Kp(x) is a downward pointing, singular F harmonic on Rn − {0} (3.2)

for any cone subequation with Riesz characteristic p. This is perhaps the most important 
example satisfying the conditions in Definition 1.1. It is discussed in detail after a few 
additional comments on the polar case p ≥ 2.
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Remark 3.3. It is natural to extend the definition of Riesz characteristic. We say that F
has Riesz characteristic pF = ∞ if

−Pe ∈ ∂F, or equivalently − Pe ∈ F, ∀ |e| = 1. (3.3)

The equivalence is because −Pe /∈ IntF for a cone subequation F unless F = Sym2(Rn).

Of course, there are cone subequations which do not have a Riesz characteristic. How-
ever, as seen in the next lemma, for “invariant” cone subequations the Riesz characteristic 
is very easy to compute, and condition (F3) holds ⇐⇒ p is finite.

Lemma 3.4. Suppose that F is invariant under a subgroup H ⊂ O(n) which acts transi-
tively on the sphere Sn−1 ⊂ Rn. Then

pF = sup{q : Pe⊥ − (q − 1)Pe ∈ F} (3.4)

for some (and therefore any) unit vector e ∈ Rn. In particular, pF = ∞ ⇐⇒ (F3) fails 
for all |e| = 1.

The proof is straightforward. Note that in appropriate coordinates Pe⊥ − (q− 1)Pe is 
diagonal matrix with one eigenvalue −(q − 1) and the remaining entries all equal to 1.

The principal Corollary 1.5 has as its most important special case the following.

Theorem 3.5 (The polar case). Suppose F is a cone subequation with finite Riesz char-
acteristic p ≥ 2 and property (F3), and let Ω be a domain with a smooth boundary which 
is strictly F -convex.

(a) For each ϕ ∈ C(∂Ω), x0 ∈ Ω, and Θ > 0, there exists a unique solution H to the 
(DPPS) having boundary values ϕ on ∂Ω and asymptotic singularity H(x) ≈ ΘKp(x −x0)
at x0.

(b) If, in addition, F is convex, then the multi-pole (DPPS) with asymptotics 
ΘjKp(x − xj) has a unique solution H.

Moreover, in either of these cases, if ϕ ≡ 0, this provides the existence and uniqueness 
of a nonlinear Green’s function GΩ with

GΩ(x) ≈ ΘKp(x− x0) at x0

in the case of a single pole, and, provided that F is convex,

GΩ(x) ≈ ΘjKp(x− xj) at each xj

in the multi-pole case.

The existence and uniqueness of the multi-pole Green’s function for the subequation 
F = PC was proved by Lelong in 1989 [27]. This is built on previous work for single-point 
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Green’s functions (Lempert [28] and Klimek [22,21]). An even more general version was 
established by A. Zeriahi [34].

Theorem 3.5 includes all invariant cone subequations whose Riesz characteristic is 
finite (by Lemma 3.4).

There are many more subequations F which have a finite Riesz characteristic than one 
might at first imagine. We start by mentioning four extreme examples of characteristic 
p subequations. The first explains our choice of normalization in the definitions of Kp

and characteristic p. When p is an integer, this example coincides with the geometric 
subequation P(G(p, Rn)) discussed in Section 2.

Examples 3.6.

(1) Pp = {A : λ1(A) + · · ·+λ[p](A) +(p − [p])λ[p]+1(A) ≥ 0} where λ1(A) ≤ λ2(A) ≤ · · ·
are the ordered eigenvalues of A and 1 ≤ p ≤ n.
(2) P(δp) =

{
A : A + δp

n tr(A)I ≥ 0
}

, where δp = n(p−1)
n−p .

(3) Pmin/max
p = {A : λmin(A) + (p − 1)λmax(A) ≥ 0}.

(4) Pmin/2
p = {A : λmin(A) + (p − 1)λ2(A) ≥ 0}.

Note that Pmin/2
p ⊂ Pp ⊂ P(δp) ⊂ Pmin/max

p and that each subequation F with 
Pmin/2
p ⊂ F ⊂ Pmin/max

p has finite Riesz characteristic p. It is somewhat surprising that, 
under a mild restriction, there exist both a “largest” and a “smallest” characteristic p
subequation. More precisely, every invariant (as in Lemma 3.4) cone subequation F with 
finite Riesz characteristic p satisfies

Pmin/2
p ⊂ F ⊂ Pmin/max

p (3.5)

and if F is O(n)-invariant and convex, then

Pp ⊂ F ⊂ P(δp). (3.6)

This is proved in Appendix A of [20] where many more examples of characteristic p
subequations are given. These include subequations of Monge–Ampère type arising from 
Gårding operators. Among these is the following Hessian equation, which has been stud-
ied by Trudinger–Wang [30–32], Labutin [23–25] and others. We have drawn heavily from 
[25] in this paper.

(5) Σk = {A : σ1(A) ≥ 0, ..., σk(A) ≥ 0}, where pF = n
k .

One also has

(6) F = {A : tr(Aq) ≥ 0} where pF = 1 +(n −1)
1
q for q ∈ Z odd. (This F is not convex.)

Suppose F is an O(n)-invariant subequation with pF = p, and let F (C), F (H) be 
the complex and quaternionic analogues given by the same conditions on the eigenvalues 
of their hermitian symmetric components. Then pF (C) = 2pF and pF (H) = 4pF . These 
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examples contain the complex and quaternionic Monge–Ampère equations [5,1–3], as 
well as the complex and quaternionic Hessian equations. There are also the complex (as 
well as quaternionic) analogues:

Pmin/2
p (C) ⊂ Pp(C) ⊂ P(δp)(C) ⊂ Pmin/max

p (C). (3.7)

with

Pmin/2
p (C) ⊂ F (C) ⊂ Pmin/max

p (C) and Pmin/2
p (C) ⊂ F (C) ⊂ Pmin/max

p (C)

as in (3.5) and (3.6).

4. The Dirichlet problem with prescribed densities

Assume, as in the previous section, that F is a cone subequation with a finite Riesz 
characteristic p. For an arbitrary F -subharmonic function u, the density of u at a point 
x0 in its domain, is the limit

Θ(u, x0) ≡ lim
r→0

supBr(x0) u

Kp(x− x0)
for p ≥ 2 and

Θ(u, x0) ≡ lim
r→0

supBr(x0) u− u(x0)
Kp(x− x0)

for 1 ≤ p < 2,
(4.1)

which always exists by [19].
The Dirichlet Problem with Prescribed Densities, denoted by (DPPD), is the same 

as the (DPPS) except that the asymptotic requirement

H ≈ ΘjKp(x− xj) for p ≥ 2 or H ∼ ΘjKp(x− xj) for 1 ≤ p < 2 (4.2)

is replaced by prescribing the density

Θ(H,xj) = Θj (4.3)

at each point xj .

Lemma 4.1. For any F -subharmonic function u, the condition (4.2) implies (4.3).

Proof. Assume xj = 0. The notion u ∼ ΘKp at the origin is defined for p ≥ 2 by 
requiring that

lim
x→0

u(x)
Kp(x) = Θ

(see (A.1) and also (4a) in (DPPS)). By Proposition A.3 the condition u ≈ ΘKp at 0 
implies that u ∼ ΘKp at 0, so even when p ≥ 2, we can assume u ∼ ΘKp. Finally, the 
limits in (4.1) equal Θ since the limits in (A.1) as x → 0 equal Θ. �
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Corollary 4.2. If existence holds for the (DPPS), then existence holds for the (DPPD). 
Moreover, uniqueness holds for the (DPPD) if and only if for any downward-pointing 
singular F -harmonic H with density Θ(H, 0) = Θ we have

H ≈ ΘKp at 0 if 2 ≤ p or H ∼ ΘKp at 0 if 1 ≤ p < 2 (4.4)

4.1. The polar case (p ≥ 2)

Existence for the (DPPS) provided by Theorem 3.5 implies existence for the (DPPD) 
because of Corollary 4.2.

Theorem 4.3 (Polar case p ≥ 2). Let F , Ω and ϕ be as in Theorem 3.5. Then there 
exits a solution H to the (DPPD) with prescribed positive density Θ at any given point 
x0 ∈ Ω. Moreover, if F is convex, there exists a solution H with prescribed positive 
densities Θ1, ..., Θk at an arbitrary collection of distinct points x1, ..., xk ∈ Ω.

Uniqueness of the non-linear Green’s function implies uniqueness in the general 
(DPPD).

Theorem 4.4 (Polar case p ≥ 2). Suppose that the Riesz kernel Kp is the only solution 
to the (DPPD) on a ball about the origin with the same boundary values and asymptotic 
behavior as Kp. Then uniqueness holds for the general Dirichlet problem with prescribed 
densities (DPPD) in Theorem 4.3.

Proof. Suppose H is a solution to the (DPPD) in Theorem 4.3. By the definition of the 
(DPPD) we know that H has density Θj at xj . It suffices to prove (4.4), i.e., to show 
that H ≈ ΘjKp(x − xj) because then the uniqueness part of Theorem 3.5 applies. As in 
[25, Thm. 3.6] here is how (4.4) can be proved for H. Normalize so that xj = 0, Θj = 1
and B ⊂⊂ Ω is a ball about the origin. By the existence part of Theorem 4.3, we obtain 
h ∈ C(B−{0}), which is F -harmonic on B−{0}, equal to the constant Kp on ∂B, and 
satisfies h ≈ H at 0. Now h ≈ H at 0 implies that h also has density 1 at 0. By the 
hypothesis, this proves h = Kp. �
Corollary 4.5 (Polar case p ≥ 2). Suppose F is an orthogonally invariant subequation of 
finite Riesz characteristic p. Then both existence and uniqueness hold for the (DPPD) 
in Theorem 4.3.

Proof. The classical moving plane argument shows that if h is F -harmonic on B, constant 
on ∂B and h(0) = −∞, then h is a radial function (see [25,9]). Hence, h(x) = ΘKp(x) +k

by [19, Prop. 3.5]. �
Final Note. For orthogonally invariant subequations F (and many others as well) it has 
been shown [19,20] that for any F -subharmonic function u on Ω ⊂ Rn and c > 0,
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the set Ec(u) ≡ {x ∈ Ω : Θ(u, x) ≥ c} is discrete.

The results here show that any finite set E ⊂ Ω can occur as Ec(H) for an F -harmonic 
function H on Ω.

5. Comparison

In this section we prove the Uniqueness Theorem 1.3 for the (DPPS) by establishing a 
comparison theorem in the setting of prescribed singularities. The key idea is contained 
in a local result. First we consider the polar case.

Lemma 5.1 (The polar case). Suppose v is F -subharmonic and w is F̃ -subharmonic in 
a deleted neighborhood of a point x0 ∈ Rn, and that h is a downward-pointing singular 
F -harmonic at x0. Assume that for some constants c and k

v ≤ h + c and w ≤ −h + k near x0. (5.1)

Then, with u ≡ v + w extended to x0 by setting

u(x0) ≡ lim
x→x0

(v(x) + w(x)) (5.2)

we have that

u is subaffine on a neighborhood of x0. (5.3)

Proof. We recall the notion of subaffine functions [10]. These are the functions u ∈
USC(Ω) such that for any affine function a and K ⊂⊂ Ω, u ≤ a on ∂K ⇒ u ≤ a

on K. It turns out that this is a local condition on the function, namely that it satisfy 
the subequation P̃ dual to P (see [10]). Comparison follows from (5.3) since subaffine 
functions clearly satisfy the maximum principle.

Consider the sum u = v+w which defines an upper semi-continuous [−∞, ∞)-valued 
function in a deleted neighborhood of x0. This function has the following two properties:

u is bounded above across x0, (5.4)

u is subaffine on a deleted neighborhood of x0. (5.5)

Obviously (5.1) implies (5.4). For (5.5) recall (see [10] or [18, Thm. 6.2]) that for any 
constant coefficient, pure second-order subequation F , the sum of an F -subharmonic 
function and an F̃ -subharmonic function is P̃-subharmonic. The condition (5.4) implies 
that the extension of u defined by (5.2) is upper semi-continuous, with values in [−∞, ∞), 
in a neighborhood of x0. It remains to show that u is P̃-subharmonic. (Note that the 
function −|x −x0| satisfies (5.4) and (5.5) and, even though it is continuous across x0, it 
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is not P̃-subharmonic across x0. Said differently, Lemma 5.1 is not simply a removable 
singularity theorem for P̃.)

To prove that u is subaffine across x0 we approximate u by

uε = u + εv = (1 + ε)v + w. (5.6)

Since u is bounded above and v(x0) = −∞, if we define uε(x0) = −∞, then uε is upper 
semi-continuous on a neighborhood of x0. Note that uε has no test functions at x0, so 
to prove that uε is subaffine on a neighborhood V of x0, we need only prove that uε is 
subaffine on V − {x0}. However, uε is the sum of the F -subharmonic function (1 + ε)v
and the F̃ -subharmonic function w. This implies, as above, that uε is P̃-subharmonic on 
V − {x0} as desired. (Here we have used that F is a cone.)

Now on a neighborhood of x0 the subaffine functions uε increase pointwise to u (since 
v < 0). By the “families bounded above” property (see [10]) and the fact that u is upper 
semi-continuous with values in [−∞, ∞), this proves that u is P̃-subharmonic. �

Comparison can be stated as follows.

Theorem 5.2 (Comparison in the polar case). Suppose Ω is a domain and h1, ..., hk

are downward-pointing singular F -harmonics at x1, ..., xk respectively. Given v, w ∈
USC(Ω−{x1, ..., xk}) with v F -subharmonic and w F̃ -subharmonic on Ω −{x1, ..., xk}, 
suppose that near each xj, j = 1, ..., k we have

v ≤ hj + cj and w ≤ −hj + kj for some constants cj and kj . (5.7)

Then comparison holds on Ω, that is,

If v + w ≤ 0 on ∂Ω, then v + w ≤ 0 on Ω − {x1, ..., xk}. (5.8)

Proof. By Lemma 5.1 the function u ≡ v+w, defined on Ω−{x1, ..., xk}, extends to an 
upper semi-continuous [−∞, ∞)-valued function u on Ω which is subaffine on Ω. Hence, 
supΩ u ≤ sup∂Ω u by the maximum principle. �
Proof of the Uniqueness Theorem 1.3 in the Polar Case. It suffices to prove that:

If H is a solution to the (DPPS), then H(x) = sup
v∈F

v(x), (5.9)

where F is the family defined in Theorem 1.4. We can apply the Comparison Theorem 5.2
to v ∈ F and w ≡ −H. On ∂Ω, we have v ≤ ϕ and w = −ϕ, and so v + w ≤ 0 (or 
v ≤ H) on Ω by (5.8). Since H ∈ F , this proves (5.9). �

Now we turn to the finite case.
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Lemma 5.3 (The finite case). Suppose v is F -subharmonic and w is F̃ -subharmonic on 
a deleted neighborhood of x0, and that h is a downward-pointing singular F -harmonic at 
x0. Assume that

lim inf
x→x0

v(x) − v(x0)
h(x) − h(x0)

≥ 1 and lim inf
x→x0

w(x) − w(x0)
h(x) − h(x0)

≥ −1 (5.10)

Then with u ≡ v + w extended to x0 by setting

u(x0) ≡ lim sup
x→x0

u(x) (5.11)

we have that

u is subaffine on a neighborhood of x0. (5.12)

Proof. To prove that u is subaffine, we approximate u ≡ u − v(x0) + w(x0) by

uε = u + ε(v(x) − v(x0)) = (1 + ε)(v(x) − v(x0)) + (w(x) − w(x0)) (5.13)

and prove that u is subaffine. Note that as in Lemma 5.1, uε is subaffine on a deleted 
neighborhood of x0 since F is a cone. To show that uε is subaffine on a neighborhood of 
x0, we need only show that at x0, uε has no test functions.

The hypothesis (5.10) on v implies that for 1 < α < 1 + ε, there exists a neighborhood 
of x0 with v(x) − v(x0) ≥ α

1+ε (h(x) − h(x0)).
The hypothesis (5.10) on w implies that for 1 < β < α, we have w(x) − w(x0) ≥

(α− β)(h(x) − h(x0)) near x0. Hence, uε ≥ (α− β)(h(x) − h(x0)), which proves that uε

has no test functions at x0, since h has no test functions at x0 (note that uε(x0) = 0.) 
This proves that each uε is subaffine in a neighborhood of x0.

Finally the fact that v(x) − v(x0) is bounded below by a positive multiple of 
h(x) − h(x0) implies that uε is decreasing pointwise as ε → 0 in a neighborhood of 
x0. However, outside x0, u is the sum of the F -subharmonic function v(x) − v(x0) and 
the F̃ -subharmonic function w(x) − w(x0), which implies that u is subaffine. �
Theorem 5.4 (Comparison in the finite case). Suppose that Ω is a domain and h1, ..., hk

are downward-pointing singular F -harmonics at x1, ..., xk ∈ Ω respectively. Given v, w ∈
USC(Ω−{x1, ..., xk}) with v F -subharmonic and w F̃ -subharmonic on Ω −{x1, ..., xk}, 
suppose that for j = 1, ..., k we have

lim inf
x→xj

v(x) − v(xj)
h(x) − h(xj)

≥ 1 and lim inf
x→xj

w(x) − w(xj)
h(x) − h(xj)

≥ −1. (5.14)

Then (with u ≡ v + w defined at xj by (v + w)(xj) ≡ lim supx→xj
(v + w)(x)),

If v + w ≤ 0 on ∂Ω, then v + w ≤ 0 on Ω. (5.15)
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Proof. This follows from Lemma 5.3 as in the proof of Theorem 5.2. �
Corollary 5.5 (Uniqueness in the finite case). Let F denote the family of v ∈ USC(Ω)
satisfying: v is F -subharmonic on Ω, v ≤ ϕ on ∂Ω, and for j = i, ..., k

lim inf
x→xj

v(x) − v(xj)
h(x) − h(xj)

≥ 1.

If H is a solution to the (DPPS), then

H(x) = sup
v∈F

v(x). (5.16)

Proof. Note that if v ∈ F and H is a solution, then comparison implies that v ≤ H. 
Since H ∈ F , this proves (5.16). �
6. A basic construction and the proof of existence in the polar case

In this section we describe the basic construction of the solution to the (DPPS) in 
some generality, and then complete the existence proof in the polar case. The finite case 
is finished in Section 7. Our starting point is the standard (DP) on the domain with a 
neighborhood of the singular points removed.

6.1. The Dirichlet problem on the perforated domain

We fix r0 > 0 so that the closed balls Br0(xj) = {|x − xj | ≤ r0}, j = 1, ..., k, are 
mutually disjoint and contained in Ω. Let

Dr ≡
k⋃

j=1
Br(xj) for 0 < r ≤ r0.

Consider the perforated domain

Ωr ≡ Ω −Dr

whose oriented boundary is the sum of the outer boundary ∂Ω and the inner boundary
−∂Dr.

Consider the Dirichlet Problem for a subequation F ⊂ Sym2(Rn) on Ωr with given 
boundary functions ϕ ∈ C(∂Dr) and ϕ ∈ C(∂Ω). As discussed in the proof of Lemma 5.1
comparison and hence uniqueness hold on any domain. For existence, consider the Perron 
family F consisting of all u ∈ USC(Ωr) such that

u
∣∣ ∈ F (Ωr), u

∣∣ ≤ ϕ, and u
∣∣ ≤ ϕ,
Ωr ∂Dr ∂Ω
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along with its Perron function

Hr(x) ≡ sup
u∈F

u(x).

By [12, §12] the Perron function will solve the Dirichlet problem for the given boundary 
values provided that, at each point of ∂Ωr = ∂Ω − ∂Dr, one can construct barriers as in 
Propositions F and F̃ in [12] on page 453.

We list our assumptions.

Assumption (B1): The outer boundary ∂Ω is strictly F -convex.

Note that ∂Ω is strictly F̃ -convex by (F3) = (B3). Thus barriers, as in Propositions F
and F̃ exist for each point x0 ∈ ∂Ω.

Note similarly that the inner boundary −∂Dr is also strictly F̃ -convex by (F3) = 
(B3). This provides a barrier as in Proposition F̃ at points x0 ∈ ∂Dr.

To obtain an F -barrier at a point x0 ∈ ∂Dr we assume that the inner boundary 
function ϕ is of a special nature, namely,

Assumption (B2): ϕ ≡ ψ
∣∣
∂Dr

where ψ is F -subharmonic on Ω, and either

Polar Case: ψ : Ω → [−∞, ∞) is continuous and = −∞ precisely at the points 
x1, ..., xk, or

Finite Case: ψ ∈ C(Ω) with each xj , j = 1, ..., k a strict local minimum point with 
no test functions.

Assumption (B4): ψ
∣∣
∂Ω ≤ ϕ.

Since ψ and ϕ satisfy (B2) and (B4), we can use the F -subharmonic function ψ to 
construct barriers at points x0 ∈ ∂Dr as in Proposition F . This is done by setting 
u(x) ≡ ψ(x) − δ + ε|x − x0|2 for ε > 0 sufficiently small.

This establishes the following existence result.

Theorem 6.1. Assume that F is a cone subequation which satisfies Condition (F3) = (B3). 
Suppose ϕ ∈ C(∂Ω). Suppose that ∂Ω is strictly F -convex (B1), and that ψ satisfies (B2) 
and (B4). Then the Perron function Hr solves the Dirichlet Problem:

(a) Hr ∈ C(Ωr),
(b) Hr is F -harmonic on Ωr,
(c) Hr

∣∣
∂Dr

= ψ
∣∣
∂Dr

and Hr

∣∣
∂Ω = ϕ.

6.2. The candidate for the solution to the (DPPS)

We continue with the same notation and hypotheses.
The proposed solution to the (DPPS) is constructed as a pointwise increasing limit

H(x) ≡ lim
r→0

Hr(x) on Ω (6.1)
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of functions Hr which extend the functions Hr to Ω.

Lemma 6.2. The continuous functions

Hr ≡
{
Hr on Ωr

ψ on Dr

(6.2)

are F -subharmonic on Ω and pointwise increasing on Ω as r → 0.

Proof. The function ψ is in the Perron family on Ωr since ψ
∣∣
∂Dr

= ϕ and ψ
∣∣
∂Ω ≤ ϕ. 

This proves that

ψ ≤ Hr on Ωr. (6.3)

Consequently,

Hr(x) ≡
{

max{ψ(x), Hr(x)} on Ωr

ψ(x) on Dr.
(6.4)

To see that

Hr is F subharmonic on Ω, (6.5)

note that Hε

r = max{ψ+ε, Hr} defines an F -subharmonic function on Ω since ψ+ε > Hr

on ∂Dr, and then note that Hε

r decreases pointwise as ε → 0 to Hr on Ω.
Finally we show that for all ρ with 0 < ρ < r ≤ r0, one has

Hr ≤ Hρ on Ω. (6.6)

On Dr we have Hr = Hρ = ψ. In particular, on ∂Dρ, Hr = ψ, while on the outer 
boundary ∂Ω, Hr = ϕ. Thus Hr is in the Perron family for Hρ on this larger domain 
Ωρ, proving that Hr ≤ Hρ on Ωρ, which establishes (6.6). �

Let HDP denote the solution to the standard Dirichlet Problem (DP) on Ω. That is, 
HDP ∈ C(Ω), HDP is F -harmonic on Ω, and HDP

∣∣
∂Ω = ϕ. This function exists since the 

outer boundary is assumed to be strictly F -convex, and by (F3) = (B3) it is also strictly 
F̃ -convex.

Proposition 6.3. The proposed solution H to the (DPPS) defined by (6.1) satisfies:
(1) (a) H∗ ∈ USC(Ω) and (b) −H = (−H)∗ ∈ USC(Ω − {x1, ..., xk}),
(2) (a) H∗ is F -subharmonic on Ω, (b) −H is F̃ -subharmonic on Ω − {x1, ..., xk},
(3) H∗∣∣

∂Ω = H
∣∣
∂Ω = ϕ,

(4) ψ ≤ H ≤ HDP on Ω.
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Proof. Assertion (1) is immediate while (2a) follows from the “families bounded above 
property” and (2b) by the “decreasing limit property”. To prove (4) first note that (6.3)
implies that ψ ≤ H. Now the function HDP is the Perron function for the standard 
Dirichlet Problem on Ω with boundary values ϕ. Therefore, HDP is larger than ψ by 
assumption (B4). Thus Hr ≤ HDP on ∂Ωr, and this remains true on Ωr. Therefore, 
H ≤ HDP, which implies that

H∗ ≤ HDP. (6.7)

In turn this implies (3). �
6.3. Existence in the polar case – the proof of Theorem 1.4

First note that in the polar case the notion of asymptotic equivalence is preserved 
by subtracting a constant. This implies that the hypothesis (B4) in Theorem 6.1 and 
Proposition 6.3 can always be satisfied.

Now (4) in Proposition 6.3 yields the left hand inequality in Part (4a) of the (DPPS) 
stated in the introduction. For the right hand inequality in (4a) we prove the following.

Lemma 6.4. Near each xj we have H ≤ hj + cj for some constant cj.

Proof. For 0 < ρ ≤ r we have that

Hρ − hj is P̃ subharmonic on Aρ,r = Br −Bρ.

On the inner boundary ∂Bρ we have, since ψ ≈ hj implies ψ − hj ≤ C, that

Hρ − hj = ψ − hj ≤ C,

and on the outer boundary ∂Br we have

Hρ − hj ≤ U − hj ≤ C(r)

independent of ρ. Hence,

H − hj ≤ max{C,C(r)} ≡ C ′ on Br(xj). �
Now we apply the Comparison Theorem 5.2 to v ≡ H∗ and w ≡ −H. By (1a) H∗

takes values in [−∞, ∞) on Ω, while by (4) w takes values in (−∞, ∞) except at x1, ..., xk

where w equals +∞. The inequality

v ≡ H∗ ≤ hj + cj near xj
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is immediate from Lemma 6.4. Observe now that by combining (4) ψ ≤ H (≡ −w) from 
Proposition 6.3 with the inequality hj −kj ≤ ψ near xj , which is part of Hypothesis (H) 
in Theorem 1.4, gives

w ≤ −hj + kj near xj .

This establishes the hypothesis (5.7) in Theorem 5.2. Finally, by (3) in Proposition 6.3, 
v = ϕ and w = −ϕ on ∂Ω, so that v + w = 0 on ∂Ω. We can now apply Theorem 5.2
to conclude that v + w ≤ 0 on Ω − {x1, ..., xk}, i.e., H∗ ≤ H on Ω − {x1, ..., xk}. This 
proves that H∗ = H on Ω − {x1, ..., xk}. Since we already have H = H∗ (because it 
is an increasing limit of continuous functions), we conclude that H is continuous on 
Ω − {x1, ..., xk}, and Conditions (1) and (2) are proved. This completes the proof of 
Theorem 1.4. �
6.4. The (DPPS) with singularities on a compact polar set

The arguments given above adapt to prove a version of Theorem 1.4 with {x1, ..., xk}
replaced by a compact polar set.

Theorem 6.5. Let F be a cone subequation satisfying Condition (F3). Let Ω ⊂⊂ Rn

be a domain with smooth boundary ∂Ω which is strictly F -convex, and let Σ ⊂ Ω be a 
compact subset. Suppose there exists a continuous function h : Ω → [−∞, ∞) such that 
Σ = h−1(−∞) and h is F -harmonic on Ω − Σ.

Then for any ϕ ∈ C(∂Ω) we have the following.

Existence. There exists H ∈ C(Ω − Σ) such that:
(1) H is F -harmonic on Ω − Σ,
(2) H

∣∣
∂Ω = ϕ,

(3) H is asymptotically equivalent to h, i.e., there exist c, C ∈ R such that

h(x) + c ≤ H(x) ≤ h(x) + C on Ω − Σ

Uniqueness. There is at most one function H ∈ C(Ω − Σ) satisfying (1), (2) and (3). 
(Here the F -convexity of ∂Ω is not required.)

Proof. The uniqueness is proved as in Section 5. For existence we choose a sequence of 
regular values {rj} of h with rj ↓ −∞. Again by adjusting h with an additive constant 
we can assume that (B4) is satisfied. For each j define

Dj ≡ {x ∈ Ω : h(x) > rj} and Ωj ≡ Ω −Dj .

Let Hj be the solution to the Dirichlet Problem on Ωj for F -harmonic functions with 
boundary values
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Hj

∣∣
∂Ω = ϕ and Hj

∣∣
∂Dj

= h
∣∣
∂Dj

on the outer and inner boundaries respectively. As before this solution exists due to the 
assumption of F -convexity on ∂Ω, the hypothesis (F3) = (B3), the fact that h is in the 
Perron family by (B4), and the F -harmonicity of h outside Σ.

Now define Hj(x) as in Lemma 6.2 and note that the assertions of Lemma 6.2 hold 
by exactly the same arguments.

It follows that the increasing limit

H ≡ lim
j→∞

Hj

has the properties that H∗ is F -subharmonic and −H is F̃ -subharmonic on Ω − Σ. 
Using the solution HDP to the Dirichlet Problem on Ω with boundary values ϕ the same
arguments as above show that

H∗∣∣
∂Ω = ϕ. (6.8)

We now prove (3). The left-hand inequality in (3) holds since h is in the Perron 
family for Hj on Ωj for all j. On the other hand, for C > 0 sufficiently large we will have 
h +C > ϕ on ∂Ω. Since h +C is F -harmonic on Ω −Σ and greater than Hj on ∂Ωj , we 
have h +C > Hj on Ωj by comparison. This establishes the right-hand inequality in (3).

As noted above we have

H∗ ∈ F (Ω − Σ) and −H ∈ F̃ (Ω − Σ).

As before this implies that H∗−H ∈ P̃p(Ω −Σ). Now Condition (3) implies Condition (3) 
for H∗ and therefore H∗−H ≤ C− c on Ω −Σ. We now apply the removable singularity 
argument in [17] using the polar function h (as before) to conclude that H∗ − H is 
F -subharmonic on Ω. By (6.8) H∗ −H is ≤ 0 on ∂Ω. Hence, we have H∗−H ≤ 0 on Ω. 
We have proved that H∗ = H on Ω. This proves H ∈ C(Ω − Σ) and condition (1), and 
we are done. �
7. Existence in the finite case

We now take up the proof of existence in the finite case. It proceeds in two stages. 
The first (Theorem 7.1) is a construction which provides a family of F harmonics which 
only satisfy a weakened form of asymptotic equivalence in a range. The second stage 
shows that one member of the family has the desired asymptotic singularity at the given 
point.

Throughout this section we assume that F is a cone subequation with the property 
that all boundaries are strictly F̃ -convex, and that Ω is a domain with smooth strictly 
F -convex boundary. We limit the discussion to the case of a single singular point x0 ∈ Ω. 
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(However, some of the arguments extend to multiple singular points as in the polar case.) 
The following assumption replaces the hypothesis (H) in Theorem 1.4.

Hypothesis (H1) (Finite Case). We are given a function h ∈ C(Ω) which is F -harmonic 
on Ω − {x0} and has a downward-pointing singularity at x0 with h(x0) < inf∂Ω h.

Applying the maximum principle to −h on Ω −Br(x0), for r small, proves that:

the point x0 is a strict global minimum for h on Ω. (7.1a)

Moreover, for convenience, we assume by rescaling that

h(x0) = 0, sup
∂Ω

h = 1 and h(x) > 0 for x �= x0 in Ω. (7.1b)

7.1. The construction

It is similar to the construction in the polar case. However, for each t ≥ 0 we construct 
a function Ht which is a candidate for the solution with Ht ∼ th at x0. When t = 0, the 
construction will yield the solution to the standard Dirichlet Problem on Ω, namely:

H0 ∈ C(Ω), H0 is F harmonic on Ω, and H0∣∣
∂Ω = ϕ. (7.2)

The construction of Ht is based on using the function

ψ
t
(x) ≡ H0(x) + t(h(x) − 1). (7.3)

to prescribe the boundary values on the inner boundary ∂Br(x0). An upper bound for 
Ht is provided by the function

ht(x) ≡ λh(x) + H0(x0) + t(h(x) − 1) (7.4)

for λ sufficiently large. Note that ht is F -harmonic on Ω − {x0} since h is F -harmonic 
there. We need the following “monotonicity” hypothesis to ensure that ψ

t
is F -subhar-

monic.

Hypothesis (H2). The function H0 + th is F -subharmonic on Ω, and therefore, so is each 
ψ
t
. (Of course (H2) is satisfied if F is a convex subequation.)

Let Ht
r denote the solution, given by Theorem 6.1, to the Dirichlet Problem on Ωr =

Ω − Br(x0) with boundary values ϕ on ∂Ω and boundary values ψ
t

on ∂Br(x0). As in 
Section 6, we will show that these functions Ht

r are pointwise increasing as r → 0. We 
define Ht by

Ht(x) ≡ lim
r→0

Ht
r(x) on Ω − {x0} and Ht(x0) ≡ H0(x0) − t. (7.5)
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This is our candidate for a “solution” to the (DPPS) with singularity prescribed by th
at x0. Next we show that Ht satisfies all the required conditions with the exception of 
the asymptotic equivalence Ht ∼ th at x0.

Theorem 7.1. For each t ≥ 0,
(1) Ht ∈ C(Ω),
(2) Ht is F -harmonic on Ω − {x0},
(3) Ht

∣∣
∂Ω = ϕ.

In addition,
(4a) ψ

t
≤ Ht with equality at x0,

(4b) Ht ≤ ht (for λ large) with equality at x0.

Proof. First note that ψ
t
∈ C(Ω) has the properties

ψ
t

is F subharmonic on Ω and ψ
t
≤ ϕ (7.6)

because of (H2) and h
∣∣
∂Ω ≤ 1 respectively. (We also have ψ

t
(x0) = H0(x0) − t since 

h(x0) = 0.) Therefore ψ
t

is in the Perron family for Ht
r, which proves that

ψ
t
≤ Ht

r on Ωr. (7.7)

Define

H
t

r ≡
{

max{ψ
t
, Ht

r} = Ht
r on Ωr

ψ
t

on Br.
(7.8)

Then exactly as in Section 6 one proves that

H
t

r is F subharmonic on Ω and increasing in r as r → 0. (7.9)

Define

Ht(x) ≡ lim
r→0

H
t

r(x) for all x ∈ Ω. (7.10)

Now Property (3) is immediate since Ht
r

∣∣
∂Ω = ϕ independent of r. Next note that 

ψ
t
≤ H

t

r ≤ Ht by (7.7). Together with the equality ψ
t
(x0) = H

t

r(x0) = Ht(x0) − t at 
x0, this proves (4a).

We begin the proof of (1) and (2). The family {Ht

r}r>0 of functions on Ω is bounded. 
The upper bound H

t

r ≤ H0 implies that Ht ≤ (Ht)∗ ≤ H0, and hence (3) can be 
strengthened to

(3)′ Ht
∣∣
∂Ω = (Ht)∗

∣∣
∂Ω = ϕ.

Also, since Ht is an increasing limit of continuous functions, it is lower semi-continuous. 
Thus,
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(Ht)∗ ∈ USC(Ω) and Ht = (Ht)∗ ∈ LSC(Ω) (7.11)

are finite-valued. Moreover, by the “families bounded above” property and the “decreas-
ing limit” property, we have

(a) (Ht)∗ is F subharmonic on Ω, (b) −Ht is F̃ subharmonic on Ω − {x0}. (7.12)

Hence u ≡ (Ht)∗ − Ht ∈ USC(Ω) satisfies u ≥ 0 on Ω, and u
∣∣
∂Ω = 0 by (3)′. As 

discussed in the proof of Lemma 5.1, u is subaffine on Ω − {x0}. Therefore, by the 
Maximum Principle for subaffine functions on the domain Ω − {x0} we have

(Ht)∗(x) −Ht(x) ≤ (Ht)∗(x0) −Ht(x0) = u(x0) on Ω. (7.13)

It remains to show that u(x) ≡ (Ht)∗(x) −Ht(x) equals zero at x0, i.e.,

(Ht)∗(x0) = H0(x0) − t. (7.14)

Once this is established, we will have (Ht)∗ = Ht, which implies both (1) and (2). Next 
note that (7.14) follows immediately from the upper bound (4b) since ht(x0) = H0(x0) −t

and ht ∈ C(Ω).
Thus it remains to prove (4b). As noted, equality in (4b) holds at x0. Hence it suffices 

to prove that Ht ≤ ht on Ω − {x0}, or that

Ht
r ≤ ht on Ωr for small r. (7.15)

Since ht is F -harmonic on Ωr by (H1), it suffices, by comparison, to show that

Ht
r ≤ ht on ∂Ωr. (7.16)

That is, we must show that

ϕ ≤ ht on the outer boundary ∂Ω, and (7.16a)

ψ
t
≤ ht on the inner boundary ∂Br. (7.16b)

Since inf∂Ω h > 0 and osc∂Ω(h) = 1 − inf∂Ω h, it is straightforward to see that

λ ≥ supϕ−H0(x0) + t osc∂Ω(h)
inf∂Ω h

⇐⇒ supϕ ≤ inf
∂Ω

ht (7.17)

which implies (7.16a). We might as well take λ ≡ λ(t) to be the affine function of t
defined by equality in (7.17).

For (7.16b) first note that ψ
t
≤ H0 implies ψ

t

∣∣
∂Ω ≤ ϕ, and hence by (7.16a), that 

ψ
t

∣∣
∂Ω ≤ ht

∣∣
∂Ω. We also have ψ

t
(x0) = ht(x0) since h(x0) = 0. Since u ≡ ψ

t
− ht ∈

P̃(Ω − {x0}), we can apply the maximum principle to u on Ω − {x0} to conclude that 
u ≤ 0 on Ω. In particular, u ≤ 0 on ∂Br(x0), which is (7.16b). This completes the proof 
of (4b) and, therefore, of Theorem 7.1. �
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7.2. Prescribing the density at a point

We make two additional assumptions on h.

Hypothesis (H3). For each H which is F -subharmonic near x0 ∈ Ω and F -harmonic on 
a deleted neighborhood of x0,

lim
x→x0

H(x) −H(x0)
h(x) ≡ Θ exists and Θ ≥ 0, (7.18)

that is, H ∼ Θh at x0 for some Θ ≥ 0.

There are many examples where this is true. They will be discussed later in this 
section.

Definition 7.2. Under the hypothesis (H3) the h-density of H at x0, denoted Θx0(H) is 
defined to be the limit in (7.18).

The second additional assumption on h is that F -harmonics have vanishing densities.

Hypothesis (H4). If H is F -harmonic in a neighborhood of x0, then Θx0(H) = 0, i.e.,

lim
x→x0

H(x) −H(x0)
h(x) = 0.

Definition 7.3. The Dirichlet Problem with a Prescribed density, abbreviated (DPPD), 
is said to be uniquely solvable for F if for all ϕ ∈ C(∂Ω) and Θ ≥ 0, there exists a unique 
H ∈ C(Ω) which is F -harmonic on Ω − {x0} and satisfies

H
∣∣
∂Ω = ϕ and Θx0(H) = Θ (i.e. H ∼ Θh).

As in Theorem 7.1, we assume (H1). We shall assume that F is convex, so (H2) is 
unnecessary. In addition we assume (H3) and (H4).

Theorem 7.4 (Existence for a prescribed density). Assume that F is a convex cone sube-
quation. Then for each Θ ≥ 0 and ϕ ∈ C(∂Ω) the (DPPD) is uniquely solvable.

For the terminology used in the next corollary see the discussion following Corol-
lary 1.5.

Corollary 7.5 (The nonlinear Green’s function). There exists a unique nonlinear Green’s 
function G(x) = GΩ(x; x0, h) for the subequation F on the domain Ω with asymptotic 
singularity determined by the generalized fundamental solution h. Moreover, x0 is a strict 
global minimum point for G on Ω.
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Proof. By definition G is the unique solution on Ω with h-density 1 at x0 and boundary 
values ϕ ≡ 0. Since G has no test functions at x0, G is F -subharmonic on Ω. Hence, by 
the maximum principle, G ≤ sup∂Ω G = 0 on Ω. Now −G is F̃ -subharmonic on Ω −{x0}. 
Therefore, by the maximum principle applied to −G on Ω −{x0}, we first get G(x0) < 0
(because G(x0) = 0 implies −G ≤ 0, and so G ≡ 0 on Ω contradicting Θx0(G) = 1). 
Then exactly as in the proof of (7.1a) we get that x0 is a strict global minimum for G
on Ω. �
Proof of Theorem 7.4. Let Ht, t ≥ 0 denote the family of downward-pointing 
F -harmonics at x0 on Ω with Ht

∣∣
∂Ω = ϕ, constructed in Theorem 7.1. Let

f(t) ≡ Θ(Ht).

To prove Theorem 7.4 it is enough to show that f([0, ∞)) = [0, ∞), and then choose 
t ∈ f−1(Θ) and H = Ht. The next lemma supplies this needed fact.

Lemma 7.6. The function f(t) satisfies:
(A) f(0) = 0,
(B) f(s) + (t − s) ≤ f(t) for 0 ≤ s ≤ t,
(C) f(t) is concave.

Proof. Part (A) is immediate from the assumption (H4) since H0 is F -harmonic on Ω. 
To prove (B) we show

(B)′ Hs(x) −Hs(x0) + (t − s)h(x) ≤ Ht(x) −Ht(x0).
The functions

u ≡ Hs
r (x) + (t− s)(h(x) − 1) and v ≡ Ht

r(x)

have the same boundary values on ∂Br since ψ
s

+ (t − s)(h − 1) = ψ
t
, while on ∂Ω

we have u = ϕ + (t − s)(h(x) − 1) ≤ ϕ = v. By the convexity assumption on F , u is 
F -subharmonic on Ω − Br. Since v is F -harmonic on Ω − Br, comparison implies that 
u ≤ v on Ω −Br. Taking r ↓ 0 gives

Hs(x) + (t− s)(h(x) − 1) ≤ Ht(x)

which implies (B)′ since Hs(x0) = H0(x0) − s, Ht(x0) = H0(x0) − t, and h(x0) = 0.
For (C) we show that for 0 ≤ σ ≤ 1 and 0 < s < t,

(C)′ σ (Hs(x) −Hs(x0)) + (1− σ)
(
Ht(x) −Ht(x0)

)
≤ Hσs+(1−σ)t(x)−Hσs+(1−σ)t(x0)

on Ω, which implies (C) by (H3). Since Hs(x0) = H0(x0) − s for all s, the inequality 
(C)′ is equivalent to

(C)′′ σHs(x) + (1 − σ)Ht(x) ≤ Hσs+(1−σ)t(x) on Ω.
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This follows from

σHs
r (x) + (1 − σ)Ht

r(x) ≤ Hσs+(1−σ)t
r (x) on Ω −Br, (7.19)

which is true because the LHS and the RHS have the same boundary values on ∂(Ω −Br)
and, by the hypothesis that F is a convex cone, the sum of the two F -harmonics on the 
LHS is F -subharmonic and therefore in the Perron family for Hσs+(1−σ)t

r . �
Remark 7.7. Part (4b) of Theorem 7.1 implies f(t) ≤ t + λ(t) where λ(t) is the affine 
function of t used in the definition of ht. By Lemma 7.6 (B) we have t ≤ f(t). We ask 
the question: When does f(t) = t?

7.3. Applications of Theorem 7.4

There are many interesting examples of subequations F and singularities h for which 
the hypotheses (H3) and (H4) hold.

Case 7.8 (Strong uniqueness of tangents). Here we assume that the subequation F is 
invariant under O(n). Then F has a well-defined Riesz characteristic p which we assume 
to satisfy 1 ≤ p < 2. The function h(x) = |x|2−p provides the asymptotic singularity.
Every F -subharmonic function u defined near a point x0 ∈ Rn has a well-defined density 
Θ = Θ(u, x0) at x0 defined to be limr→0 supBr(x0) u/r

2−p. We say that F satisfies Strong 
Uniqueness of Tangents if, for each u, every tangent to u at x0 is Θ(u, x0)|x − x0|2−p. 
This Strong Uniqueness holds for every F with the exception of F = P, which is the 
only possibility when p = 1 (see [19,20]).

Proposition 12.6 in [19] states that for any F -subharmonic (not just a punctured 
F -harmonic) function u, strong uniqueness of the tangent to u holds if and only if (H3) 
holds, i.e., u ∼ ΘKp.

This leads to a result where the several hypotheses are automatic

Theorem 7.9. Suppose F is O(n)-invariant convex cone subequation with Riesz char-
acteristic 1 < p < 2 Take h(x) = |x − x0|2−p. Then the (DPPD) is uniquely solvable 
for F .

Proof. The hypotheses (H3) and (H4) are true for h so that Theorem 7.4 applies. �
Case 7.10 (Armstrong–Sirakov–Smart fundamental solutions). Now we assume instead 
that the subequation F in Theorem 7.1 is uniformly elliptic, and let h = Φ be the 
fundamental solution discussed in Example 2.5.

Theorem 7.11 (Armstrong–Sirakov–Smart [4]). Every F -harmonic function H on 
Br(x0) −{x0}, which has a downward-pointing singularity at x0 is asymptotically equiv-
alent to ΘΦ(x − x0) for some Θ ≥ 0.
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This has the following corollary.

Theorem 7.12. Suppose the subequation F is uniformly elliptic, and that the downward-
pointing fundamental solution Φ of Armstrong, Sirakov and Smart is of finite type (i.e.
of homogeneity > 0). Then with h = Φ the hypotheses (H3) and (H4) are satisfied and 
Theorem 7.4 applies.

8. Prescribing values at singularities in the finite case

In the finite case one can also consider the Dirichlet Problem with multiple prescribed 
singularities where the value of the solution, instead of the density, is given at each 
singular point. The hj-density at each singular point xj is not precise but is replaced by 
two-sided bounds on the difference quotient. The general result is the following.

Theorem 8.1. Let F be a cone subequation satisfying (F3). Fix a function ϕ ∈ C(∂Ω)
and points x1, ..., xk ∈ Ω. Suppose that for each j = 1, ...k we are given a function

hj ∈ C(Ω) which is F -harmonic on Ω − {xj}

with a downward-pointing singularity of finite type at xj. Furthermore, assume that

(i) the boundary of Ω is smooth and strictly F -convex,
(ii) each hj has a strict global minimum at xj,
(iii) there exists a function h ∈ C(Ω) which is F -subharmonic on Ω −{x1, ..., xk} with 

h ∼ hj at xj for each j and with h
∣∣
∂Ω ≤ ϕ.

Then there exists a function H such that

(1) H ∈ C(Ω),
(2) H is F -harmonic on Ω − {x1, ..., xk},
(3) H

∣∣
∂Ω = ϕ and H(xj) = h(xj) for j = 1, ..., k,

(4) there exists a constant c > 1 such that for any ε > 0

1 − ε ≤ H(x) − h(xj)
hj(x) − hj(xj)

≤ c for x sufficiently near xj , j = 1, ..., k.

We postpone the proof to the end of this section, and first examine some special cases. 
For example, this theorem can be applied to subequations F as in Case 7.8 above with 
the additional hypothesis of convexity.

Corollary 8.2. Suppose that F is a convex, O(n)-invariant subequation whose Riesz char-
acteristic p satisfies 1 < p < 2. Let Ω ⊂⊂ Rn be a domain with a smooth strictly 
F -convex boundary. Then given points x1, ..., xk ∈ Ω, positive numbers γ1, ..., γk > 0, 
and a function ϕ ∈ C(Ω), the following holds. For every constant C such that the re-
striction
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⎧⎨⎩h ≡ hC ≡
k∑

j=1
γj |x− xj |2−p + C

⎫⎬⎭
∣∣∣∣∣∣
∂Ω

≤ ϕ, (8.1)

there exists a function H with properties (1)–(4) above.

Proof. Since F is convex, the function h is F -subharmonic. It satisfies the boundary 
hypothesis in (iii) by (8.1). Finally, one has that h(x) ∼ γj |x − xj |2−p at xj for each j. 
(To see this note that if h(x) = Θ|x|α + g(x) where g is smooth and 0 < α < 1, then 
(h(x) − h(0))/|x|α → Θ as x → 0.) Hence, Theorem 8.1 applies. �

The simplest subequation of this type is Pp.
We note that in the case where p = 1 (i.e., F = P), multiple singularities cannot 

exist, because a convex function cannot have more than one strict local minimum. Thus 
Theorem 8.1 does not apply since the global function h does not exist when k > 1.

Corollary 8.2 allows us to prescribe certain values for the function H at the singular 
points. This can be thought of as the Dirichlet problem, if one considers x1, ..., xk as 
additional boundary points. Uniqueness holds for this problem by comparison (see [18, 
Thm. 6.2]), but in general the values at these interior points cannot be given arbitrarily 
(see Proposition 8.5 below). However, Corollary 8.2 does provide a set V ⊂ Rk of values 
which can be prescribed. More precisely, let F , Ω, ϕ and x1, ..., xk be as in Corollary 8.2. 
Given γ1, ..., γk > 0 and a constant C, let

hγ,C(x) ≡
∑
j

γj |x− xj |2−p + C.

Define the set V ⊂ Rk by the condition that = (v1, ..., vk) ∈ V iff

vj = hγ,C(xj) for some γ,C such that hγ,C

∣∣
∂Ω ≤ ϕ. (8.2)

Corollary 8.3 (V ⊂ Val). For every v ∈ V there exists a solution H to the “value problem”. 
That is, there exists H ∈ C(Ω) which is F -harmonic on Ω − {x1, ..., xk}, and takes on 
the boundary values

H
∣∣
∂Ω = ϕ and H(xj) = vj for j = 1, ..., k.

In addition, H satisfies (4) above with hj(x) = γj |x − xj |2−p. Moreover the set V has 
non-empty interior and satisfies V + (c, ..., c) ⊂ V for all c ≤ 0.

Proof. If v is given as in (8.2) with hγ,C

∣∣
∂Ω < ϕ, then hγ′,C′

∣∣
∂Ω < ϕ for (γ′, C ′) in a 

neighborhood of (γ, C) and the resulting values v′ fill out a neighborhood of v in Rk. To 
see this consider the symmetric k× k matrix A = ((aij)) where aij = |xi − xj |p−2. Then 
det(A) �= 0 and so the mapping γ �→ A · γ is open. This proves that V has non-empty 
interior. The remaining assertions are clear. �
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Note 8.4 (The nonlinear Green’s functions). In the case of a single point x0 ∈ Ω and 
boundary values ϕ = 0, Corollary 8.3 produces the family of Green’s functions G(x) =
GΩ(x; x0, Θ|x − x0|2−p) in Corollary 7.5. To see this, note that the function H(x) given 
in Corollary 8.3 is ≤ 0 on Ω since by (4) it has no test functions at x0 and is therefore 
F -subharmonic on Ω. If H(x0) = 0, then H ≡ 0 on Ω by the maximum principle on 
Ω −{x0} applied to the F̃ -subharmonic function −H. Thus H(x0) < 0 and by uniqueness 
H(x) = G(x; x0, Θ|x − x0|2−p) where Θ ≥ γ > 0 is the density of H at x0. It is now 
obvious by rescaling (since ϕ = 0) that the set V defined by (8.2) at x0 is exactly {v ≤ 0}.

There remains the question of describing Val, i.e., when, if at all, can one prescribe 
v = H(x0) > 0.

Proposition 8.5. Suppose H ∈ C(Ω) is F harmonic on Ω −{x0} and satisfies H
∣∣
∂Ω = 0. 

Then H(x0) ≤ 0. Thus, V = {v ≤ 0} is exactly the set of values Val that can be prescribed 
for the one-point Dirichlet problem with ϕ = 0.

Proof. Assume x0 = 0 for simplicity, and suppose that H(0) > 0. Choose R > 0 so that 
Ω ⊂⊂ BR(0), and for q > 2 and r > 0 consider the function

vr(x) ≡ r

{
1

|x|q−2 − 1
Rq−2

}
.

The ordered eigenvalues of D2
x(vr), up to the positive factor r(q−2)

|x|q , are

−1, ... ,−1, (q − 1)

and so the eigenvalues of D2
x(vr) satisfy

λmin + (p− 1)λmax ∼= −1 + (p− 1)(q − 1) < 0 (8.3)

if we choose

q < 1 + 1
p− 1

which is possible since 0 < p − 1 < 1.
Now for r > 0 sufficiently large we have vr > H on Ω. (In fact by the maximum 

principle on Ω − {0} one has that H(0) is a global maximum of H on Ω.) Let

r0 ≡ inf{r : vr > H on Ω} ≥ 0.

Now r0 cannot be 0 since we are assuming that H is continuous with H(0) > 0. Thus, 
there is a point y ∈ Ω where H(y) = vr0(y). Note that y /∈ ∂Ω since H = 0 there, and 
y �= 0 since vr0(0) = ∞.
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We conclude that y ∈ Ω − {0} and vr0 is a test function for H at y. In particular, 
D2

y(vr0) ∈ F . However, since F is O(n)-invariant and of characteristic p, we have by 

Proposition 3.13 in [19] that F ⊂ Pmin/max
p ≡ {λmin + (p − 1)λmax ≥ 0}. Thus we have 

D2
y(vr0) ∈ Pmin/max

p contradicting (8.3). �
For multiple singular points things are much more complicated.

Corollary 8.6 (Prescribing values at multiple singularities). Let F and Ω be as above, and 
fix points x1, ..., xk ∈ Ω. Take boundary values ϕ = 0 and choose γ ∈ Rk

+. Then for each 
C satisfying hγ,C

∣∣
∂Ω ≤ 0, one obtains from Corollary 8.3 the existence of a multi-pole 

Green’s function G(x) = GΩ(x; x1, ..., xk) with a singularity of type |x −xj |2−p at xj but 
with an unknown density Θj ≥ γj at xj. As in (8.2) let V ⊂ Rk be the set of all values 
v = (G(x1), ..., G(xk)) at the singular points, obtained by varying γ. Then V is a convex 
cone in the negative “octant” Rk

− ⊂ Rk.

Proof. The set V given in Corollary 8.3 is described as follows. For each γ = (γ1, ..., γk) ∈
Rk

+ set

Fγ(x) =
k∑

j=1
γj |x− xj |2−p and C(γ) = − sup

x∈∂Ω
Fγ(x)

Then v = (v1, ..., vk) ∈ V if and only if there exist γ and C such that

vj = Fγ(xj) − C for j = 1, ..., k and C ≤ C(Ω). (8.4)

It is clear that C(tΩ) = tC(Ω) and Ftγ = tFγ for all t ≥ 0, so V is a cone with vertex 
the origin. It remains to show that V + V ⊂ V. We begin by observing that

C(γ + γ′) ≥ C(γ) + C(γ′) (8.5)

(since the sup of the sum is ≤ the sum of the sups). Consider the vectors v(γ) obtained 
by taking C = C(Ω) in (8.4). Then we have

vj(γ + γ′) = Fγ+γ′(xj) + C(γ + γ′)

= Fγ(xj) + Fγ′(xj) + C(γ) + C(γ′) − κ

= vj(γ) + vj(γ′) − κ

where κ ≡ C(γ+γ′) −C(γ) +C(γ′) ≥ 0 by (8.5). Thus by (8.4) we have v(γ) +v(γ′) ∈ V, 
and the assertion follows easily. �

For a slightly different perspective, note that Fγ(x) = γ · F (x) where

F (x) = (|x− x1|2−p, |x− x2|2−p, ..., |x− xk|2−p),
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and consider the symmetric k × k matrix with positive entries:

A =

⎛⎜⎝F (x1)
F (x2)

:
F (xk)

⎞⎟⎠ = (F (x1)t, F (x2)t, ..., F (xk)t)

Then the set V is given by:

v ∈ V ⇐⇒ v = A · γ + C(1, ..., 1) for γ ∈ Rk
+ and C ≤ C(Ω) (8.6)

Taking γ = ej = (0, ..., 0, 1, 0, ..., 0) (the jth coordinate vector in Rk) for j = 1, ..., k
we have the following.

Lemma 8.7. The set V contains the convex cone in the negative octant generated by the 
vectors

Vj ≡ F (xj) − sup
x∈∂Ω

|x− xj |2−p(1, 1, ..., 1), j = 1, ..., k.

Remark 8.8. It is important to note that the functions GΩ(x; x1, ..., xk) constructed in 
Corollary 8.6 do not have hj-density equal to γj at xj (where hj(x) = |x − xj |2−p). By 
Theorem 8.1 (4) the constant γj is a lower bound on the density and there exists a global 
upper bound depending on the data.

Question 8.9. Can one determine these densities, at least in geometrically simple cases?

Question 8.10. Can one determine the value set V defined by (8.2), at least in relatively 
simple cases?

Question 8.11. What is the full set Val ⊃ V of possible values v (both depending on 
ϕ ∈ C(∂Ω)) for which there exists a solution H to the “value problem” (as defined in 
Corollary 8.3).

Note 8.4 and Proposition 8.5 answer this question in the case of a single point.

Proof of Theorem 8.1. We apply the existence construction given in Section 6. Consider 
r > 0 sufficiently small that the closed balls Br(xj), 1 ≤ j ≤ k are mutually disjoint 
and contained in Ω. Let Hr be the F -harmonic function on Ωr ≡ Ω −

⋃
j Br(xj) with 

boundary values ϕ on ∂Ω and h on each ∂Br(xj). We extend Hr to Hr ∈ C(Ω) by 
setting Hr = h on each Br(xj). The arguments of Section 6 show that

Hr ↑ H as r → 0.

As before H∗ is F -subharmonic and −H is F̃ -subharmonic on Ω −{x1, ..., xk}. As before, 
let HDP be the solution to the Dirichlet problem on Ω with boundary values ϕ. Then 
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Hr ≤ HDP and therefore H ≤ HDP on Ω. Thus H∗ ≤ HDP and in particular H∗∣∣
∂Ω = ϕ. 

Note also that h ≤ H ≤ H∗.
Now for each j we choose a constant cj > 0 sufficiently large that the punctured 

F -harmonic function

Hj(x) ≡ cj(hj(x) − hj(xj)) + h(xj)

satisfies

Hj > h on Ω − {xj} and Hj > ϕ on ∂Ω.

This can be done since hj has a strict global minimum at xj. It follows that Hr ≤ Hj

on Ω for all small r, and therefore H ≤ Hj . In sum we have that

h ≤ H ≤ H∗ ≤ Hj for each j = 1, ..., k,

and in particular H and H∗ are continuous at each xj with H(xj) = H∗(xj) = h(xj). 
Subtracting h(xj) and dividing by the positive function h(x) − h(xj) gives

1 ≤ H(x) − h(xj)
h(x) − h(xj)

≤ H∗(x) − h(xj)
h(x) − h(xj)

≤ Hj(x) − h(xj)
h(x) − h(xj)

= cj near xj (8.7)

We now consider the function u ≡ H∗ − H which is continuous on Ω, subaffine on 
Ω − {x1, ..., xk}, and satisfies u

∣∣
∂Ω = 0 and u(xj) = 0 for all j. It follows that u ≤ 0 on 

Ω. Hence, H = H∗ and so H is F -harmonic on Ω − {x1, ..., xk}.
The assertion (4) now follows from (8.7) and the fact that h ∼ hj at xj , i.e.,

lim
x→xj

h(x) − h(xj)
hj(x) − hj(xj)

= 1. �

Appendix A. Asymptotic equivalences and tangent flows (for p �=�=�= 2)

The asymptotic equivalence classes can be related to the tangent flow very generally. 
Suppose u is an upper semi-continuous function defined in a neighborhood of the origin. 
Recall the tangent flow and the Riesz kernel:

ur(x) ≡
{
rp−2u(rx) if p ≥ 2
u(rx)−u(0)

r2−p if 1 ≤ p < 2.
and K(x) ≡

{
− 1

|x|p−2 if p ≥ 2
|x|2−p if 1 ≤ p < 2.

Note that Kr = K for the full range p ≥ 1, p �= 2.
Fix Θ > 0. We define the first notion of asymptotic equivalence at 0 as follows.
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Definition A.1. u ∼ ΘK at 0 if

lim
x→0

u(x)
K(x) = Θ when p ≥ 2

lim
x→0

u(x) − u(0)
K(x) = Θ when 2 > p ≥ 1

(A.1)

We have a second alternative definition of asymptotic equivalence when p > 2.

Definition A.2. u ≈ ΘK at 0 if

u− ΘK is bounded in a neighborhood of the origin. (A.2)

This notion is stronger. (When 2 > p ≥ 1 it is weaker, in fact too weak to be useful.)

Proposition A.3 (p > 2). If u ≈ ΘK, then u ∼ ΘK. However, the converse is false.

Proof. Note that

u ≈ ΘK ⇐⇒ |u(x) − ΘK(x)| ≤ C near x = 0

⇐⇒
∣∣∣∣ u(x)
K(x) − Θ

∣∣∣∣ ≤ C

|K(x)| near x = 0

This implies that limx→0 u(x)/K(x) = Θ since K(0) = −∞. See Example A.6 for a 
counterexample to the converse. �

These asymptotic equivalences are related to the tangent flows as follows.

Proposition A.4 (p > 2).

(a) u ≈ ΘK ⇒ ur → ΘK uniformly on BR

(b) ur − ΘK bounded near 0 for some r ⇒ u ≈ ΘK.

Proposition A.5.

(a) (1 ≤ p < 2) u ∼ ΘK ⇒ ur → ΘK uniformly on BR

(b) (2 < p) u ∼ ΘK ⇒ ur → ΘK uniformly on As,R

(c) (1 ≤ p < ∞) ur → ΘK uniformly on some sphere ∂BR ⇒ u ∼ ΘK.

Proof of Proposition A.4(a). Assume u ≈ ΘK. The inequality

|u(y) − ΘK(y)| ≤ C (A.3)

can be rewritten with y = rx as
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|ur(x) − ΘK(x)| ≤ Crp−2 (A.3)′

by applying the tangent flow to both sides. Thus if (A.3) holds for all |y| ≤ δ, then (A.3)′
holds for all |x| ≤ R and r ≤ δ/R, which suffices to prove that ur converges uniformly 
to ΘK on BR.

Proof of Proposition A.5(a), (b). With y, r, x related by y = rx, the inequalities

(a)
∣∣∣∣ u(y)
K(y) − Θ

∣∣∣∣ ≤ ε and (b) |ur(x) − ΘK(x)| ≤ ε|K(x)| (A.4)

are equivalent. If (a) holds for |y| ≤ δ, then (b) holds for |x| ≤ R and r ≤ δ/R.

Case: 1 ≤ p < 2. Note that |x| ≤ R ⇒ |K(x)| = K(x) ≤ K(R). This proves that (A.4)(a) 
for |y| ≤ δ implies |ur(x) −ΘK(x)| ≤ εK(R) for |x| ≤ R and r < δ/R. Thus ur converges 
uniformly to ΘK on BR.

Case: 2 < p. Note that s ≤ |x| ⇒ |K(x)| ≤ |K(s)|. This proves that (A.4)(a) for 
|y| ≤ δ implies that |ur(x) − ΘK(x)| ≤ ε|K(s)| for s ≤ |x| ≤ R and r < δ/R, since 
|y| = r|x| ≤ δ

RR = δ. Thus ur converges uniformly to ΘK on As,R.

Proof of Proposition A.4(b). With y, r, x related by y = rx, the inequalities

(a) |uδ(x) − ΘK(x)| ≤ C ∀ |x| ≤ R and

(b) δp−2|u(y) − ΘK(y)| ≤ C ∀ |y| ≤ δR
(A.5)

are equivalent. If (a) holds for all |x| ≤ R, then (b) holds for all |y| ≤ δR. This proves 
that u ≈ ΘK if (a) is true for some δ, C > 0 and all |x| ≤ R.

Proof of Proposition A.5(c). Again if y = rx, then

(a) |ur(x) − ΘK(x)| ≤ ε and (b)
∣∣∣∣ u(y)
K(y) − Θ

∣∣∣∣ ≤ ε

|K(x)| (A.6)

are equivalent. To see this divide both sides of (A.6)(a) by |K(x)| and note that ur(x)
K(x) =

ur(x)
Kr(x) = u(rx)

K(rx) . Suppose (A.6)(a) holds for all |x| = R and r ≤ δ. Then (A.6)(b) holds 
for all y = rx with |x| = R and r ≤ δ, or for all |y| ≤ δR. Since K(x) = K(R) this is 
enough to prove that limy→0 u(y)/K(y) = Θ.

Example A.6 (Counterexamples to: u ∼ ΘK ⇒ u ≈ ΘK). Take

F = Δ, K(x) = − 1
n−2 , and u(x) ≡ − Θ

n−2 − 1
p−2
|x| |x| |x|
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with p < n. Then limx→0
u(x)
K(x) = limx→0 (Θ + |x|n−p) = Θ so that u ∼ K. However, 

u −ΘK = − 1
|x|p−2 is not bounded near the origin, i.e., u ≈ ΘK is not true. Note that u

is Δ-subharmonic.
In this example we could also replace n with any q ≤ n and take p < q. In this case 

the corresponding function u is Pq-subharmonic since Pp ⊂ Pq.
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